
Long time dynamics following a quench in an integrable quantum spin chain: Local versus
nonlocal operators and effective thermal behavior

Davide Rossini,1,* Sei Suzuki,2 Giuseppe Mussardo,1,3,4 Giuseppe E. Santoro,1,5,3 and Alessandro Silva3

1International School for Advanced Studies (SISSA), Via Beirut 2-4, I-34014 Trieste, Italy
2Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, Sagamihara 229-8558, Japan

3International Centre for Theoretical Physics (ICTP), I-34014 Trieste, Italy
4Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, Italy

5CNR-INFM Democritos National Simulation Center, Via Beirut 2-4, I-34014 Trieste, Italy
�Received 15 February 2010; revised manuscript received 30 July 2010; published 11 October 2010�

We study the dynamics of the quantum Ising chain following a zero-temperature quench of the transverse
field strength. Focusing on the behavior of two-point spin correlation functions, we show that the correlators of
the order parameter display an effective asymptotic thermal behavior; i.e., they decay exponentially to zero
with a phase coherence rate and a correlation length dictated by the equilibrium law with an effective tem-
perature set by the energy of the initial state. On the contrary, the two-point correlation functions of the
transverse magnetization or the density-of-kinks operator decay as a power law and do not exhibit thermal
behavior. We argue that the different behavior is linked to the locality of the corresponding operator with
respect to the quasiparticles of the model: nonlocal operators, such as the order parameter, behave thermally,
while local ones do not. We study which features of the two-point correlators are a consequence of the
integrability of the model by analyzing their robustness with respect to a sufficiently strong integrability-
breaking term.
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I. INTRODUCTION

The study of the nonequilibrium dynamics of strongly
correlated quantum many-body systems has lately received
an increasing amount of attention. While the first theoretical
studies in this area were performed a few decades ago,1–4

interest on this subject has been confined for a long time to
the theoretical literature. The main trigger behind the recent
experimental advances on this subject has been the impres-
sive progress in manipulating cold atomic gases, which re-
sulted in the first experiments exploring the coherent non-
equilibrium dynamics of strongly interacting quantum
systems in a controllable way.5–8

On the practical side, the main advantage of studying
many-body physics with cold atoms is the detailed micro-
scopic knowledge of the Hamiltonian describing these sys-
tems. This fact, together with the possibility of controlling
the system’s parameters with high accuracy and with the
availability of long coherence times, has made it possible to
study the unitary dynamics of many-body systems,9,10 such
as Hubbard-like Hamiltonians11 or artificial spin chain
models,12,13 a topic that can hardly be addressed in tradi-
tional solid-state environments. Coherent nonequilibrium dy-
namics has been brilliantly demonstrated by the observation
of collapse and revival cycles in systems quenched across a
superfluid-to-Mott insulator quantum phase transition5 and in
the study of the formation of topological defects during a
quench of trapped atomic gases through a critical point.6,7

One of the most fundamental topics in quantum statistical
mechanics which is presently being studied in this context is
the connection between ergodicity, nonintegrability, and ther-
malization in the dynamics of strongly interacting �but iso-
lated� many-body systems. An important experiment ad-
dressing this issue was recently reported in Ref. 8, where the

absence of thermalization in the coherent nonequilibrium
evolution of a closely integrable one-dimensional �1D� Bose
gas was observed. Motivated by these experimental findings,
an increasing number of theoretical studies focusing on the
dynamics following a sudden perturbation �a quantum
quench� have been performed.14–36

Integrability is believed to play a crucial role in the relax-
ation process: in analogy to the well-known Fermi-Pasta-
Ulam scenario in classical systems, integrable systems are
not expected to thermalize but to be sensitive to the specifics
of the initial state.18–21 This understanding was distilled into
the proposal of a generalized Gibbs ensemble, keeping track
of the initial value of all the constants of motion18 and con-
structed to describe the steady state reached after a quench.
Several works have tested the conditions of applicability of
such Gibbs distribution and its drawbacks.16–18,21,28–30,34 In
particular, for a special quench in a 1D Bose-Hubbard
model,26 for integrable systems with free quasiparticles,27

and for the computation of one-point correlation functions
for a specific class of quench processes in otherwise generic
integrable systems,21 the long-time limit of the dynamics was
shown to be well described by the generalized Gibbs en-
semble. Moreover, the generalized Gibbs ensemble was
shown to correctly predict the asymptotic momentum distri-
bution functions for a variety of models and quenches.16–18,29

However, it should be pointed out that neglection of correla-
tions of the occupation of different quasiparticle modes gen-
erally leads to incorrect predictions for the noise and higher
order correlators.28 Turning to nonintegrable systems, in this
case thermalization is expected to occur in general: this has
been numerically observed in some circumstances,19,20,22–25

while the transition from integrable to nonintegrable has
been shown, at least in small lattices of interacting bosonic
or fermionic particles,20 to take the form of a crossover. The
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mechanism of thermalization has been conjectured and nu-
merically tested for certain systems19,20 to be analogous to
the one proposed by Deutsch37 and Srednicki38 for systems
with a classically chaotic counterpart. Nonetheless, it is
worth pointing out that in some specific cases, like for
gapped systems, the validity of this scenario has been ques-
tioned �the points raised include finite-size effects23 and the
importance of rare events,39 which may drive the behavior of
the long-time dynamics�, and the problem is still under de-
bate.

The purpose of this work is to go one step beyond the
scenario proposed above and show that in quantum many-
body systems the presence or absence of thermal behavior
after a quantum quench does not exclusively depend on the
integrability of the model but also on the considered observ-
able. In particular, we argue that, even in a completely inte-
grable system, the asymptotics of the two-point correlation
functions of an observable which is nonlocal with respect to
the quasiparticle fields displays thermal behavior, while this
is definitely not the case for a local one. This scenario may
be violated in some specific and isolated cases, such as for
the transverse-field correlations or the density-of-kinks op-
erator after a quench toward the critical point. In this context,
local and non-local operators refer to the structure of their
matrix elements on the basis of quasiparticles: local means
that the operator couples a finite number of states, while
nonlocal means that it couples all states. To show the differ-
ent behavior of the correlation functions of local and nonlo-
cal operators, we study quantum quenches in a quantum
Ising chain, focusing our attention on the asymptotics of the
two-point correlators of the order parameter �x and of the
transverse magnetization �z after a quench of the transverse
field. We explicitly show that the correlator of the order pa-
rameter, which is nonlocally expressed in terms of the fermi-
ons which diagonalize the model, asymptotically displays a
thermal-like behavior characterized by an exponential decay
both in time and in space. As we already reported in Ref. 31,
the autocorrelation function of the order parameter after a
quench takes the form

�B��i
x�t��i

x�0��B� � e−t/�Q
�

, �1�

with a phase coherence time �Q
� depending only on the effec-

tive temperature Teff set by the ground state energy of the
initial Hamiltonian �B� �below also called boundary state�,
and on the energy gap � of the final Hamiltonian. Here we
are going to show that such thermal behavior is not only
limited to the equal-site autocorrelation function but also per-
tains to the large distance behavior of the equal-time cor-
relator �asymptotically for large times t�, which behaves as

�B��i+r
x �t��i

x�t��B� � e−r/�Q
�

, �2�

with a correlation length �Q
� again determined by Teff and �.

Remarkably, as shown in Fig. 1�a�, the dependence of �Q
� on

Teff �black circles� quantitatively agrees with that of the cor-
responding phase coherence time �T

� �Ref. 40� at thermal
equilibrium as a function of the temperature �continuous red
line�. A similar behavior is observed for the correlation
length �see Fig. 1�b��. All of these results can be understood

in terms of the generalization to the nonequilibrium case of a
semiclassical analysis originally developed for thermal
equilibrium,40 which explicitly takes into account the effect
of quasiparticles generated after the quench �see, e.g., the
dotted blue line in Figs. 1�a� and 1�b��. This thermal behavior
is not present at all in the asymptotics of the correlator of the
transverse magnetization or in the nearest-neighbor spatial
correlations of the longitudinal magnetization �i.e., represent-
ing the density of kinks� that are operators which turn out to
be local in the fermionic quasiparticles of the Ising chain.

The fact that quasiparticles play a fundamental role in the
physics of thermalization is not at all surprising: the essence
of quantum integrability is the possibility to describe a sys-
tem in terms of quasiparticles subject to purely elastic and
factorizable scattering. A nonintegrable system, in this sense,
is just characterized by the absence of well-defined quasipar-
ticles: the scattering of excitations generically leads to a cas-
cade redistributing the initial energy among the low-energy
degrees of freedom. The results discussed in this paper indi-
cate that if an observable is sensitive to the detailed scatter-
ing properties of such degrees of freedom, i.e., it is local,
then its asymptotics will be affected by the presence or ab-
sence of integrability. In turn, if such relation is nonlocal,
then, as for the equilibrium physics, we expect that for its
multipoint correlation functions only some gross low-energy
features of the model are relevant, and determined by the
universality class. We stress again that here locality is de-
fined with respect to the quasiparticles, while the original
degrees of freedom do not play a major role.

The paper is organized as follows. In Sec. II we define our
model and the techniques used to study its dynamics after a
quench. In order to clarify the meaning of locality in this
context, we also discuss the continuum formulation of the
model in terms of free Majorana fermions and enlighten the
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FIG. 1. �Color online� �a� Phase coherence time and �b� corre-
lation length extracted from the asymptotic decay of the two-point
order parameter correlations as a function of the effective tempera-
ture. Data are for quenches ending in the ferromagnetic phase of the
Ising chain at �=0.5 �see Eq. �3��. Symbols refer to the case of a
quench and correspond to different values of �0 �empty symbols are
for �0��, while filled ones are for �0���; continuous red curves
denote the equilibrium values at finite temperatures, while dotted
blue curves correspond to values obtained with a semiclassical
analysis generalized to nonequilibrium cases.
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physical content of the initial state �B� and its connection
with boundary states in statistical field theory.41 In Sec. III
we summarize the main formulas for studying the time evo-
lution of the system. In Sec. IV we discuss the order param-
eter correlation functions: we consider in detail the behavior
after a quench showing that it is asymptotically thermal, both
in time and in space. In Sec. V we focus on two examples of
local operators �namely, the transverse field correlations and
the density of kinks, which is essentially the nearest-
neighbor space correlator of the order parameter�, which, on
the contrary, do not exhibit thermalization. The nonthermal
behavior can be nonetheless described by means of a gener-
alized Gibbs ensemble, as discussed in Sec. V C. A brief
discussion of the effects of integrability breaking is sketched
in Sec. VI, where we provide numerical data showing the
gradual disappearance of a typical nonthermal feature in the
asymptotic spatial behavior of the order parameter correla-
tors. Finally, in Sec. VII we draw our conclusions.

II. MODEL: GENERALITIES, CONTINUUM LIMIT,
AND BOUNDARY STATE

In this paper we study the spin-1/2 quantum Ising chain in
a transverse magnetic field,42 which is characterized by the
Hamiltonian

H��� = − J	
j=1

L

�� j
x� j+1

x + �� j
z� , �3�

where L is the number of spins in the chain and � j
	 �	

=x ,y ,z� are the Pauli matrices relative to the jth spin. Here-
after we impose periodic boundary conditions and use a sys-
tem of units J=1, 
=1, and kB=1. The quantum Ising chain
is the prototype of an exactly solvable quantum system and
is characterized by two mutually dual gapped phases, a quan-
tum paramagnet ���1� and a ferromagnet ���1�, separated
by a quantum critical point at �c=1.

In the following we will consider sudden quenches of the
transverse magnetic field strength �: after initializing the
system in the ground state ����0��
�B� of the Hamiltonian
H��0�, the field strength is suddenly changed at time t=0
from �0 to a new value ���0. Consequently, the state will
evolve according to the new Hamiltonian H���,

��t� = e−iH���t�B� . �4�

A. Lattice formalism

Before entering into the details of the non-equilibrium
dynamics of this model, let us briefly set the notation by
reviewing the diagonalization43,44 of Hamiltonian �3�. Intro-
ducing Jordan-Wigner fermions cj

† defined by

� j
+ 
 cj

† exp�i�	
l=1

j−1

cl
†cl� �5�

and omitting constant terms, the Hamiltonian in Eq. �3� takes
the quadratic form

H = − 	
j=1

L−1

�cj
†cj+1 + cj

†cj+1
† + H.c.� − 2�	

j=1

L

cj
†cj

+ �− 1�NF�cL
†c1 + cL

†c1
† + H.c.� . �6�

The last term originates from the periodic boundary condi-
tions imposed to the spins and its sign depends on the parity
of the total number NF of c fermions. Specifically, if NF is
odd, then all the bonds are identical and periodic boundary
conditions on the fermions are imposed �cL+1
c1�. Antipe-
riodic boundary conditions �cL+1
−c1� are instead appropri-
ate when NF is even. The Hamiltonian in Eq. �6� conserves
the fermion parity; therefore it can be formally split in two
parts acting on different Fermion-parity subspaces, even �+�
and odd �−� :H=H++H−, where H
PHP denote the
even/odd subspaces, and P denote the associated projec-
tors. Since in the following we will consider initial states
with an even number of fermions, we will focus our attention
on the even sector only.

The diagonalization of the Hamiltonian now proceeds in
momentum space. Writing the c fermions as cj =

1
L

	ke
ikjck,

where k is

k = 
��2n + 1�

L
with n = 0, . . . ,L/2 − 1, �7�

the Fourier representation of Eq. �6� in the even sector, H+,
becomes a sum of independent terms

H+ = 	
k�0

c̄k
†Hkc̄k, �8�

where we introduced the Nambu vector c̄k
†= �ck

† ,c−k�, and

Hk = � ak − ibk

ibk − ak
� �9�

with ak=2��−cos k� and bk=2 sin k. This Hamiltonian is
easily diagonalized through a Bogoliubov rotation, defining
the new fermionic variables

Āk = Rk���c̄k �10�

where Āk
T= �Ak ,A−k

† �. The rotation R is explicitly given by

Rk��� = � uk
� vk

�

− vk uk
� . �11�

Here

uk =
�k + ak

2�k��k + ak�
, vk =

ibk

2�k��k + ak�
, �12�

while �k=ak
2+bk

2=2�2−2� cos k+1 is the dispersion of
the quasiparticles in terms of which

H+ = 	
k�0

�k�Ak
†Ak + A−k

† A−k − 1� . �13�

The ground state of the system is the vacuum of the Bogo-
liubov quasiparticles defined in Eq. �10�. These become gap-
less at the quantum critical point �c, where the gap
�
�0=2�1−�� vanishes.
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B. Continuum formalism

The continuum formulation of the quantum Ising model
enlightens other properties, such as the local/nonlocal nature
of its operators and is helpful in understanding the properties
of the initial state �B� associated to the quench process. Let
us briefly discuss the main concepts of this formulation.

In the vicinity of the quantum critical point, taking the
continuum limit �a→0, where a is the lattice spacing�, it is
well known that the Ising model becomes a field theory of
free relativistic Majorana fermions �+�r , t� and �−�r , t�.45

These are real fields, �
† �r , t�=��r , t�, and obey the equal-

time anticommutation relations

��i�r,t�,� j�r�,t�� = �ij��r − r�� . �14�

The fermion particle excitations satisfy a relativistic disper-
sion E�p�=p2+�2 with a mass m=�, and their dynamics is
described by the Hamiltonian

H =� dr�i�+�r�+ − i�−�r�− − 2im�+�−� . �15�

The mode expansion of the fermion fields is given by

��r,t� = �
−�

� dk

2�
�	�k�A�k�e−iEt+ikr + H.c.� �16�

where �A�k� ,A†�k���=2���k−k��, and

	�k� = �1E  k

2E
, �17�

with �=ei�/4. In order to express later in a more concise
form both the operators and the matrix elements of the
model, it is convenient to re-write the mode expansion in a
slightly different way. This can be done using the identity

lim
�→0

�� + iu�1/2 = ��u����u��1 + ��− u���−1�u��1,

��u� being the Heaviside theta, so that Eq. �16� becomes

��r,t� =�

2
�

−�

+� du

2�u
e−iEt+ipr�� + iu�1/2�̂�u� , �18�

where E=��u+u−1� /2, p=��u−u−1� /2, and

�̂�u� =
1
2

���u�A�u� − ��− u�A†�− u�� . �19�

The annihilation and creation operators, A�u� and A†�u�, are
the continuous version, in the variable u, of the lattice opera-
tors Ak and Ak

†. The vacuum state �0� is identified by the

conditions A�u��0�=0. Notice that �̂�u� is an annihilation
operator for u�0 and a creation operator for u�0. It is also
useful to define

�0�r,t� =�

2
�

−�

+� du

2�u
�̂�u�e−iEt+ipr. �20�

Since the work of Fradkin and Susskind,46 it became well
known that, in the continuum limit, the lattice operator �r

x

becomes

�r
x → ���r,t� for � � 1

��r,t� for � � 1,
� �21�

where ��r , t� is the “order parameter,” while ��r , t� is the
“disorder parameter.” On the other hand, for the lattice op-
erator �r

z we have

�r
z → � ��r,t� for � � 1

− ��r,t� for � � 1,
� �22�

where ��r , t� is the “energy operator.” Equations �21� and
�22� express the self-duality of the Ising model. In particular,
for ��1, ��r , t� is a Z2 odd operator with nonzero fermion
number, while ��r , t� is a Z2 even operator with zero fermion
number: so, ��r , t� has nonzero matrix elements only on odd
number of fermions, while ��r , t� has nonzero matrix ele-
ments only on even number of fermions. For ��1, the role
of the two operators is swapped and the situation is reversed:
this symmetry is due to the self-duality of the model. These
conclusions are confirmed by the explicit expressions of the
operators in terms of the fermion fields given, for ��1, by
the normal ordered expressions47

��r,t� = i:�+�r,t��−�r,t�:

��r,t� = :�0�r,t�e��r,t�:

��r,t� = :e��r,t�: , �23�

where ��r , t� is a quadratic form of fermions

��r,t� = − i� du

2�u

du�

2�u�

�u − u��
u + u� + i�

� �̂�u��̂�u��e−i�E+E��t+i�p+p��r. �24�

Notice that ��r , t� is expressed by a non-local quantity of the
fermion modes which plays the role of the fermion string
that accompanies the definition of the lattice operators �see
Eq. �5��.

If we now set u=e�, where � is the rapidity, using the
operatorial expressions above, one can easily check that, for
��1, the matrix elements of the various operators �between
the vacuum state �0� and the asymptotic states of n fermions
identified by their rapidities ��1 ,�2 , . . . ,�n�� are given by45,48

�0���0,0���1, . . . ,�n� = �i� sinh
�1 − �2

2
for n = 2

0 otherwise,
�

�0���0,0���1, . . . ,�2n+1� = �i�2n+1 �
i�j

2n+1

tanh
�i − � j

2
,

�0���0,0���1, . . . ,�2n� = �i�2n�
i�j

2n

tanh
�i − � j

2
.

These expressions of the matrix elements clearly show that
the order/disorder operators are nonlocal fields with respect
to the fermion excitations: they couple to an arbitrary odd/
even number of quasiparticles and they may be consequently
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regarded as strongly-interacting fields, even though Hamil-
tonian �15� is quadratic. On the other hand, the energy field
associated to �z is a local operator with respect to the fermi-
ons and it couples only to two-particle states.

Another local field with respect to the fermion quasipar-
ticle excitations is the density-of-kinks operator, whose lat-
tice definition is

N 

1

L
	

j

1 − � j
x� j+1

x

2
. �25�

This operator is in fact at most quadratic in the fermion
fields: this can be easily seen first using the Wigner-Jordan
fermions to express � j

x� j+1
x = �cj

†cj+1+cj
†cj+1

† +H.c.�, and sec-
ond rewriting this expression in terms of the fermionic vari-
ables Ak by means of the Bogoliubov transformation. There-
fore this operator only couples to two-particle states.

C. Boundary state

Before proceeding with the description of the dynamics
following a quantum quench, it is worth discussing the rep-
resentation of the initial state �B� in terms of the quasiparti-
cles diagonalizing the final Hamiltonian and its connection to
boundary states in statistical field theory.41 Despite the fact
that this connection can be elucidated directly within the
lattice model,49 here we follow an elegant route employing
the continuum formulation and the equations of motion for
the Majorana fields,

��t + �r��+�r,t� = ��−�r,t� ,

��t − �r��−�r,t� = − ��+�r,t� . �26�

In this formulation the quench process consists of an abrupt
change of the mass, �0→�, of the fermion field at t=0.
Since the equations of motion �26� are of the first order in �t,
the fermion field should have no discontinuity at t=0 and
therefore should satisfy the boundary condition

�
0 �r,t = 0� = ��r,t = 0� , �27�

where �
0 �r , t� and ��r , t� denote the fields relative to the

masses �0 and �, respectively. Equation �27� implies a linear
relation between the modes of the field before and after
t=0. In order to compare directly with the lattice results, it is
convenient to discretize the space variable in units of the
lattice spacing a. In the following, focusing for simplicity on
the case in which both �0 ,��1, let us write the mode ex-
pansion �18� of the two fermionic fields as

��r,t� = �
BZ

dk

2�
�	�k�A�k�e−iEt+ikr + H.c.� �28�

where the integral is over the first Brillouin zone �k��� /a,
E=�2+ p̃2 with p̃= �2 /a�sin�ka /2�, and 	�k�=�1Ep̃

2E .
Analogous expressions hold for the two components �

0 �r , t�
expressed in terms of the modes A0�k� and A0

†�k�, with
E0=�0

2+ p̃2.
Let us denote by �B� the ground state of the fermion fields

�
0 �r , t� and by �0� the ground state of the field ��r , t�: these

states are annihilated by A0�k� and A�k�, respectively. Ex-

tracting at t=0 the Fourier mode �̃�k� of the fermion fields,

defined by ��r ,0�=�BZdk / �2���̃�k�eikr,

�̃+�k� = 	+�k�A�k� + 	̄+�− k�A†�− k� ,

�̃−�k� = 	−�k�A�k� + 	̄−�− k�A†�− k� �29�

�with analogous expressions for �
0 � and imposing the

boundary condition �27�, one obtains the linear relations
among the modes,

A�k� = U�k�A0�k� − iV�k�A0
†�− k� ,

A†�k� = U�k�A0
†�k� + iV�k�A0�− k� , �30�

where

U�k� =
1

2EE0

��E0 + p̃��E + p̃� + �E0 − p̃��E − p̃�� ,

V�k� =
1

2EE0

��E0 − p̃��E + p̃� − �E0 + p̃��E − p̃�� .

Notice that U�k�=U�−k� and V�k�=−V�−k�. The inverse re-
lations of Eqs. �30� are given by

A0�k� = U�k�A�k� + iV�k�A†�− k� ,

A0
†�k� = U�k�A†�k� − iV�k�A�− k� . �31�

Looking at these equations, we see that a quench in the mass
of the fermion is simply equivalent to a Bogoliubov transfor-
mation of its modes—transformation that is ruled by the
functions U�k� and V�k�. The role of the initial state of the
quench process is played by the ground state �B� of the fer-
mion fields �

0 �r , t�.
It is simple to work out the properties of the state �B�,

hereafter called, for obvious reasons, boundary state.17,41

Since this is the vacuum of the fermion �0�r , t�, we can use
the formula

�B�A0�k�A0
†�k���B� = 2���k − k�� , �32�

and the Bogoliubov transformations �30� to easily compute
the expectation values of modes A�k� and A†�k� on this
state,

�B�A�k��A�k��B� = 2�iU�k��V�k����k� + k� ,

�B�A�k��A†�k��B� = 2�U2�k����k� − k� ,

�B�A†�k��A�k��B� = 2�V2�k����k� − k� ,

�B�A†�k��A†�k��B� = 2�iU�k��V�k����k� + k� . �33�

However, we can gain new information on the nature of the
boundary state �B� if we directly express it in terms the os-
cillators A�k� and A†�k�. This can be done by using once
again the condition that �B� is annihilated by all the operators
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A0�p�, but employing, this time, the first equation in Eq. �31�
for the operators A0�p�. In this way, we get the following
infinite set of equations for the boundary state �B�:

�U�k�A�k� + iV�k�A†�− k���B� = 0, �34�

whose formal solution is a BCS-type state,

�B� = �
k

�U�k� + iV�k�A†�k�A†�− k���0� , �35�

where �0� is the vacuum of the fermions ��r , t�. Notice that,
disregarding an overall normalization, the state �B� can also
be expressed as

�B� = exp� i

2
�

BZ

dk

2�
K�k�A†�k�A†�− k���0� , �36�

where K�k�=U�k� /V�k�=−K�−k�. Therefore this belongs to
the special class of initial states, recently studied in Ref. 21,
represented by a coherent superposition of particle pairs for
which the long-time limit of one-point functions is described
by a generalized Gibbs ensemble. Expression �35� or,
equivalently Eq. �36�, shows that, as a state of the Hilbert
space of the fermion ��r , t�, the boundary state �B� is a co-
herent superposition of pairs of particles with equal and op-
posite momentum �see Fig. 2�. Despite the strong similarity
of Eq. �36� with the boundary states studied by Ghoshal and
Zamolodchikov41 in the context of integrable scattering theo-
ries, notice that integrability in scattering theories imposes
some extra conditions on the kernel K�k� which are not nec-
essarily satisfied in the present case.

III. HEISENBERG EVOLUTION AND TWO-POINT
CORRELATION FUNCTIONS

Let us now turn to the dynamics. In the lattice formula-
tion, this can be studied by looking at the Heisenberg
evolution3 of the fermionic operators ck�t�. Setting

ck�t� = uk�t�Ak
0 − vk

��t��A−k
0 �†, �37�

where Ak
0 are the eigenmodes of the initial Hamiltonian

H��0�, and using the fact that the time evolution of the op-
erators Ak diagonalizing the final Hamiltonian is trivial, it is
easy to obtain that

c̄k�t� = Rk
†���Uk�t�Rk���Rk��0�Āk

0, �38�

where

Uk�t� = �e−i�kt 0

0 ei�kt � . �39�

The relevant dynamical observables can then be evaluated on
the time evolved state, Eq. �4�, by using the Heisenberg pic-
ture and Eq. �37�, after writing them in terms of Jordan-
Wigner fermions. We are now ready to provide some techni-
cal details on the computation of the two-point spin
correlation functions.

A. Order-parameter spin correlation functions

The time-dependent correlation function of the order pa-
rameter is defined as

�xx�t,r� 
 �B��m+r
x �t0 + t��m

x �t0��B� , �40�

where t0 denotes the waiting time after the quench. Due to
the translational invariance of the system, Eq. �40� does not
depend on m, and we can choose m=1 without loss of gen-
erality. The operator �m+r

x �t0+ t��m
x �t0� connects states with

different c-fermionic parity; therefore it cannot be simply
evaluated using Jordan-Wigner fermions in the even Hamil-
tonian sector H+. This problem can be circumvented50 by
considering a four-spin correlation function on a chain of
length L, with r�L /2,

Cxx�t,r;L� = �B��L−r+1
x �t0 + t��1

x�t0�

� ��L/2�+1
x �t0 + t���L/2�−r+1

x �t0��B� . �41�

By using the cluster property and taking the thermodynamic
limit,50 one can show that this function reduces to the square
of the correlation function �xx�t�,

��xx�t,r��2 = lim
L→�

Cxx�t,r;L� . �42�

The crucial advantage of this strategy is that the four-point
correlator in Eq. �41� conserves the c-fermion parity and can
therefore be evaluated in the �antiperiodic� even fermionic
sector.50

Following Refs. 43 and 50, Eq. �41� can be written as a
Pfaffian. We first write it in terms of Jordan-Wigner fermions
by simply using � j

x=ei�	k�jnk�cj
†+cj�; then, after defining

Aj�t�
cj
†�t�+cj�t� and Bj�t�
cj

†�t�−cj�t�, we get

Cxx�t,r;L� = �B��B�L/2�+1�t0 + t� ¯ BL−r�t0 + t��

� �A�L/2�+2�t0 + t� ¯ AL−r+1�t0 + t��

� �B1�t0� ¯ B�L/2�−r�t0��

� �A2�t0� ¯ A�L/2�−r+1�t0���B� , �43�

in which we also used the equalities �1−2nj�=AjBj =−BjAj
and �Aj ,Bl�=0 ∀ j , l �here �· , ·� denotes the anticommutator�.
An application of Wick’s theorem then leads to the following
expression, where the square of the correlator Cxx is written
in terms of the determinant of a �2L−4r�� �2L−4r� matrix:
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FIG. 2. With respect to the modes of the Hamiltonian at t�0,
the boundary state �B� appears as a coherent superposition of an
infinite number of pairs of particles with equal and opposite
momentum.
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�Cxx�t,r;L��2 = �
�B�j1��t0 + t�B�l1��t0 + t�� �B�j1��t0 + t�A�l2��t0 + t�� �B�j1��t0 + t�B�l3��t0�� �B�j1��t0 + t�A�l4��t0��

− �B�l1��t0 + t�A�j2��t0 + t�� �A�j2��t0 + t�A�l2��t0 + t�� �A�j2��t0 + t�B�l3��t0�� �A�j2��t0 + t�A�l4��t0��

− �B�l1��t0 + t�B�j3��t0�� − �A�l2��t0 + t�B�j3��t0�� �B�j3��t0�B�l3��t0�� �B�j3��t0�A�l4��t0��

− �B�l1��t0 + t�A�j4��t0�� − �A�l2��t0 + t�A�j4��t0�� − �B�l3��t0�A�j4��t0�� �A�j4��t0�A�l4��t0��
� , �44�

with �
�Aj�t1�Al�t2�� =

1

L
	

k

eik�j−l��uk�t1� + vk�t1���uk
��t2� + vk

��t2��

�Aj�t1�Bl�t2�� =
1

L
	

k

eik�j−l��uk�t1� + vk�t1���uk
��t2� − vk

��t2��

�Bj�t1�Al�t2�� =
1

L
	

k

eik�j−l��vk�t1� − uk�t1���uk
��t2� + vk

��t2��

�Bj�t1�Bl�t2�� =
1

L
	

k

eik�j−l��uk�t1� − vk�t1���vk
��t2� − uk

��t2�� .

� �45�

In Eq. �44� the two indexes j , l have subscripts which indi-
cate their range: an index with label 1 runs from L

2 +1 to L
−r, with 2 runs from L

2 +2 to L−r+1, with 3 runs from 1 to
L
2 −r, with 4 runs from 2 to L

2 −r+1. Each of the 16 subma-
trices in Eq. �44� is therefore of dimension � L

2 −r�� � L
2 −r�

and can be explicitly evaluated by substituting the proper
definitions of Aj’s and Bj’s and then working in momentum
space, as detailed in Eqs. �45� �k sums are taken for fermion
antiperiodic boundary conditions, Eq. �7��. All the diagonal
entries of the matrix in Eq. �44� are zero since they do not
enter the contractions in Wick’s theorem.55

B. Transverse-field spin correlation functions

We now briefly sketch how to compute the two-point cor-
relation functions of the transverse-field magnetization,

�zz�t,r� 
 �B��m+r
z �t0 + t��m

z �t0��B� . �46�

As before, since we are using periodic boundary conditions,
we can take m=1. Contrary to the order parameter cor-
relation function, the operator �m+r

z �t0+ t��m
z �t0� conserves

the c-fermion parity; therefore one can rewrite it using
Jordan-Wigner fermions in the even Hamiltonian sector H+,
and the computation becomes simple. Using � j

z=2cj
†cj −1,

one gets �zz�t ,r�= �B��2cr+1
† �t0+ t�cr+1�t0+ t�−1�

� �2c1
†�t0�c1�t0�−1��B�. Switching to momentum space and

using Eq. �37� together with the fact that �B� is the vacuum
for Ak

0 particles, the following expression can be easily
obtained:

�zz�t,r� = 1 −
2

L
	

k

��vk�t0��2 + �vk�t0 + t��2� +
4

L2	
k,l

�eir�l−k�

��vk�t0 + t�vk
��t0�ul�t0 + t�ul

��t0�

+ vk�t0 + t�vl
��t0�ul�t0 + t�uk

��t0��

+ �vk�t0 + t��2�vl�t0��2� . �47�

C. Density of kinks

The density of kinks for the Ising model �3� is defined by
the operator

N 

1

L
	

j

1 − � j
x� j+1

x

2
. �48�

Its expectation value �N�t� at a certain time t on the boundary
state �B� is strictly related to the nearest-neighbor order-
parameter correlation function. For periodic boundary condi-
tions this can be simply written as

�N�t� =
1 − �B��m

x �t��m+1
x �t��B�

2
=

1 − �xx�0,1�
2

, �49�

where �xx�0,1� is evaluated after a waiting time t0
 t. Pro-
ceeding in an analogous way as in Secs. III A and III B, this
can be explicitly rewritten as

�N�t� =
1

2L
	

k

�1 − ��vk�t��2 − �uk�t��2�cos k − i�uk�t�vk
��t�

− uk
��t�vk�t��sin k� . �50�

Notice that Eqs. �45�, �47�, and �50� refer to a finite sys-
tem of L spins; the thermodynamic limit can be formally
attained by taking the continuum limit and replacing the
sums with integrals: 1 /L	k→�dk / �2��.

IV. THERMAL RELAXATION OF NONLOCAL
OPERATORS: ORDER PARAMETER CORRELATIONS

In this section we discuss in details the behavior of the
correlation function of the order parameter �Q

xx�t ,r� for a
quantum quench of the transverse field from �0 to �, focus-
ing on the asymptotic relaxation for long times �t→�� and
for long distances �r→��. The correlation function in Eq.
�40� can be explicitly written as
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�Q
xx�t,r� = �B�eiH����t0+t��m+r

x e−iH���t�m
x e−iH���t0�B� . �51�

This correlator can be calculated following the prescriptions
given in Sec. III A, i.e., by numerically computing the
Toeplitz determinant in Eq. �44�.

A. Time-dependent correlations

Let us start our analysis with the autocorrelation functions
�r=0�. For the system at equilibrium, time translation invari-
ance implies that the autocorrelation functions do not depend
on the waiting time t0 in Eq. �51�. Quite remarkably, we
found that, as long as one considers �Q

xx�t ,0� at large times,
this is true also for the nonequilibrium case. Therefore, in
this section we set for simplicity t0=0. The relevant features
emerging for the case r=0, t0=0 have been already eluci-
dated by some of us in Ref. 31. Here we summarize and
discuss in more details the results anticipated in that paper.

The envelope of the autocorrelation function
�Q

xx�t ,0�
�B��m
x �t��m

x �0��B� relaxes exponentially to zero in
time,

�Q
xx�t,0� � e−t/�Q

�
. �52�

This applies both to quenches ��0��� ending in the ferro-
magnetic phase ���1� or, as already pointed out by Cala-
brese and Cardy,17 at criticality ��=1�. As it can be clearly
seen from the left panel of Fig. 3, as soon as ���0, a sharp
contrast with the zero-temperature behavior in equilibrium
becomes evident �black curve�. Indeed, at zero temperature
and at equilibrium, the correlator �T=0

xx �t ,r� asymptotically
tends, both in time and in space, to the square of the order
parameter ��x�.44 In that case, the asymptotic value ��x�2 is

not reached exponentially, but through an oscillatory power-
law decay with an exponent 	 depending on the phase of the
system �	=1 in the ferromagnetic phase, 	=1 /4 at critical-
ity, and 	=1 /2 in the paramagnetic phase50�.

Drawing a parallel with the equilibrium physics, the ex-
ponential decay to zero observed for quantum quenches is
reminiscent of the exponential decay of the autocorrelation
function observed in equilibrium at finite temperatures
T�0. The rate �Q

� can be identified with the nonequilibrium
analog of the phase coherence time. In the equilibrium case,
a semiclassical analysis due to Sachdev and Young40 shows
that, for T�� and in the ferromagnetic phase, one has

�T
xx�t,r� � N0

2RT�t,r� , �53�

where N0 is the vacuum expectation value of the order pa-
rameter N0= ��x� and RT�t ,r� is a relaxation function describ-
ing thermal excitations,

RT�t,r� = exp�−� dk

�
e−�k/T�r − vkt�� . �54�

Here vk=�k�k is the velocity of the thermally excited quasi-
particles �kinks� and e−�k/T their Boltzmann weight. From
Eq. �54�, one can readily extract the basic time and length
scales of the system in the ferromagnetic region, the phase
coherence time �T

� and the correlation length �T
�. Indeed,

RT�t ,0�=e−t/�T
�

with

�T
� = �� dk

�
e−�k/T�vk��−1

�
�

2T
e�/T, �55�

and RT�0,r�=e−r/�T
�

with

�T
� = c�� dk

�
e−�k/T�−1

� �c

2T�
e�/T, �56�

where c is the “speed of light,” given in terms of the band-
width J and of the lattice constant a by c=2Ja�. Notice
that in the critical region �T��� quasiparticles are not well
defined and semiclassical arguments are not applicable.
However, on the basis of an analysis of the continuum scal-
ing limit one obtains

�T
�,�T

� �
1

T
. �57�

This behavior is confirmed by an exact analytic calculation
on the lattice,51 giving �T

�= 8
�T .

The parallel between equilibrium behavior of the autocor-
relation function at finite T, and the behavior after a quench
is even more astounding when we consider quenches ending
in the paramagnetic phase ���1�, where the equilibrium
analysis �in spite of the fact that quasiparticles are no longer
kinks� predicts a very similar structure,40

�T
xx�t,r� � K�t,r� · RT�t,r� , �58�

with RT�t ,r� still given by Eq. �54�, while K�r , t� is an oscil-
latory decaying function determined by the quantum
fluctuations in the ground state. For the Ising chain,
K�t ,r��K0��r2−�t2 /c�, where K0 is the modified Bessel
function, which oscillates and decays as 1 /t for large t,
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FIG. 3. �Color online� Absolute value of the on-site time-
dependent correlation function �Q

xx�t ,0� for quenches terminating in
the ferromagnetic ��=0.5—left panel� and in the paramagnetic
phase ��=1.25—right panel�. The various curves are obtained for
different values of �0, as indicated in the graphs. The black curve
corresponds to the equilibrium case �in the left panel, the horizontal
dotted line indicates the asymptotic value ��x�2, while the dashed
one denotes the power-law envelope �t−1�. Colored curves stand
for different quenches �0��; the straight dashed lines indicate the
respective leading exponential decays. In the paramagnetic case,
curves are rescaled by the zero-temperature 1 /t prefactor, analo-
gous to the K�t ,0� term in Eq. �58�.
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while it decays exponentially as e−r�/c for large r. The data
for the autocorrelator �Q

xx�t ,0� as a function of time with final
��1 show pronounced oscillations as in the equilibrium
case, and the exponential drop clearly emerges only if
�Q

xx�t ,0� is multiplied by t, the leading decay of K�t ,0� �see
the right panel of Fig. 3�.

Given a generic quench from �0 to �, one can numeri-
cally extract a relaxation rate �Q

� . As shown in Fig. 2 of Ref.
31, �Q

� decreases as the quench “strength” ��0−�� increases,
implying that the more the system is driven out of equilib-
rium, the faster correlations decay in time. In the limiting
case of equilibrium ��→�0�, �Q

� →� and the exponential
relaxation turns into a power law. Notice that, even though
the decay rate of correlations depends on the strength of the
quench, the value reached asymptotically is always zero,

�Q
xx�t,0� →

t→�

0,

irrespective of the values of �0 and �.
We can understand these results as follows: the effect of a

quench from �0 to � consists of injecting in the system an
extensive amount of energy. As seen in Sec III, this leads to
the generation of a finite density of quasi-particle excitations
Ak, with a nonequilibrium occupation

fk = �B�Ak
†Ak�B� . �59�

The farther is �0 from �, and therefore the greater is the
injected energy, the higher is the density of quasiparticles
created. This is qualitatively very similar to the physics be-
hind the decay of the autocorrelation function at equilibrium,
if we consider the fact that the greater is the temperature T,
the higher is the density of quasiparticles in the system. It is
therefore quite natural to describe the dependence of the re-
laxation rate on the initial state and on the final Hamiltonian
in terms of an effective temperature.31 The most natural way
to define the effective temperature Teff consists in comparing
the energy of the initial state �B�H����B� to that of a ficti-
tious thermal state relative to the final Hamiltonian H���,

�H����Teff
= 	

k�0
�k

��nk�Teff� + n−k�Teff� − 1� , �60�

where nk�Teff�= �1+e�k
�/Teff�−1 is the Fermi distribution func-

tion for the quasiparticles Ak diagonalizing H��� �see Eq.
�13��. The effective temperature is therefore determined by
the implicit equation,

�B�H����B� = �H����Teff
, �61�

or, in a completely equivalent way, by

	
k�0

�k
�fk = 	

k�0
�k

�nk�Teff� . �62�

For given �0 and � this equation always admits a single
solution.

Quite remarkably, �Q
� appears to be univocally determined

by Teff and by the energy gap ���� in the final state. This
means that two different quenches starting and ending at dif-
ferent �0 and �, but having the same effective temperature
and the same ���� will show the same �Q

� , irrespective of

whether the two final � are both in the same region of the
phase diagram or, for example, one in the paramagnetic and
the other in the ferromagnetic region. Thus the fine details of
the initial conditions are not important, while the only key
physical parameter is the effective temperature of the initial
state.

As one can see from the main panel of Fig. 4, away from
criticality the phase coherence time �Q

� �symbols� nicely fol-
lows, qualitatively and even quantitatively, the curve describ-
ing the equilibrium phase coherence time �T=Teff

� at the effec-
tive temperature Teff �see Eq. �55��. This statement is true
also at the critical point, �=1, where, however, a finite-size
scaling is mandatory in order to capture the Teff

−1 behavior
predicted at equilibrium. Indeed, while the comparison of �Q

�

with �T=Teff

� systematically improves as Teff is decreased, the
long wavelength modes become increasingly important at
low effective temperatures, thus making boundary effects
more visible. Numerical data are shown in the inset of Fig. 4;
notably, after a finite-size scaling, the data not only follow
the Teff

−1 law but also appear to have the same prefactor 8 /�
analytically predicted in Ref. 51 for a system at equilibrium.

Since the parallel between quench dynamics and thermal
behavior works better at low effective temperatures, one
might be tempted to fix the effective temperature directly in
the long-wavelength scaling limit. However, particular care
should be taken in this case. Indeed, the energy of this state
is easily computed using the matrix elements �33� and is
given by
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FIG. 4. �Color online� Phase coherence time as a function of the
effective temperature in the off-critical region for different values of
� �main panel� and at criticality �inset�. Symbols refer to �Q

� �here,
as in Fig. 1, empty symbols stand for quenches starting with �0

��; filled ones are for �0���, while continuous curves denote the
equilibrium values at finite temperatures �T

�, Eq. �55�. For the sys-
tem at criticality, we performed a finite-size scaling of �Q

� to study
the asymptotic agreement with the equilibrium law �T

�= 8
�T �black

line�. �data for �=0.5, 0.75, 1, 1.25 acknowledged from Fig. 3 of
Ref. 31�.
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hB = �B�H�B� = L�
BZ

dk

2�
E�k�V2�k� , �63�

where the explicit length L of the system here shows that we
are in presence of a global quench. The integral above is
finite as long as the lattice spacing a is finite, whereas it is
logarithmic divergent as log�1 /a� when a→0. The simplest
way to see the appearance of this logarithmic divergence
when a→0 is to observe that, in the continuum limit, the
mass couples to the operator i :�+�x��−�x�: normal ordered
with respect to the mass m of the field. If we start with m0
and change the mass m0→m=m0+�m, this operator acquires
a vacuum expectation value, and the energy density per unit
length changes as

i�m�B��+�x��−�x��B� = ��m�2�
0

� dp

2�

p2

�p2 + �2�3/2 .

This quantity, which is logarithmic divergent, matches with
the limiting expression for a→0 of integral �63�, expanded
at the same order in �m. This implies that, keeping fixed the
energy density per unit length hB /L of the boundary state
while going to the continuum limit a→0, one is forced to
consider only quenches where the differences in the masses
are logarithmically close each other, m−m0�1 / log�1 /a�.
With this adjustment of the masses, the physics of the quench
process is invariant under a change of the lattice spacing.

B. Space-dependent correlations

A similar analysis can be performed for the space depen-
dence of the order parameter correlation functions �51�,
�Q

xx�0,r�
�B��m+r
x �t0��m

x �t0��B�, for sufficiently large times t0
after the quantum quench. As for the time autocorrelations,
we find that this correlator displays an exponential decay to
zero as a function of the distance r,

�Q
xx�0,r� � K̃�r�e−r/�Q

�
. �64�

This allows us to define the correlation length �Q
� for a sys-

tem after the quench, which is in general a function of the
quenching parameters �0 and �.

The behavior of �Q
xx�0,r� as a function of the distance is

explicitly shown in Fig. 5. For quenches in the ferromagnetic
phase, one clearly identifies a pure exponential decay with r,
as illustrated in the left panel of the figure; therefore, the
decay rate �Q

� can be easily extracted by fitting the numerical
data.56 This is analogous to the equilibrium case, Eq. �53�, as
already observed for the time-dependent autocorrelation
functions. In the same way as for �Q

� , the correlation length
�Q

� increases as the quench strength decreases and eventually
diverges for �=�0 �equilibrium, at T=0�, where at large dis-
tances �T=0�0,r� tends to ��x�2 and not to zero; the depen-
dence of �Q

� on �0, for fixed �, is shown in the inset of Fig.
5.

In the paramagnetic phase the situation is more subtle, as
one can see from the right panel of Fig. 5. Here the behavior
of �Q

xx�0,r� at short distances is dictated by the prefactor

K̃�r� which decays exponentially to a constant C�0,

K̃�r��C+exp�−�r /c� �a similar behavior is present in equi-

librium, where K�0,r��K0��r /c�, though with C=0�. For

distances r�c /�, where K̃�C, the observed exponential de-
cay univocally defines �Q

� . As a function of Teff and �, this
appears to qualitatively follow the law in Eq. �56�, as in
equilibrium.

A similar peculiarity associated to the prefactor K̃�r� ap-
pears when the quench crosses the critical point from the
paramagnetic to the ferromagnetic phase. Here the exponen-
tial decay of spatial correlators is superimposed to oscilla-
tions periodically changing the sign of the correlations,

K̃�r��cos�r /r��. As shown in Fig. 6, the spatial period r� of
these oscillations varies with the distance from criticality,
and eventually appears to diverge at �c. We numerically veri-
fied that r� diverges for �→�c as r��1 /�−1, irrespective
of the value of �0 �in analogy to what analytically observed15

for �0=+��. The presence of these oscillations has been first
reported in Ref. 15 for a specific quench starting at �0=+�
and appears to be closely analogous to a similar phenomenon
observed for linear quenches of the transverse field across
the critical point.52 We will come back to this point in Sec.
VI, where we will show that these oscillations are an effect
of the integrability of the model and that a sufficiently strong
nonintegrable perturbation of the system dynamics leads to
their suppression. Despite these oscillations, the leading ex-
ponential decay characteristic of thermal-like behavior is still
present. Indeed, in analogy with the phase coherence time,
we find that the correlation length �Q

� qualitatively follows
the behavior of the corresponding equilibrium length �T

� at
the effective temperature Teff determined by Eq. �61�. This
can be explicitly seen in Fig. 7, where the values �Q

� for
quantum quenches are indicated by symbols, while the equi-
librium data are plotted as continuous curves �see Sec. IV C
below for a discussion of the small discrepancies observed�.
The dynamics at the critical point deserves a separate treat-
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ment since the semiclassical analysis fails there. Again, after
a finite-size scaling of numerical data, the data appear to
converge at low Teff to the Teff

−1 behavior, as predicted for the
equilibrium case at finite temperature, Eq. �57�. This is
shown in the inset of Fig. 7.

C. Semiclassical analysis out of equilibrium

A better agreement between numerics and the semiclassi-
cal analysis can be obtained by modifying the analysis of

Ref. 40 for the quench case by substituting the Boltzmann
weight e−�k/T with the occupation factor fk for the eigen-
modes after the quench. In analogy with Eq. �56�, we obtain

�̃Q
� = �� dk

�
fk�−1

. �65�

Results of the computation using this formula are shown as
dashed curves in Fig. 7 and reveal a marked improvement in
the quantitative agreement between numerics and theory. A
similar analysis applied to the autocorrelation time leads to a
generalization of Eq. �55� into

�̃Q
� = �� dk

�
fk�vk��−1

. �66�

Data displaying �̃Q
� for two values of � are shown in Fig. 8

�blue curves�. As one can see, the small discrepancies be-
tween �Q

� and �T=Teff

� at low temperatures that appeared in Fig.
4 are now reconciled within numerical accuracy.

We point out that one could also evaluate the phase co-
herence time by using the effective thermal quasiparticle dis-
tribution function nk�Teff� in Eq. �66�, instead of the nonequi-
librium distribution function fk : �̃T

�= � 1
��nk�T��vk�dk�−1. This

gives a result that essentially coincides with the formula for
�T

� given in Eq. �55�. The two phase coherence times �̃Q
� and

�̃T
� in the low temperature regime are very close, apart from

some constant prefactor, in spite of the fact that the two
quasiparticle distribution functions fk and nk can be rather
different, as explicitly shown in the inset of Fig. 8, for a
specific value of ��0 ,��.
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Finally, we mention that a double check of the consis-
tency of our analysis comes from the comparison between
the effective temperature evaluated from Eq. �61� and that
obtained using the equality �̃Q

� = �̃T
�. In this last case, in the

limit Teff�� one finds

T̃eff �
�

ln��/�� − �0�2�
, �67�

in agreement with the cusp that emerges for T̃eff as one ap-
proaches the limit �0→� �see the inset of Fig. 2 in Ref. 31�.

V. NONTHERMAL BEHAVIOR OF LOCAL
OPERATORS

In this section we focus on a different class of operators,
belonging to the local sector with respect to the fermionic
quasiparticles. We first consider the two-point time-
dependent correlation functions of the transverse-field mag-
netization �z and then discuss the behavior of the nearest-
neighbor correlations of the order parameter �x, which is
equivalent to the density of kinks.

A. Transverse-field spin correlation functions

The two-point time-dependent correlation functions of the
transverse-field magnetization �z are defined as

�zz�t,r� 
 �B��m+r
z �t0 + t��m

z �t0��B� , �68�

in a way analogous to the order-parameter correlation func-
tions, Eq. �40�. These can be evaluated as sketched in Sec.
III B. As for the case of �Q

xx�0,r�, we will consider a waiting
time t0 long enough that results are independent of it.

The correlation functions of the transverse-field operator
�z for the system at equilibrium ��0=�� have been computed
in Ref. 1, where it has been shown that they relax to the
square of the transverse magnetization ��z�. This is given, in
the thermodynamic limit, by

��z�T = −
1

�
�

0

�

cos�2�k�tanh� �k

2T
�dk , �69�

with �k= 1
2arctan� sin k

cos k−� � in such a way as to have
0��k��. In contrast to the correlations of the order param-
eter, at equilibrium �T

zz�t ,r� exhibits a characteristic power-
law decay in time, both at zero and at finite temperature,

��T
zz�t,r� − ��z�T

2� � t−	T, �70�

which makes it impossible to define a time-scale analogous
to �Q

� . The power-law exponent 	T depends on the phase of
the system and on the temperature. We calculated 	T by nu-
merically fitting the curves of �T

zz�t ,r� �evaluated from exact
analytic formulas1� for long times t. At zero temperature we
found:

	0 = � 1 for � � 1

3/2 for � = 1

2 for � � 1.
� �71�

On the other hand, at finite temperatures 	T=1, irrespective
of the system phase. More precisely, we found that the

	T=1 behavior always holds for long times, while at short
times and for ��1 correlations decay with an exponent 2,
up to a given transient time t� which decreases with the tem-
perature.

We now consider the correlations of the transverse field
�Q

zz�t ,r� in the case of a quench and show that, contrary to the
behavior of the order parameter correlation functions �51�,
they do not exhibit thermalization. For this purpose, we first
concentrate on the asymptotic values that are reached at long
times or distances, and then focus on the exponent of the
power-law temporal decay.

As in the equilibrium case, the two-point transverse spin
correlation functions for the system out of equilibrium relax
asymptotically, both in time and in space, to the square of the
expectation value of the transverse spontaneous magnetiza-
tion, provided the waiting time t0 after the quench is suffi-
ciently large,

�zz�t,r� →
r,t→�

��z�Q
2 .

Contrary to the magnetization along the coupling direction
��x�T, which is rigorously zero at any finite temperature, the
transverse magnetization ��z�T is finite even at T�0, see Eq.
�69�. It would then be natural to carry out an analysis on
��z�Q, analogous to the one performed for the relaxation dy-
namics of the order parameter correlations, to check if it has
anything to do with the equilibrium transverse magnetization
��z�Teff

.
We have found, however, a completely different behavior.

A signature of this fact is evident from the inset of Fig. 9,
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FIG. 9. �Color online� Asymptotic value reached by the
transverse-field correlation functions, which is the square of the
magnetization ��z�. The magnetization for a quenched dynamics
�symbols� corresponding to a given effective temperature, as de-
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monds�, and 1.25 �blue triangles�. Inset: ��z�Q reached asymptoti-
cally after a quench from a given �0 to �=0. Notice that the cor-
responding equilibrium value ��z�T for �=0 is rigorously zero at
any temperature.
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where we plotted the value of the transverse magnetization
��z�Q which is asymptotically reached after a quench toward
�=0. As one can clearly see, contrary to the finite-
temperature equilibrium value ��z�T which is rigorously zero
for �=0 at any finite temperature T �see Eq. �69��, the value
after the quench is always nonzero, as long as �0�0. To be
more quantitative, after defining an effective temperature for
the out-of-equilibrium system according to Eq. �61�, one dis-
covers that

��z�Q � ��z�Teff
.

This is explicitly shown in Fig. 9, where we plot ��z�Q as a
function of Teff �filled symbols�, together with the corre-
sponding values ��z�T at the same temperature �continuous
lines�. Contrary to what is observed in Figs. 4–7, here we do
not find a thermal behavior, except for the very specific case
where the system is quenched toward the critical point �c
�green diamonds and line in Fig. 9�. This can be understood
in terms of the behavior of the quasi-primary operators of the
conformal field theory of the critical point.17

Let us now briefly discuss the finite-time transient behav-
ior of �Q

zz�t ,0� for the system out of equilibrium. In a way
analogous to the finite-temperature case, the transverse-field
correlations �Q

zz�t ,0� relax in time as a power law,

��Q
zz�t,0� − ��z�Q

2 � � t−	Q.

We found the following power-law exponents 	Q, depending
on the system phases before and after the quench:

	Q �0�1 �0=1 �0�1

��1 1 1 2

�=1 2 3/2 2

��1 1 1 2

Since for the system at equilibrium and at any finite tem-
perature we have 	T=1, this means that, in general, even the
finite-time power-law behavior is a nonthermal one. The
jump in the values of 	0 in Eq. �71� and of 	Q in the table,
depending on the different system phases before and after the
quench, can be seen as due to lattice effects.

B. Density of kinks

As a further confirmation of the nonthermal behavior of
local operators, we concentrate on the density of kinks �N. In
particular, we compare the asymptotic value reached after a
quench ��N�Q with the thermal behavior at equilibrium. In
the thermodynamic limit this is given by43,44

��N�T = �
0

� dk

2��1 −
1 + � cos k

1 + �2 + 2� cos k
�1 − 2nk�T��� .

�72�

On the other hand, the out-of-equilibrium behavior of
��N�Q
 limt→� �N�t� after a quench is retrieved from
Eq. �50� and by taking the asymptotic long-time limit for
L→�.

The comparison between the values of ��N�Q after a
quench and ��N�Teff

at equilibrium, where Teff for the corre-

sponding out-of-equilibrium system is obtained from Eq.
�61�, is presented in Fig. 10. As one can see, outside critical-
ity the two quantities are evidently not related and behave in
different ways. On the other hand, the results for quenches
ending at the critical point �c=1 �diamonds� perfectly follow
the dotted-dashed equilibrium line �green data� so that the
density of kinks after a quench to the critical point is univo-
cally determined by the effective temperature Teff. Remark-
ably such behavior is not found for a noncritical dynamics,
where fine details of the initial condition seem to be impor-
tant. As explained above, we frame the effective thermaliza-
tion only at criticality in terms of the behavior of the qua-
siprimary operators in conformal field theory.17

Incidentally, the thermal behavior of ��N�Q at criticality
can be recovered analytically. Indeed, in that case the density
of kinks at equilibrium with an effective temperature Teff is
given by substituting �=�c=1 in Eq. �72�,

��N�Teff
�cr = �

0

� dk

2�
�1 −

1

4
�k

�c�1 − 2nk�Teff���
=

1

2
+

�H����Teff

4
, �73�

where �k
�c =22−2 cos k is the energy of the Ak quasiparticle

at �c=1, and the second equality follows from Eq. �61� with
nk�T�=n−k�T�. The energy �H����Teff

of the system after the
quench is obtained directly from Eq. �60�, by evaluating
�B�Ak

†Ak�B�, and is given by

�H����Teff
= − �

0

� dk

�

2�1 + �0��1 + cos k�
�k

�0
. �74�

On the other hand, the value of ��N�Q for a quench at criti-
cality is extracted from Eq. �50� for t→�,
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FIG. 10. �Color online� Asymptotic value of the density of kinks
as a function of the effective temperature Teff. Different colors stand
for various values of �, as shown in the inset. Symbols denote the
density of kinks ��N�Q after a quench; to each value of �0 corre-
sponds a different initial state, therefore a different effective tem-
perature Teff. Straight lines denote the finite-temperature equilib-
rium values ��N�T=Teff

.
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��N�Q�cr = �
0

� dk

2�
�1 − 2

1 + �0 cos k

�k
�0

− 8
��0 − 1�sin2 k

��k
�c�2�k

�0 �
which, after simple algebra, can be shown to reduce to Eq.
�73�, hence obeying the rigorous equality

��N�Q�cr = ��N�Teff
�cr. �75�

The very similar behavior of ��z� and ��N� after a quench
follows from the structure of the Ising Hamiltonian in Eq.
�3�, which is a sum of the kink-operator term plus a trans-
verse magnetization term, and the fact that the total energy is
a conserved quantity in the quench process.

C. Description in terms of a generalized Gibbs ensemble

The nonthermal behavior of the long-time asymptotic val-
ues for the transverse magnetization ��z�Q and for the density
of kinks ��N�Q outside criticality can be reconciled in terms
of a generalized Gibbs ensemble �G,18 which takes into ac-
count all the nontrivial constants of motion that typically
prevent integrable systems from having an ergodic behavior,

�G =
1

ZG
exp�− 	

k

�k�k
�nk� , �76�

where ZG=Tr�e−	k�k�k
�nk� is the partition function, and

nk=Ak
†Ak is the number operator of the Bogoliubov quasi-

particle with energy �k
�. In Eq. �76� the operators �nk� assume

the role of a full set of constants of motion, thus keeping
track of the details of the initial condition. The fictitious
inverse temperature �k is taken to depend on mode k of the
system and is a Lagrange multiplier that can be calculated
from an equation for the expectation value of the correspond-
ing integral of motion nk for the evolving system after the
quench H���, on the boundary state �B�,

�nk�G = �1 + e�k�k
�

�−1 = �B�nk�B� = fk. �77�

After expressing the number operator nk in terms of the cre-
ation and annihilation operators for the initial Hamiltonian
H��0�, one arrives at the following expression for the r.h.s.
of Eq. �77�,

fk = ����0��nk����0�� =
1

2
−

ak
�ak

�0 + bk
2

2�k
��k

�0
, �78�

which, together with Eq. �77�, provides an explicit formula
for the �k’s.57

Using such obtained �k, one finds that the asymptotic val-
ues of both the transverse magnetization and the density of
kinks after a quench are identical to the corresponding ex-
pectation values in the same generalized Gibbs ensemble,
irrespective of the initial and the final transverse fields �0 ,�,

��z�Q = ��z�G, ��N�Q = �N�G. �79�

This shows that the Gibbs distribution �76�, with the same
fictitious temperatures �k defined in Eq. �77�, is able to catch
the nonthermal behavior of both �z and N after the relax-
ation outside criticality. As pointed out before, the two quan-

tities necessarily have to behave in the same way, due to the
energy conservation after the quench and to the particular
structure of Hamiltonian �3�.

VI. SENSITIVITY TO THE BREAKING OF
INTEGRABILITY

In this section we briefly address the problem of how a
nonintegrable perturbation of the Ising model �3� can affect
the relaxation to the steady state. We do not intend to give
here a fully comprehensive study of the effects of integrabil-
ity breaking: more modestly, the purpose of this section is to
provide evidence that some features of the asymptotic equal-
time correlators, in particular, the spatial oscillations after a
quench, disappear as soon as the nonintegrable perturbation
is increased. This sheds light on the scenario we proposed
throughout the paper: strong effects on the local observables
�which do not thermalize by themselves, in integrable sys-
tems� are expected, while the qualitative behavior of nonlo-
cal ones �which, on the contrary, are already “thermal”�
should not change.

One way to break integrability of the Ising model is to
add a next-to-nearest-neighbor coupling of strength J2,

H2��� = − J	
j=1

L

�� j
x� j+1

x + �� j
z� − J2	

j=1

L

� j
x� j+2

x . �80�

For such nonintegrable system, the standard analytic tools
based on the Jordan-Wigner transformation fail; therefore
one generally has to resort to a fully numerical treatment.
Here we employ an exact diagonalization study of model
�80�; unfortunately, this severely limits the actual sizes of the
systems under consideration to �O�10� spins.

We discuss the effective “generic” thermalization induced
by integrability breaking, by analyzing the changes in the
space asymptotics of the order parameter correlators, after a
quench in the transverse-field strength �: as discussed in Sec.
IV B, for quenches crossing the Ising quantum critical point
from the paramagnetic to the ferromagnetic side, nonthermal
sinusoidal oscillations in real space naturally emerge.15,52

Below we numerically show that a nonintegrable perturba-
tion leads to a suppression of them, thus driving the system
toward a completely thermal-like behavior, where only the
exponential decay in space of correlations is present. Instead
of considering the correlations �Q

xx�0,r� in real space, here we
work in the momentum space, where the effects of the oscil-
lations clearly emerge also for very small sizes. We define

nxx�k� 

1

L
	
r=1

L

eirk/L�Q
xx�0,r� . �81�

In presence of a pure exponential decay in space of correla-
tions �Q

xx, a typical Lorentzian curve for nxx�k� emerges. The
superposition of a simple sinusoidal modulation induces the
formation of two humps in k space, as it can be seen from the
black continuous curve �circles� in Fig. 11, for J2=0.

In Fig. 11 we numerically compare the expectation value
nTeff

xx �k� in the canonical ensemble at an effective temperature
Teff as given by Eq. �61�, with the asymptotic value after the
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quench nQ
xx�k�, calculated from the diagonal ensemble,20

nQ
xx�k� 
 lim

t→�
��t�nxx�k���t� = 	

i

�ci�2��i�nxx�k���i� , �82�

where ��t� is the state at time t after the quench
��t�=e−iH2���t�B�, ��i� are the eigenstates of the Hamiltonian
after the quench H2���, and ci= �B ��i�. Humps are present in
the out-of-equilibrium system for very small values of J2,
while they gradually disappear when increasing the perturba-
tion; on the contrary, they are completely absent at equilib-
rium at finite temperature, thus clearly suggesting that they
are typical nonthermal features. A clear evidence of the ther-
malization induced by nonintegrability is given by the differ-
ence �nxx�k�
�nTeff

xx �k�−nQ
xx�k�� as a function of J2. As shown

in the inset of Fig. 11, �nxx�k� is decreasing with J2, until this
becomes large and the system turns out to be again inte-
grable.

VII. CONCLUSIONS

In summary, we have analyzed the temporal relaxation of
some observables after a sudden quantum quench in a com-
pletely integrable one-dimensional spin model exhibiting a
quantum phase transition. In particular, we focused on the
spin-1/2 quantum Ising chain, where we quenched the trans-
verse magnetic field and studied the space and time asymp-
totics of two-point spin correlation functions corresponding

to the spin operators along the longitudinal and the
transverse direction, and the density of kinks.

We found that, despite the complete integrability of the
Ising model, some observables exhibit thermal behavior,
while others do not. The thermal behavior is typical for op-
erators which are nonlocal with respect to the fermion qua-
siparticles that diagonalize the model. The spin operator
along the coupling direction, which is the order parameter, is
of such type. In this paper we have explicitly demonstrated
that correlation functions of the order parameter drop expo-
nentially to zero and thermalize to an effective temperature
which is ruled by the energy of the initial state after the
quench. On the other hand, as examples of operators which
are local in the quasiparticles, we considered the spin opera-
tor along the transverse field direction, and the two-point
nearest-neighbor correlator of the spin operator along the
coupling direction. We showed that such two-point correla-
tions present nonthermal power-law decay to some residual
value, which is not related to its thermal counterpart at the
associated effective temperature, except in the very specific
case of a quench toward the critical point.

It is worth stressing that after breaking the integrability of
the model by adding an extra operator to the Hamiltonian �a
next-to-nearest neighbor coupling, see Eq. �80��, spurious
non-thermal effects of non-local operators disappear, while
the leading thermal behavior does not qualitatively change.
In particular, we have provided numerical evidence for the
suppression of non-thermal sinusoidal oscillations in real
space of the order parameter correlators, after a quench from
the paramagnetic to the ferromagnetic phase.

We point out that the relaxation dynamics of a many body
system following a quantum quench has been considered
also in other similar contexts. In Ref. 53 the behavior of the
staggered transverse magnetic moment in a XXZ spin chain
initialized in the perfect antiferromagnetic state was ana-
lyzed: the staggered moment always decays exponentially,
similar to our findings on the order parameter correlations in
the Ising model. In some cases, depending on the value of
the anisotropy parameter, oscillations in the dynamics of the
magnetization, which resemble the ones we reported for
quenches from the paramagnet to the Ising ferromagnet,15,52

were also found. The time evolution of an initial state
equivalent to the Néel state has been also studied for the
Bose-Hubbard model.54 In this case, oscillations of local ob-
servables such as the local density or nearest-neighbor corr-
elators, seem to decay algebraically for all values of the in-
teraction, while no crossover to a non oscillatory regime has
been found. The differences between the two cases have
been ascribed to the role played by the crossing of equilib-
rium critical points.

In light of all these results, it would be clearly interesting
to investigate other quantum integrable models, in order to
see whether thermalization behavior occurs in correlation
functions of operators that couple to infinitely many quasi-
particle states of the theory, while it is absent in correlation
functions of operators with a finite number of matrix ele-
ments.
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FIG. 11. �Color online� Fourier transform of the equal-time
order-parameter correlation function for the Ising model in presence
of a non-integrable perturbation J2. Symbols connected by lines
denote nQ

xx�k� after a quench from �0=5 to �=0.4, according to the
diagonal ensemble prediction. Dashed/dotted lines stand for the cor-
responding expectation values in the canonical ensemble nTeff

xx �k� at
the corresponding effective temperature Teff. Inset: absolute differ-
ences �nxx�k� between the diagonal and the canonical ensemble
predictions. Data are for a chain with L=12 sites.
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55 We point out that in a recent paper �J. H. H. Perk and H. Au-
Yang, J. Stat. Phys. 135, 599 �2009�� an alternative method for
evaluating such two-point correlations of the order parameter,
based on the resolution of a pair of Toda-type nonlinear differ-
ential equations, has been put forward.

56 We checked that the exponential decay rates do not depend on
the waiting time t0, provided this is sufficiently large.

57 The fictitious temperature �k defined in Eq. �77� depends on
mode k also at criticality, since it is obtained by equating the
contribution to the total energy due to a single-mode population.
Therefore in principle there is no connection with the effective
thermodynamic temperature � of Eq. �61�. This is the case even
at �c, where the system exhibits a true thermal behavior in the
sense of standard statistical ensembles.
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