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We present an atomic-scale theory of interface scattering of phonons in superlattices. In particular, we
describe the scattering as a result of two features, mixing of atoms at interfaces and presence of dislocations at
interfaces due to lattice mismatch. We apply the theory to quantitatively explain the thermal conductivity, and
its variation with period and temperature, of Si/Ge superlattices.

DOI: 10.1103/PhysRevB.82.144303 PACS number�s�: 63.22.Np, 68.35.�p

I. INTRODUCTION

Superlattices represent a subgroup of metamaterials which
allow manipulation of the vibrational characteristics to
present new properties. The advantages of using metamate-
rials for engineering properties of systems has been made
clear with a range of applications in photonics,1,2

phononics,3,4 and thermoelectrics.5 One of the most impor-
tant features of superlattices is the ultralow thermal conduc-
tivity along growth direction when compared with either of
the two bulk constituents. For thermoelectrics formed from
superlattices, a sizeable decrease in the phonon contribution
to thermal conductivity leads to an effective increase in their
conversion efficiency. For Si/Ge superlattices, there is a drop
in thermal conductivity of more than a factor of 100 at
room temperature and below.6 What governs the low thermal
conductivity of superlattices is not generally well understood
but it is clear that considerations of new scattering mecha-
nisms which rely on the formation of a superlattice are re-
quired. Considerable experimental and theoretical challenges
exist in understanding such interactions. Mechanisms con-
tributing to this have been proposed for periodically embed-
ded nanodots7,8 in a host material but these rely on the em-
bedding material being considered as a small perturbation.
While such a consideration may be defended for embedded
nanodots characterized with three-dimensional interfaces, it
cannot be applied to superlattice structures where the inter-
faces are planar �two dimensional� and each material seg-
ment plays an equally important role.

For phonon transport in superlattices, a considerable
amount of work has been previously carried out. Among
the first clear measurements of the thermal conductivity of
semiconductor superlattices were made in 1997 by Lee et
al.9 for Si/Ge�001� and in 1999 by Capinski et al.10 for
GaAs/AlAs�001�. These and later measurements �which are
thoroughly reviewed in Ref. 6� show that the thermal con-
ductivity is clearly dependent on the period of the superlat-
tice, its constituent materials, and the temperature. The ex-
planation for these phenomena has been explored in several
theoretical papers going as far back as 1959,11 but no con-
sensus has been reached.

In 1997 Hyldgaard and Mahan12 applied the kinetic relax-
ation time theory to predict the conductivity of superlattices.
This highly simplified model showed that the conductivity is
reduced by up to an order of magnitude due to the acoustic

mismatch. In the method presented, the layers of the super-
lattice were assumed to have bulklike dispersion and the
changes to the relaxation time of the phonon modes due
to the superlattice presence were ignored. Due to this and
other factors, the model was unable to provide a quantitative
prediction of the conductivity for any system. The theoretical
problem of superlattice conductivity was explored in 1982
by Ren and Dow.13 In their early paper, they discussed
the effects of zone folding on phonon-phonon interactions
and showed that “mini-umklapp” processes were possible
and would reduce the conductivity but were unable to
quantify further the effect. In 1998 Chen14,15 provided a de-
tailed explanation for the thermal conductivity of the super-
lattices based upon simple phonon-dispersion relations and
using several parameters. This model was among the first to
predict the magnitude correctly but was clearly unable to
predict the temperature dependence at low or high tempera-
tures.

In 2000 Volz et al.16 performed a series of molecular-
dynamics calculations which showed that the thermal con-
ductivity of Si/Ge superlattices decreased when compared to
the bulk systems but were unable to reach the low values
measured in experiment. In their paper they hypothesized
that interface disorder would be necessary to introduce to
account for the difference between theory and experiment. A
comprehensive study of the effects of a finite sample size
on the phonon group velocities within the superlattices
was carried out by Imamura et al.17 in 2002. In their
paper they showed that there was a small decrease in phonon
group velocities when compared to infinite superlattices but
this drop was insufficient to account for the discrepancy
between theory and experiment. They also reported the in-
triguing possibility that introducing the effects of finite size
to the modeling of superlattices introduces modes with ex-
ceptionally high group velocities but very low transmission
probability within the stop bands. Also, Abramson et al.18

showed in 2002 using a molecular-dynamics simulation of
Ar and Kr that the effects of strain is to reduce the thermal
conductivity �by up to 35%� and hence this feature alone
could not explain the drop in the conductivity. In 2003 a
detailed review was published by Cahill et al.6 which high-
lighted several of the experimental and theoretical results to
date. In this review, it is clearly shown that with the excep-
tion of the research performed by Chen14,15 the modification
of the phonon-scattering rate due to the formation of the
superlattice has not been considered within relaxation time
theory.
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More recent efforts by Broido et al.19,20 has focused upon
examining in detail the anharmonic contribution to the life-
time of the phonon modes, commonly described as three-
phonon interactions. These authors have shown that consid-
eration of more accurate phonon-dispersion relations than the
common linear continuum assumption actually reduces the
scattering rate, suggesting a deficit within the existing theory.
The latter effort20 clearly shows that mini-umklapp processes
and accurate phonon-dispersion relations reduce the thermal
conductivity but not sufficiently to account for the experi-
mental results. Chen et al.,21 using molecular dynamics,
show that the thermal conductivity of superlattices has a
minimum with period occurring near 8–10 monolayers of
atoms. While this is at odds with the results of Capinski10 it
agrees with the earlier results of Lee et al.9 using a four-
parameter model. However, the elastic constants and masses
used in this model are not comparable with real systems.
Also, the authors clearly state that disorder effects at the
interface need to be taken into account to produce a better
picture of what mechanisms are responsible for the low ther-
mal conductivity of these structures. Koh et al.22 in 2009
carried out thermal conductivity measurements of AlN�4
nm�-GaN�X nm� superlattices, where X was varied. In this
paper, using a six-parameter model, the thermal conductivity
of these samples was accounted for, but not explained in
detail. Also an important factor to note is that these samples
contain a relatively small thickness of the AlN layers. In
effect the thicker the sample the more GaN-like the phonon-
dispersion relations become. Also in 2009, Termentdizis et
al.23 investigated, using nonequilibrium molecular-dynamics
simulations, the effect of interface roughness in a simple
manner by changing its shape from a smooth line to a zigzag.
While this may not be the most realistic consideration, it is
clearly shown that even such a periodic structured roughness
decreases the thermal conductivity of superlattices. However,
no comparison with experiment is given. The very recent
work by Alvarez et al.24 has provided a simple analytic
model for the thermal conductivity of superlattices. While
not quantitative, the model shows that ballistic transport
within the layers of the superlattice, and the bulklike disper-
sion in each of these layers is not applicable.

While the above is not a comprehensive review of the
literature on phonon transport in superlattice structures, it is
apparent that assumptions based upon bulk dispersion rela-
tions are not suitable for the thin superlattices and that de-
fects at the interface have a key role to play. In this paper we
present an atomic-scale theory for the scattering mechanisms
of phonons due to the formation of superlattice interfaces.
We show that for periodicities at nanometer scale strong
scattering of phonon modes arises due to interface mixing.
We also show that for superlattices of midranged periods
composed of lattice-mismatched layers, the onset of disloca-
tions at interfaces leads to an initial decrease in the thermal
conductivity. However, as the period length increases, the
thermal conductivity increases again as the scattering due to
the combined effects of both mechanisms decreases. Both of
these scattering rates are estimated from the application of
Fermi’s golden rule and using realistic phonon-dispersion re-
lations for the full spectrum of phonon modes. In the treat-
ment provided here, a two-parameter model is applied to

explain the measured thermal conductivities of Si/Ge super-
lattices.

II. THEORY OF INTERFACE SCATTERINGS

The lifetime of phonon modes in the majority of bulk
materials is governed generally by four interaction mecha-
nisms: boundary, electron-phonon, phonon-phonon, and de-
fect scatterings,25 where defect scattering includes several
subcategories such as point, isotope, and extended defect
scatterings. Superlattices �and other systems with interfaces�
must contain two additional defect-related phonon-scattering
mechanisms: interface mass-mixing scattering �IMS� due to
diffusion or mixing of atoms at the interfaces and interface
dislocation scattering �IDS� which results from dislocations
or missing bonds present at interfaces. For studying both of
these additional scattering mechanisms, we consider a peri-
odic unreconstructed superlattice A�m� /B�n� with m atomic
layers of material A and n layers of material B. The super-
lattice consists of N0 unit cells and the total number of atoms
in the system can be written as N+M =N0�n+m�.

We express the perturbed Hamiltonian of the superlattice
with interface mass mixing for IV-IV semiconductors as

H��IMS� =
1

2�
i=1

N

�Mi�vi�2 − MA�vA�2�

+
1

2 �
i=N+1

N+M

�Mi�vi�2 − MB�vB�2� , �1�

where Mi is the mass of the ith atom, vi=
dui

dt , where ui is the
relative displacement of the ith atom with respect to its
neighbors and t is time. MA and MB are isotopic average
masses of materials A and B. The first/second term represents
all the atoms in the region A/B layers of the superlattice. For
superlattices made of III-V materials, additional terms must
be added to Eq. �1� to account for the two species in each
component material. However, as seen later, these terms be-
come superfluous.

For dealing with IDS at the atomic scale, we consider a
dislocation as a series of randomly missing bonds located
near the interface within a unit cell. From this one can write
the perturbed Hamiltonian as

H��IDS� =
1

2�
i=1

N�

�K0�ui�2 − KA�uA�2�

+
1

2 �
i=N�+1

N�+M�

�K0�ui�2 − KB�uB�2� , �2�

where ui as the relative displacement between the two neigh-
boring atoms and N� /M� is number of interatomic bonds in
material segments A/B. Also, KA�KB� represents the inter-
atomic spring constant in the layer A�B� and K0 represents a
spring constant in the dislocation region, i.e., has a value
equal to zero, or close to zero, for broken or missing bonds.
We assume KA�KB as the difference between the two values
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is insignificant for dealing with IDS and consider a random
distribution and orientation of the broken bonds within each
superlattice plane �perpendicular to the growth direction�.
Again, for III-V systems, additional terms are introduced,
but like the additional terms for IMS, these become unnec-
essary.

We apply Fermi’s golden rule26 to obtain the probability
of a phonon mode ��qs� being scattered into mode ��q�s��
for each scattering mechanism. For IMS we obtain the prob-

ability Pqs
q�s� of a phonon mode ��qs� being scattered into

mode ��q�s�� as

Pqs
q�s� =

��

2N0
2�n + m�2��qs���q�s��n̄qs�n̄q�s� + 1�� �

i=1,j=1

n,n

�eiej� − eAeA��ei��q−q��.�ri−rj�� + �
i=1,j=n+1

n,n+m

�eiej� − eAeB��ei��q−q��.�ri−rj��

+ �
i=n+1,j=1

n+m,n

�eiej� − eBeA��ei��q−q��.�ri−rj�� + �
i=n+1,j=n+1

n+m,n+m

�eiej� − eBeB��ei��q−q��.�ri−rj��	 , �3�

where n̄qs is the Bose-Einstein distribution of phonon mode
��qs� at temperature T and ei is the amplitude of ith atom.
Similarly for IDS we obtain the corresponding probability

Qqs
q�s� as

Qqs
q�s� =

��

2N0
2�n + m�2

n̄qs�n̄q�s� + 1�

��qs���q�s�� �
i=1,j=1

n+m,n+m

�eiej��
K0

2

MiMj
.

�4�

Equations �3� and �4� can be simplified by assuming that
only J layers are affected at the interface, thus reducing the
number of terms. Finally, by assuming that in the in-plane
directions the broken bonds and mass substitutions are ran-
dom, we can eliminate the off-diagonal components. Thus
from the above, it is possible to calculate the phonon relax-
ation rate for these two mechanisms. For IMS, we derive the
following expression:

�IMS
−1 �qs� =

��

2N0�n + m�2

�
 d��q�s��g���q�s�����qs���q�s��

�
n̄�q�s�� + 1

n̄�qs� + 1
����qs� − ��q�s���

� ��1 −
eAeA�

eBeB�
2

+ �1 −
eBeB�

eAeA�
2� , �5�

where � is regarded as a parameter related to the amount of
mixing at the interface �discussed later�, g���qs�� is the den-
sity of states, and eB /eA is the ratio of the amplitudes of
eigenvectors in materials B and A. Similarly, the relaxation
rate due to IDS may be written as

�IDS
−1 �qs� =

��0
4

4N0

��

�n + m�2
 d��q�s��
g���q�s���

��qs���q�s��

�
n̄�q�s�� + 1

n̄�qs� + 1
����qs� − ��q�s���

� �1 + � eAeA�

eBeB�
2

+ 1 + � eBeB�

eAeA�
2� , �6�

where �� is a measure of dislocation concentration �dis-
cussed later�, �0 can be approximated as the highest zone-
center frequency, and the rest of the symbols have their usual
meaning. From the above results it is clear that the relaxation
rates due to the IMS and IDS depend on several factors: the
amplitude ratio eB /eA, phonon frequency, superlattice period,
and the parameters � and ��. We will discuss these factors
below.

The amplitude ratio eB /eA, required for both scattering
mechanisms, can be approximated, using the diatomic linear
chain model along the superlattice growth direction, as

eB

eA

=

� 1

M0

− 	� 1

M
�cos�lzqz�

�� 1

M0

2

cos2�lzqz�+�	� 1

M
�2

sin2�lzqz�	1/2

− 	� 1

M


,

�7�

with M0= 1
2 �1 /MA+1 /MB�, 	�1 /M�= 1

2 �1 /MA−1 /MB�, and
lz as the period along the superlattice growth direction. The
ratio of amplitudes increases in magnitude with increasing
wave vector, qz. This leads to the expected result that the
interface will weakly scatter long-wavelength modes. When
the ratio of amplitudes is very large, then the two layers in
each superlattice unit cell act out of phase and hence travel-
ing phonons are scattered more strongly by the presence of
the interfaces.
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For both IMS and IDS scattering mechanisms optical
modes in superlattices will be scattered at the interface more
strongly than acoustic modes. Also, as the frequency depen-
dence of IMS is stronger than that of IDS, acoustic modes
are more strongly scattered by IMS. Sharp peaks in the den-
sity of states in the optical range, due to strongly confined
and thus much reduced velocities, result in the scattering rate
of optical modes being greater than for their acoustic coun-
terparts. Also, for optical modes, the energy conservation
condition implied in Eqs. �5� and �6�, coupled with the flat-
ness of the branches, enables these modes to undergo con-
siderably more interactions than the dispersive acoustic
modes, resulting in an increased scattering rate for these
modes. The frequency dependence of long-wavelength
acoustic modes compares favorably with existing similar
scattering mechanisms developed within the continuum re-
gime for bulk.27–29 However, the atomistic treatment pre-
sented here is both more appropriate for ultrathin superlat-
tices and also leads to the consideration of the amplitude
ratio in Eq. �7�, which modifies the dependence of IDS and
IMS from the simple frequency power laws that one consid-
ers in bulk materials.

The factor 1 / �n+m�2 in Eqs. �5� and �6� implies that the
strengths of these scattering rates are greatest for thin super-
lattices and decrease as the superlattices become thicker.
This is an important result, as both in the case where the
period of superlattices tends to infinity and also in the case
where the atomic masses in the layers A and B become
equal, these interaction strengths become zero. This correctly
ensures that these scattering mechanisms would not exist in
bulk systems.

The parameter � in Eq. �6� gives an indication of the
amount of mixing which occurs at the interface and is also
proportional to the interface area �normal to superlattice
growth direction�. This parameter is expected to increase
with increasing period but not by a dramatic amount. The
parameter �� in Eq. �6� indicates the number of dislocations
and distortions of the crystal at the interfaces and is also
proportional to interface area. The ratio of � and �� gives a
clear indication of the interface quality and dominant type of
disorder present. Both these parameters also take into ac-
count the number of layers over which the interface effects
are spread. While this can be introduced separately it is an
additional parameter that is not easy to predict and so it is
merged into � and ��. In the approach given here, these are
the only two adjusted/free parameters used to fit the experi-
mental data.

III. THERMAL CONDUCTIVITY

In order to evaluate the effectiveness of the interface scat-
tering term in describing real systems we now apply the
theory developed here to explain the low-temperature ther-
mal conductivity of two Si/Ge superlattices, namely, the
Si�19�/Ge�5��001� and Si�72�/Ge�30��001� superlattices fab-
ricated and measured by Lee et al.9 The thermal conductivity
of a superlattice is an anisotropic quantity, requiring a full
calculation of the corresponding dispersion relations of the
system. The expression for the thermal conductivity tensor

for a superlattice within the single-mode relaxation-time ap-
proximation can be expressed as


ij =
�2

N0�0kBT2�
q,s

�qs
2 vqs,ivqs,j�qsn̄qs�n̄qs + 1� , �8�

where �0 is the volume of the unit cell, kB is the Boltzmann
constant, vqs,i is the ith component of the velocity of the
phonon mode �qs�, and �qs is the total the lifetime of the
phonon: �−1=�IMS

−1 +�IDS
−1 +�MD

−1 +�B
−1 with �B

−1 �boundary
scattering30� and �MD

−1 �isotope scattering27� taking their usual
forms. The boundary length is taken from experiment as
0.1 �m �Ref. 9� to calculate �B

−1 and the known isotopic
ratios for Si and Ge are used to evaluate �MD

−1 . The integra-
tions required in Eqs. �6�–�8� were evaluated by employing
the special-q points scheme.31 In the low-temperature re-
gime, the effect of three-phonon scattering is negligible and
can be discarded. However, a more complete form for three-
phonon scattering in superlattices and metamaterials has
been discussed previously.32

The calculation of the scattering of phonon modes in su-
perlattices requires an extensive knowledge of phonon-
dispersion curves for the unperturbed structures. Previously
we developed an extended bond charge model,33,34 which
accurately described the phonon gaps in a Si/SiGe semicon-
ductor superlattice observed experimentally in Ref. 35. With
the application of that model we present in Fig. 1 the full
phonon-dispersion relations for the Si�19�/Ge�5��001� super-
lattice along the growth direction. Superlattice phonon-
dispersion relations, like those shown in Fig. 1, are charac-
terized by shallow dispersive branches, flat confined
branches �dispersionless modes at frequencies greater than 9
GHz�, band splitting at the zone center and zone edge,
known as polarization gaps. Also, as the period increases,
due to zone folding, the number of bands increases and the
frequency of the lowest zone-center folded mode decreases.
Development of disallowed frequency regions along the su-
perlattice growth direction has a direct effect on phonon in-
teractions.

Γ X
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16
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(T

H
z)

FIG. 1. �Color online� The phonon-dispersion curves for the
Si�19�/Ge�5��001� superlattice along the growth direction. For clar-
ity, the three acoustic branches are highlighted in gray �red online�,
the folded acoustic in gray �blue online� , and the highest optical is
presented as a black dashed line.
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From Fig. 2 it is clear that our calculated results for 
ZZ
agree well with the measured results.9 In additional to the
standard scattering mechanisms, from boundary and isotopic
mass defects, it was found that throughout the temperature
range considered, the dominant scattering mechanisms are
IMS and IDS as presented in Eqs. �5� and �6�. The important
feature to consider is the ratio of the IDS and IMS scattering
strengths. In the thinner superlattice, for the majority of pho-
non modes across the frequency spectrum, IMS is the domi-
nant scattering mechanism and the contribution of IDS is
negligible ���550 and ���0.0�. This suggests that the rela-
tive number of dislocations is small and the quality of the
interfaces between the layers of the thinner superlattice in
Ref. 9 is relatively clean. In contrast, for the thicker super-
lattice, the dominant scattering mechanism is IDS, indicating
that the interfaces have several broken or distorted bonds �as
��107 and ���10−4�.

The interplay between the IMS and IDS in controlling the
phonon lifetime in such superlattices explains the apparent
dip in the thermal conductivity measured by Lee et al. as a
function of period. The thinner sample can grow as a stable
crystal structure with relaxed interatomic bonds, without the
interface acquiring many dislocations or missing bonds, con-
sistent with experimental investigations.36 Thus for these
systems the IDS contribution is very weak. For samples with
a larger period, each of the alternating material layers mimics
its individual bulk lattice constant at the cost of increase in
the strain at the interface due to lattice mismatch, thus lead-
ing to a greater amount of dislocations and other defects or
imperfections. Hence, when compared to thinner samples,
the amount of phonon scattering by IDS is much greater, but
IMS is relatively the same. This scenario is also consistent
with the thermal conductivity results obtained by Capinski et
al.10 for GaAs/AlAs�001� superlattices �composed of nearly
latticed-matched GaAs and AlAs layers� of various periods.
Due to very little lattice mismatch, the number of disloca-
tions in the GaAs/AlAs superlattices is very low, and thus for
all samples studied by Capinski et al. in the low-temperature
region, the scattering will be dominated by the IMS mecha-
nism. However, to fully discuss the results presented by Cap-

inski et al. requires inclusion of anharmonic effects.
As expected, our numerical results show clear anisotropic

behavior of the thermal conductivity of the superlattice struc-
tures studied here. As shown in Fig. 3, at low temperatures,
for the thicker superlattices the thermal conductivity ratio

XX /
ZZ tends to unity whereas for the thinner superlattice
the ratio remains much greater than unity. At low tempera-
tures, only low-lying modes are populated. Thus, in the
thicker superlattice the large amounts of zone folding means
that at low temperatures phonon modes both at the zone
center and the zone edge are populated. Conversely, for thin-
ner superlattices with less zone folding, the zone edge modes
are not populated until higher temperatures. One can see, in
accordance with Eq. �7�, that zone-edge modes are scattered
more strongly than zone-center modes, making both IDS and
IMS highly anisotropic scattering mechanisms at low tem-
peratures for thinner superlattices, but less so for thicker su-
perlattices.

The scattering mechanisms presented here contain all of
the necessary ingredients for relaxation-time theory for such
structures as more detailed or additional scattering mecha-
nisms would require additional parameters to be introduced.
While strain could be considered as an additional mecha-
nism, we may regard it being incorporated into the IDS scat-
tering by treating �� as an adjustable parameter �as the
amount of strain would depend on the mixing at the inter-
faces�. In principle, the strain field will manifest itself as a
change in the elastic constants and hence would be difficult
to distinguish from IDS. Similarly, the effect of alien species
of atoms in the superlattice may be considered included in
the parameter �, without requiring the use of an additional
parameter as the form of such a mechanism is similar to that
of IMS. Hence, our model represents the limitation of
relaxation-time theory for superlattices at low temperatures
by constraining itself to only two parameters.

IV. SUMMARY

In summary, we have presented an atomic-scale theory of
phonon scattering in metamaterials due to atomic mixing and
dislocations at interfaces. A successful application of the
theory to explain the measured low-temperature thermal con-
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FIG. 2. �Color online� The thermal conductivity, 
ZZ, of two
Si/Ge superlattices in the growth direction as a function of tempera-
ture. The lines are the theoretical fits and stars show the measured
results from Lee et al. �Ref. 9�.
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ductivity of Si/Ge superlattices9 has revealed information re-
garding the relative importance of these two scattering
mechanisms, and their joint influence in determining the con-
ductivity along the growth direction. We have shown that,
using a simple two-parameter model, the onset of the two
scattering mechanisms, inherent to superlattice growth pro-
cedure, reduces the conductivity of the superlattices when
compared to that of their bulk counterparts, or an alloy of
their two constituents materials. Our calculations at 100 K
show 1
XX /
ZZ3 with 
ZZ being over two orders of
magnitude smaller than the average result for bulk samples
of Si and Ge. Our results also show the unsurprising result
that the interface quality in thin superlattices is much supe-
rior to that in thicker superlattices. This effect accounts for
the observed dip in the thermal conductivity of the Si/Ge

superlattices as a function of period. We believe that an un-
derstanding of the two scattering mechanisms discussed in
this work will enable a good understanding of the effects of
interfaces in superlattices and will provide a clear route to
understanding their low thermal conductivity when com-
pared to either their bulk constituents or their alloys. We
hope that relevant modification of the present treatment of
interface scattering of phonons in superlattices will help elu-
cidate transport measurements in metamaterials in general.
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