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Based on the breathing Fermi-surface model of Gilbert damping and on the Elliott-Yafet relation for the
spin-relaxation time, a relation is established between the conductivitylike contribution to the Gilbert damping
� at low temperatures and the demagnetization time �M for ultrafast laser-induced demagnetization at low laser
fluences. Thereby it is assumed that, respectively, the same types of spin-dependent electron-scattering pro-
cesses are relevant for � and �M. The relation contains information on the properties of single-electron states
which are calculated by the ab initio electron theory. The predicted value for � /�M is in good agreement with
the experimental value.
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I. INTRODUCTION: GILBERT DAMPING AND LASER-
INDUCED DEMAGNETIZATION

Recently, there has been an extensive research activity on
short-time magnetization dynamics for two reasons. First,
there is an enormous importance for magnetic devices, and,
second, the microscopic mechanisms which determine the
dissipative magnetization dynamics are not well understood.
The dynamics �e.g., magnetization switching� can be driven
by external magnetic fields or by spin-polarized electrical
currents on a time scale of nanoseconds to several picosec-
onds. Since the pioneering paper of Beaurepaire et al.1 it is
known that the magnetization can be modulated even on a
picosecond or subpicosecond time scale when exposing a
thin film of Ni, Fe, or Co, e.g., to an optical femtosecond
laser pulse. In the following we denote the dynamics on
these two scales as fast and ultrafast magnetization dynam-
ics, respectively.

For the theoretical modeling of the fast dynamics of the
magnetization M the Gilbert equation2 is commonly used

dM

dt
= − ��M � Heff� +

1

M
�M � �

dM

dt
� . �1�

Here the first term �� is the gyromagnetic ratio� describes the
precession of M around the effective field Heff, and the sec-
ond term with the damping scalar � represents the damping.
It has been shown �for a review, see Ref. 3� that for a general
situation the Gilbert scalar � has to be replaced by a damping
matrix �, which depends itself on the magnetization configu-
ration of the whole system but for the present purpose it
suffices to consider Eq. �1�. For the modeling of the ultrafast
dynamics a phenomenological three-temperature model is
used1 which describes the interaction of the electron, spin,
and lattice subsystems, or its recently developed microscopic
version �see, e.g., Ref. 4�. The quantity of interest is the
demagnetization time �M �which for Ni can be below 100 fs
for low laser fluences4� describing the rate of magnetization
loss of the film after laser excitation.

Both damping of the fast magnetization dynamics, char-
acterized by �, and ultrafast demagnetization after laser ex-
citation, characterized by �M, require a transfer of angular
momentum from the electronic system to the lattice via elec-
tronic spin-flip scattering. Assuming that the dominant mi-

croscopic channels for the angular momentum transfer are
the same for both situations, it is desirable to find a relation
between � and �M.

II. SUMMARY OF A FORMER UNIFIED THEORY

A first unified theory of fast and ultrafast magnetization
dynamics has been presented by Koopmans et al.5 who com-
pared the fast precessional dynamics of a homogeneously
magnetized system in the homogeneous effective field Heff
=H �composed of the external field, the anisotropy field, and
the demagnetization field� with the ultrafast demagnetization
after laser excitation. According to Eq. �1�, the precession
damps out on the time scale

�P =
�

g�BH�
�2�

with the Landé factor g�2 and the Bohr magneton �B. In
Ref. 5 the physics behind the drastically different time scales
�M and �P could be explained by a simple hand-waving ar-
gument. To do this, the authors of Ref. 5 calculated the trans-
versal spin-relaxation time �M,t for laser excited electrons,
thereby describing the damped precessional motion of the
single electrons again by the Gilbert Eq. �1� with the same
damping constant � as for the fast precession but with the
effective field Heff=H replaced by the exchange field Hex,
which an individual electron spin feels that is not aligned
with the sea of other electrons. Assuming that the longitudi-
nal relaxation time �M is equal to the transverse relaxation
time �M,t even for the extremely fast precession in the Stoner
exchange field �preconditions for the validity of this assump-
tion are discussed in Ref. 6� yields7,8

�M =
�

g�BHex�
. �3�

From Eqs. �2� and �3� it becomes obvious that the reason for
the drastically different time scales of fast and ultrafast dy-
namics is given by the different effective fields. The indi-
vidual spins of the ultrafast dynamics feel the exchange field,
and their precession is extremely fast. In contrast, for the fast
dynamics the Stoner exchange field does not appear explic-
itly �it just functions to guarantee the constant modulus of
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the magnetization during the precession�, and the precession
in the effective field is much slower.

In Ref. 5 the relation in Eq. �3� between �M and � has
been rederived from quantum-mechanical principles. In both
situations an equation of motion is determined which de-
scribes the relaxation of the magnetic moment m�t� of the
sample from an initial nonequilibrium situation toward equi-
librium. On the microscopic level this relaxation results from
an imbalance of spin-up and spin-down electron-lattice scat-
tering events. Thereby it is again assumed that the same
types of spin-flip electron scattering �described by a model
matrix element� are relevant for �M and �. For the femtosec-
ond demagnetization the nonequilibrium situation arises be-
cause after the action of the laser pulse �which primarily
raises the electronic temperature� the electron, spin, and lat-
tice temperatures of the above-mentioned three-temperature
model are different. The increased temperature of the heat
bath for the individual spins �provided by the electronic sub-
system� causes a repopulation of the spin-up and spin-down
levels �defined with respect to the orientation of the ex-
change field Hex� via spin-flip scattering events which
change the energy by �g�BHex. For the calculation of � a
homogeneously magnetized sample is considered, where the
individual spins are coupled by Hex to a macrospin of fixed
quantum number S but variable magnetic quantum number
mS �now defined with respect to the orientation of the effec-
tive field H�. The initial nonequilibrium situation where the
macrospin is not parallel to H is again relaxed by spin scat-
tering processes whereby—however—the restriction has to
be fulfilled that S is conserved while mS can be changed.
Therefore the change in energy due to an individual spin flip
is �g�BH rather than �g�BHex. From the equations of
motion derived for the respective situation the quantities �M
and � can be determined, yielding Eq. �3�.

It should be recalled that in the quantum-mechanical treat-
ment all the electronic properties of the system are described
by just one effective parameter �the spin-flip scattering ma-
trix element�. Therefore it cannot be expected that Eq. �3�
gives a highly accurate description for all systems, albeit it
yielded a correct prediction on the order of magnitude of
�M� from a quantum-mechanical treatment. In fact, Eq. �3�
could not be confirmed quantitatively when manipulating �M
and � by transition-metal or rare-earth doping �see, e.g., Ref.
9�, either because of the oversimplified treatment of the elec-
tronic and scattering properties, or because different relax-
ation channels are relevant for �M and � �in contrast to the
basic assumption of the calculation�.

III. DESCRIPTION OF THE PRESENT UNIFIED THEORY

In the present paper we derive a relation between � and
�M by a completely different approach than in Ref. 5. The
advantage of the present theory is that it takes into account in
a much more detailed manner the specific electronic proper-
ties of a material. The disadvantage is that the relation be-
tween � and �M is much more complicated and does not
contain just one parameter �Hex in Eq. �3�� but the properties
of all individual electronic states which have to be calculated
by the ab initio electron theory for a comparison with the

experiment. It will be shown that the value of � /�M pre-
dicted by the theory agrees well with the corresponding ex-
perimental value.

It is well known �see, e.g., Refs. 10–15� that there are
often two contributions to �, one which is proportional to the
conductivity of the material and which dominates at low
temperatures, and one which is proportional to the resistivity.
We want to derive a relation between the low-temperature
damping parameter and the demagnetization time �M after
laser excitation at low temperatures and such low laser flu-
ences that the electron, spin, and lattice temperatures rise
only slightly.

It has been shown �see, e.g., Ref. 13� that the Gilbert
damping in metallic ferromagnets results predominantly
from the fact that the magnetization dynamics itself gener-
ates pairs of excited electrons and holes which then experi-
ence spin-dependent scattering at the lattice, thereby trans-
ferring angular momentum from the electronic system to the
lattice. We can distinguish between pairs for which the ex-
cited electrons and holes appear in the, respectively, same
band, and pairs which are generated by exciting the electrons
to other bands than those for which the holes appear. The
relaxation of these two types of electron-hole pairs leads to
the above discussed two contributions to � �see Refs. 14 and
15�.

The intraband pairs are generated because the spin-orbit
energy changes when the orientation e�t� of the, for example,
homogeneous magnetization M�t�=Me�t� changes with time
t, i.e., the single-electron energies 	 jk �j and k denote the
band index and the electronic wave vector� change with
time. Some states which are just below the Fermi surface for
one orientation e get pushed above the Fermi surface for an
orientation e at another time whereas other states which were
originally above are pushed below. This means that excited
electrons and holes are generated in the same band when we
consider the respective preceding orientation as reference.
This means, that, e.g., for a precessional dynamics of M�t�
the Fermi surface “breathes.” The relaxation of the intraband
electrons and holes leads to the conductivitylike “breathing
Fermi surface” contribution13–16 to �.

The interband pairs are generated because the system of
electrons feels a time-dependent perturbation due to the
changing spin-orbit interaction �see, e.g., Ref. 14�, and this
leads to electronic transitions between states 
 jk and 
 j�k.
These excitations are pictured as14 “bubbling” of individual
electrons at the Fermi surface. The relaxation of these inter-
band electrons and holes leads14 to the resistivitylike “bub-
bling Fermi surface” contribution to �.

It has been shown in Ref. 14 that the breathing and the
bubbling Fermi-surface contributions are incorporated in
Kamberský’s12 torque correlation model. For the conductivi-
tylike contribution itself another type of theory yielded the
breathing Fermi-surface model.3,16 Because we concentrate
on the low-temperature damping, we will consider the
breathing Fermi-surface model.

In the theory of Ref. 5 the fast dynamics of the system is
described by a statistical approach on the macrospin level,
and the macrospin relaxation is driven by the fact that tran-
sitions �S ,mS	→ �S ,mS+1	 lower the energy by g�BH. Such
transitions are realized by the spin-dependent electron-lattice
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scattering events which are characterized by the effective
scattering matrix element �see above� but the detailed dy-
namics on the level of single-electron states does not enter
explicitly the statistical approach for the macrospin. In con-
trast, in the breathing Fermi-surface model the system is de-
scribed by a statistical approach on the level of single-
electron states. As described above, intraband electron-hole
pairs are generated, for instance, by a precessional dynamics
of M�t� due to a breathing Fermi surface. The electron-hole
pairs generated by the precession survive for some lifetime �
before they relax by electron-lattice scattering, thereby trans-
ferring angular momentum to the lattice. Because of the fi-
nite lifetime the real occupation numbers njk�t� deviate from
the equilibrium Fermi-Dirac occupation numbers f jk�	 jk�t��,
and the differences between these two occupation numbers
represent the driving forces for a statistical treatment of the
relaxation on the level of single-electron states. Altogether,
the breathing Fermi-surface model yields17

� =
��

M
Fel, �4�

where the quantity

Fel = − 

jk

� f jk

�	 jk
� �	 jk

�e
�2

�5�

contains the derivatives of the single-electron energies with
respect to the orientation e of the magnetization M=Me. The
quantities �	 jk /�e can be calculated in the ab initio electron
theory from the single-electron energies 	 jk calculated for
two close orientations e of the homogeneous magnetization
which are stabilized by the action of constraining fields.3

We now describe the calculation of the demagnetization
time �M after laser excitations at low temperatures and low
laser fluences. For low fluences the laser excitation drives the
system only slightly out of thermal equilibrium. In Ref. 5 the
quantity �M has been calculated within the microscopic
three-temperature model described above where the relax-
ation is driven by the different temperatures of the electron,
spin, and lattice subsystems. For low fluences we can use the
theory of Yafet6,18 in which a weak nonequilibrium situation
for the electronic spin states is modeled by prescribing ini-
tially two different chemical potentials for electrons with two
spin characters, and this difference is the driving force for
the proceeding relaxation which is achieved by spin-
dependent electron-lattice scattering. Whereas in Ref. 5 the
spin-dependent scattering is described from the very begin-
ning by one effective matrix element, the theory of Yafet
contains the real matrix elements for the scattering between
different electronic states 
 jk and 
 j�k�. The key point of the
theory is the fact that in a system with spin-orbit coupling the
wave functions 
 jk are always mixtures of the two spin
states �↑ 	 and �↓ 	 with probability pjks to find an electron in
the spin state s. The degree of spin mixing is described by
the parameter

bjk
2 = min�pjk↑,pjk↓� , �6�

whereby for most states bjk
2 is much smaller than one, i.e.,

most states have a dominant spin character. In a simplified

version of Yafet’s theory the spin-flip matrix elements are not
calculated explicitly but estimated by simple physical argu-
ments. Within this simplified version the so-called Elliot-
Yafet relation6,19 for �M is derived

�M =
1

pb2�c, �7�

where b2 is an average of bjk
2 over all states involved in the

relaxation, p is a material-specific parameter which should
be close to 4 �and which should not be mixed up with the
above defined probability pjks to find a single electron in the
spin state s�, and the quantity �c is the relaxation time enter-
ing Drude’s theory of electrical conductivity.

Because in the breathing Fermi-surface model the lifetime
� is generally assumed to be identical to the Drude relaxation
time �c, we can derive from Eqs. �4� and �7� the relation

�M =
M

�Felpb2� , �8�

which is the central result of the present paper.
Please note two fundamental differences between Eq. �3�,

which is the central result of Ref. 5 and Eq. �8�. First, in Eq.
�3� �M is proportional to 1 /� whereas it is proportional to �
in Eq. �8�. The proportionality to � is related to the fact that
we considered the conductivitylike contribution which domi-
nates the damping at long lifetimes � �respectively, low tem-
peratures�. The resistivitylike contribution depends also on
the lifetime �, however, in a more complicated manner. It
increases monotonically with increasing �−1, and for small
�−1 �where the conductivitylike contribution dominates� it is

proportional to �−1, �= F̃el /�. Thereby, F̃el is again a quantity
which is determined by the properties of the electronic states
but it is different from the quantity Fel appearing in Eqs. �4�
and �5�. Whereas Fel can be expressed by matrix elements
which are formed with, respectively, the same single-electron

wave functions 
 jk, the quantity F̃el contains matrix ele-
ments formed by two different wave functions 
 jk and 
 j�k,
respectively, see, e.g., Ref. 14. This procedure yields the re-
lation

�M =
F̃el

pb2

1

�
�9�

between the demagnetization time and the resistivitylike con-
tribution to �, and this relation has the same form as Eq. �3�
given by Ref. 5. Altogether, it becomes clear that Eq. �3� is
not valid for all situations, it is certainly not valid for very
long lifetimes �respectively, low temperatures� where the
conductivitylike contribution to � dominates. This may be a
further reason why relation �3� could not be confirmed quan-
titatively in the experiments. �Please note that for Fe, Co, and
Ni probably both contributions to � are relevant at room
temperature.10,13�

The second essential difference is that in Eq. �3� just one
material parameter �Hex� appears which has nothing to do

with spin-orbit coupling, whereas the quantities Fel and F̃el
of Eqs. �8� and �9� are determined by the sensitivity of the
electronic states on changes in the spin-orbit coupling. On
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the first sight it therefore looks as if Eqs. �3� and �9� were, in
principle, not compatible with each other. Therefore we must
conclude that ��M= F̃el / pb2 should depend only weakly on
the strength � of the spin-orbit coupling ��L ·S� between the
spin angular momentum S and the orbital angular momen-
tum L of an electron. Indeed, it has been shown14 that F̃el
��2, and because in first-order perturbation theory b2 is also
proportional to �2, the quantity ��M does not depend on �.

Finally, we want to test our relation �8� against experi-
mental results. We take the case of Ni because in this mate-
rial the damping is definitely dominated by the conductivity-
like contribution at low temperatures, and Ref. 10 gives a
value of �=�M�=1.07�108 /s for that contribution at room
temperature, where � is the Landau-Lifshitz damping
parameter. Furthermore, the value of �M as fitted from
M�t� /M�t=0� at low fluences is approximately 100 fs
�Fig. 3d of Ref. 4�. This yields the experimental value of
� /�M=1.2�1011 /s. To calculate the theoretical value of
� /�M by Eq. �8�, we take p=4 and b2=0.025. This value of
b2 has been calculated by the ab initio electron theory20 un-
der the assumption that the dominant contribution to the de-

magnetization arises from thermally excited electrons and
holes.4 The value of Fel calculated by the ab initio electron
theory is taken from Fig. 2 of Ref. 21 �for a precession
around �111��. Altogether, Eq. �8� then yields
� /�M=0.6�1011 /s, a value which agrees astonishingly well
with the experimental value.

To conclude, we have calculated by a purely microscopic
approach a relation between the Gilbert damping parameter
� at low temperatures and the demagnetization time �M for
ultrafast laser-induced demagnetization at low fluences. The
predicted value for � /�M is in good agreement with the ex-
perimental value. The theory therefore provides a link be-
tween the magnetization dynamics on the fast �nanoseconds
to several picoseconds� and the ultrafast �approximately 100
fs� time scale.
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