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We thoroughly study the persistent current of noninteracting electrons in one-, two-, and three-dimensional
thin rings. We find that the results for noninteracting electrons are more relevant for individual mesoscopic
rings than hitherto appreciated. The current is averaged over all configurations of the disorder, whose amount
is varied from zero up to the diffusive limit, keeping the product of the Fermi wave number and the ring’s
circumference constant. Results are given as functions of disorder and aspect ratios of the ring. The magnitude
of the disorder-averaged current may be larger than the root-mean-square fluctuations of the current from
sample to sample even when the mean-free path is smaller, but not too small, than the circumference of the
ring. Then a measurement of the persistent current of a typical sample will be dominated by the magnitude of
the disorder-averaged current.
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I. INTRODUCTION

One of the consequences of the Aharonov-Bohm �AB�
effect1 is that a finite normal �i.e., nonsuperconducting� me-
soscopic ring exhibits a persistent current �PC� when the AB
magnetic flux through its opening is nonzero.2–5 The PC does
not decay with time when the dephasing and the thermal
lengths are larger than the ring circumference. This results
from the fact that the PC reflects an equilibrium state even
when the ring has a finite resistance due to defect
scattering.3,6,7 The PC is periodic in the flux � with a period
given by the magnetic flux quantum �0�2��c /e. Measure-
ments of the PC �Refs. 8–12� often stimulated the theoretical
studies.13–24 Today, this fundamental phenomenon of quan-
tum mechanics still challenges both theoreticians and experi-
mentalists of mesoscopic physics.25–29 Persistent currents
are also relevant for the orbital response of semimetals
and aromatic molecules,30 and for the ongoing interest in
nanotubes.31

At zero disorder, the azimuthal component of the velocity
associated with each single-particle eigenstate of the Hamil-
tonian of noninteracting particles is shifted due to the AB
flux ���0 /2, by �v=2��� /ML. Here M is the electron
mass, L is the circumference of the ring, and ��� /�0. One
may naively assume that the current density is −ne�v, where
n is the density of the electrons. In a normal ring, because of
level crossing, the occupation of the levels changes with the
flux. As a result, once level crossing occurs, the PC density
of the normal ring is much smaller than −ne�v. In a super-
conducting ring −ne�v gives the value of the PC density at
zero temperature and zero disorder. It might be argued that in
a perfect superconductor at zero temperature, the above oc-
cupation switching is suppressed. Thus, the attractive inter-
action in a superconductor, which enforces the pairing corre-
lations, strongly enhances the PC compared to the normal-
state value. Note that the current of a superconducting ring is
an intensive quantity—it does not depend on the size of the
system. In the normal state, the current is only a mesoscopic
effect—proportional to an inverse power �−1 in the ballistic

one-dimensional �1D� case3� of the system’s length.
The current of noninteracting electrons in two-

dimensional �2D� cylinders in the grand-canonical ensemble
was studied analytically in the limit of zero disorder and in
the diffusive limit.15–18 In these works the PC was calculated
in two geometries: “short” cylinders, H�L, where H is the
height of the cylinder and “long” cylinders, H	L. Cheung et
al.16 studied the case of a three-dimensional �3D� short and
thin diffusive cylinder as well. In the zero-disorder limit, the
PC was calculated by summing the velocities, with appropri-
ate factors, of all the states that, after the energy shift due to
the flux, are below the Fermi energy.15 In the diffusive limit
the PC may be averaged over the configurations of the im-
purities. It can be calculated as a function of the magnetic
flux from the density of states in the diffusive limit.16,17

Entin-Wohlman and Gefen18 calculated the impurity-
ensemble-averaged current of long cylinders using the linear-
response theory in �, which is valid only for ��1 /2.

Our work extends the above research15–18 in two ways.
First, we describe the current for any degree of disorder be-
tween the previously studied limits of perfectly clean sys-
tems and diffusive systems. Second, we consider 3D thin
rings with a finite width W for which W�L �in contrast to
W
a, where a is the smallest microscopic length of the
system�.15,17,18 We also correct, and generalize for any given
value of the flux, the expression for the PC as calculated by
Entin-Wohlman and Gefen for long 2D cylinders.18 In the
latter, a calculation error32 gave a result of incorrect sign and
magnitude for the prefactor of the dominant �for L	�,
where � is the elastic mean-free path� exponential depen-
dence.

The expression16 for the disorder-averaged PC in the
grand-canonical ensemble at zero temperature is given in
Sec. II. This expression can be simplified in two regimes,
defined in Sec. III, which we name the uncorrelated- and the
correlated-channel regimes.3 In Secs. IV and V we perform
the simplifying steps that are allowed in each regime, and
then obtain the leading-order expressions of the PC in the
zero-disorder and the diffusive limits. The specific conditions
for which these two limits hold in both the uncorrelated- and
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the correlated-channel regimes are given in Table I. In Refs.
15–18 the same simplifying assumptions had been used but
were referred to as short and long cylinders. We find that
these pictorial definitions do not agree with the regimes in
which the corresponding results hold. Our results for PC of
2D cylinders in the zero-disorder and the diffusive limits for
the uncorrelated-channel regime, and in the zero-disorder
limit for the correlated-channel regime, agree with the ones
obtained in Refs. 15–17. For 2D cylinders, our result for the
PC in the correlated-channel regime in the diffusive limit is
new.

The disorder-averaged PC is highly sensitive to the exact
value of kFL, as it contains a factor of sin�kFL�, where kF is
the Fermi wave number. In Sec. VI we discuss the way to
compare the measured average PC in an ensemble of rings to
the theoretical results depending on the variance of the value
of kFL among the rings. In this section the disorder-averaged
PC is also compared with the root-mean-square �rms�
fluctuations16,20 of the PC with respect to the disorder. We
find that as long as the system is not too diffusive, the mag-
nitude of the disorder-averaged current may be larger than
the current rms fluctuations. As discussed in Sec. VII, our
result for the disorder-averaged PC of noninteracting elec-
trons agrees with the PC measured in a 2D clean annulus by
Mailly et al.,9 but has a larger magnitude than the one mea-
sured by Rabaud et al.10 The results of our study are dis-
cussed in Sec. VIII.

In contrast with the Green’s function technique used in
the main body of this paper, we give in the Appendix an
approximation for the PC of a 3D ring in the zero-disorder
limit. This approximation is based on the canonical ensemble
results for a 1D ring, and on the probabilities that, at a given
flux, the number of electrons in a given transverse channel is
odd or even.

II. EXPRESSION FOR THE PERSISTENT CURRENT

In this section we obtain an expression16 for the impurity-
ensemble-average zero-temperature PC of noninteracting
electrons. We consider spinless electrons in a ring of a mean
circumference L, a width W, and a height H. In the absence
of disorder, the Hamiltonian is given by

H =
1

2M
�− i� � +

e

c
A�2

. �1�

The AB flux, which does not penetrate the ring itself, is
given by the magnetic vector potential A= �̂� /2�r, where r

is the radial coordinate and �̂ is a unit vector oriented along
the ring. The eigenstates of H, in cylindrical coordinates, are

��r,�,z� = ein�sin��qz

H
�  �C1Jn+��kr� + C2Yn+��kr�� ,

�2�

where n=0, �1, �2, . . ., q=1,2 , . . ., and

k = �2M�/�2 − ��q/H�2. �3�

Here J and Y are the Bessel functions of the first and second
kind. The boundary conditions ��r= �L /2�−W /2��=��r
= �L /2�+W /2��=0 set the ratio between the prefactors C1
and C2 and the eigenenergies. For W�L, the eigenenergies
are given by33

�q,s,n =
�2�2

2M
	q2 − 1

H2 +
s2 − 1

W2 +
�2�n + ���2

L2 
 +
1

L2O��W/L�2� ,

�4�

where s is a positive integer. In this work, all energies are
shifted so that the single-particle ground-state energy, for
which q=s=1, n=�=0, is zero. We henceforth neglect the
term of order �W /L�2 in Eq. �4�.

We now introduce disorder, induced by impurities having
pointlike potentials. The PC, averaged over a grand-
canonical ensemble of disordered systems having the same
mean-free path but different impurity configurations, is given
by16

�I� = 
q,s,n

�
−�

� dE

2�i
f�E�  �G+��q,s,n�,E� − G−��q,s,n�,E��In

�0�.

�5�

Here the Fermi distribution function, f�E�, sets the chemical
potential as an upper bound on the integration at zero tem-
perature. The current associated with a single-electron wave
function is given by

In
�0� = −

2��e

ML2 �n + �� . �6�

In Eq. �5�, the disorder-averaged retarded and advanced
Green’s function are denoted by G+ and G−, respectively.
The expressions for the disorder-averaged Green’s function,
for kF�	1 and within the Born approximation, are34

TABLE I. The results for the PC in the zero-disorder �� /L→�� and the diffusive ���L� limits. The
conditions defining the uncorrelated- and the correlated-channel regimes are given in the second column for
a 2D cylinder. For a 2D annulus the conditions are the same with H replaced by W. For a 3D ring the
conditions should be satisfied for both azimuthal directions. In the third column we refer to the appropriate
expressions for the PC.

Conditions associated with the z direction Results

Uncorrelated: zero disorder 1�kFH /��2L /H �24� and �25� �3D rings�
Uncorrelated: diffusive �L /8��kFH /��2L /H �26� �3D rings�
Correlated: zero disorder H /L�10m2kFL �29� �2D cylinder�
Correlated: diffusive H /L�max�100� /H ,� /kFL� �30� �2D cylinder�
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G���q,s,n�,E� = 	E − �q,s,n �
i�

2�

−1

, �7�

where � is the elastic mean-free time. Equation �5� for the
disorder-averaged PC is given as a sum over channels �q ,s�.
However, in the corresponding expression for the nonaver-
aged current, one should use the nonaveraged Green’s func-
tion and consequently for a specific configuration, the chan-
nels are mixed in the expression for the PC.35

We note that the �q ,s� term in Eq. �5� is given by the
averaged PC in a 1D ring17 with a shifted chemical potential

� → ��q,s� = � − ��q,s,n = 0,� = 0� , �8�

namely,

�I� = 
q,s

�I1D���q,s��� . �9�

The current of a 1D ring, calculated in Ref. 17, is

�I1D� = 2I0
m=1

�
sin�2�m��

�m
cos�mkFL�e−mL/2�. �10�

Here I0�evF /L, where vF is the Fermi velocity.36 In Eq. �9�
each �q ,s� term has its Fermi wave number determined by
Eq. �8�,

kF�q,s� = kF
���q,s�/� . �11�

Equation �10� is valid for �	 �� /2� , ã�, where ã
=2�2�2 /ML2 is the prefactor of �n+��2 in the expression for
the eigenenergies, see Eq. �4�.

Substituting the 1D result, Eq. �10�, in Eq. �9�, we obtain
that at zero temperature

�I� = 
m=1

�

�Im�sin�2�m�� , �12�

where the disorder-averaged harmonics are given by

�Im� =
2I0

�m

q=1

Nz


s=1

Nr
�1−�q2−1�/Nz

2

kF�q,s�
kF

cos�mkF�q,s�L�exp	−
mL

2�kF�q,s�/kF

 . �13�

The approximate numbers of the occupied channels corre-
sponding to momenta in the radial and the z directions are

Nr = kFW/�, Nz = kFH/� , �14�

respectively. In the upper bounds on the summations over q
and s, one needs to take the closest integer values for Nr and
Nz from below �but not less than 1�.

In Eq. �13� we sum over the contributions of the occupied
channels, which obey �s /Nr�2+ �q /Nz�2�1, so that ��q ,s�
�0. In a diffusive system, one might worry about the con-
tribution to �Im� of channels with high transverse momentum
which satisfy

��kF�q,s�/kF� � 1/kF�q,s� , �15�

and are therefore not diffusive. Their contribution is given by
an expression similar to Eq. �10�, where a term of �4kFL
multiplies the exponent and divides I0. In Eq. �13� we ignore
this extra reduction since only a few channels may satisfy
Eq. �15� and their contribution to the PC is anyhow small.

III. APPROXIMATIONS FOR THE PC HARMONICS

In this section we identify different regimes in which the
expression for the disorder-averaged harmonics, see Eq. �13�,
can be simplified.

A. Dimensionality of the system

The ring is considered to have a significant thickness
along the radial direction when Nr	1 �see Eq. �14�� and

when the ratio between the exponential in Eq. �13� with a
small index s to the following s+1 term is much smaller
than, say, 10. Thus, for the calculation of �Im� many s values
give significant contributions when

kFW

�
	 �1 and �mL

8�
� . �16�

When the “much larger” sign in Eq. �16� is replaced by a
“smaller” or “comparable” one, the ring is considered to be
of zero dimension along the radial direction, and we use only
s=1.

Note that condition �16� depends on L /�. This can be
understood by the following argument: the phase of the
Green’s function of a particle that encircles the ring depends
on the specific disorder configuration. Averaging the PC over
all configurations of disorder results in the exponential decay
of �I1D�, see Eq. �10�.22 In a multichannel ring, the overall
path, and correspondingly the variance of the phase shifts,
increase as the transverse momentum increases. This results
in the increase in the exponential decay rate in Eq. �13� for
increasing channel index. Indeed, as we see in Eq. �16�, in-
creasing the disorder may decrease the effective dimension-
ality of the system. The condition for considering the ring to
have a finite height is given by Eq. �16� upon replacing W
with H. In this way the system is classified as one of the
following: 1D, 2D annulus, 2D hollow cylinder, or a 3D ring.
In the 2D annulus case one sums over s taking q=1, and in
the 2D cylinder case the summation is over q keeping s=1.
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B. Contributions of consecutive channels to ŠIm‹

The discrete summation over the channel indices in Eq.
�13� makes the expression for �Im� hard to handle analyti-
cally. In this section we define two regimes where one can
overcome this difficulty. The contributions to the mth har-
monic of consecutive transverse channels �s and s+1, or q
and q+1� are uncorrelated when the change in the arguments
of the corresponding cosine terms, see Eq. �13�, is larger
than, say, � /4. This difference between the arguments of the
cosines increases with increasing channel index. Hence, if
the lowest two transverse indices obey this condition, then
higher indices will fulfill it as well, so that all channels are
uncorrelated. Thus, the channels associated with the z direc-
tion are uncorrelated when

H

mL
�

2�

kFH
. �17�

The same rule applies to channels of consecutive s indices
upon replacing H with W. The regime defined by Eqs. �16�
and �17� will be referred to as the uncorrelated-channel re-
gime.

In the uncorrelated-channel regime the dependence of the
PC on the parameters kFL, Nz, and Nr, which appear in the
arguments of the cosines in Eq. �13�, is nontrivial. This is
demonstrated in Fig. 1. We thus turn to calculate the typical
magnitude of the disorder averaged harmonics ��Im�2�1/2. The
overline denotes averaging over kFL within a segment
��kFL��kFL of a width of �2�. Note the different notations
of averaging over kFL and averaging over disorder. In the
calculation of ��Im�2�1/2 we use the approximation

cos�mkF�q,s�L�cos�mkF�q�,s�L� =
�qq�

2
�18�

and obtain

��Im�2�1/2 =
�2

�m
I0 �

q,s
	 kF�q,s�

kF

2

exp	−
mL

�kF�q,s�/kF

 .

�19�

We have confirmed numerically that the standard deviation
of �Im� obtained from Eq. �13� gives the same value for
��Im�2�1/2 as given by Eq. �19�. For the calculation of the
standard deviation of �Im� we have inserted in Eq. �13� the
parameters of the ring used by Mailly et al.,9 see Sec. VII,

and considered many values of kFL in a segment of a width
of 10�.

When the first harmonic is in the uncorrelated-channel
regime, the harmonics with m up to m�8kF

2W2� /�2L are
also in that regime, see Eq. �16�. In this case, the contribution
of higher harmonics is negligible. Therefore, in the approxi-
mate expression

��I�2�1/2 =�
m=1

�

�Im�2sin2�2�m�� , �20�

we can use the expression given in Eq. �19� for �Im�2 for all
the relevant harmonics.

For a 2D cylinder, the maximal q whose contribution to
�Im� is not negligible, see Eq. �13�, is

qmax
m = min�Nz� 8�

mL
,Nz� . �21�

When Eq. �16� is satisfied and the cosines of sequential in-
dices with q�qmax

m are correlated, then the sum in Eq. �13�
can be replaced by an integral. Since the difference between
the arguments associated with sequential channels increases
as the index of the channel increases, the condition for the
channels to be correlated is

mL�kF�qmax
m − 1,1� − kF�qmax

m ,1�� �
�

4
. �22�

When qmax
m =Nz, condition �22� has the form H /L

�10m2kFL. The correlated-channel regime for a 2D annulus
is defined in the same way but the limitation W�L of our
analysis makes this regime irrelevant for that geometry. We
refer to this point in more detail at the end of Sec. V. The
expressions for the conditions for the uncorrelated- and the
correlated-channel regimes, in the zero-disorder and the dif-
fusive limits are summarized in Table I.

IV. UNCORRELATED-CHANNEL REGIME

Consider a 3D ring in the uncorrelated-channel regime,
defined by Eqs. �16� and �17�. To estimate ��Im�2�1/2 we re-
place the sum in Eq. �19� by an integral over x
=��q /Nz�2+ �s /Nr�2, and add the factor 2xNtot, where Ntot

= �
4 NrNz is the total number of occupied channels

��Im
3D�2�1/2 =

2�2

�m
I0

�Ntot

��
0

1

x�1 − x2�exp�−
mL

��1 − x2�dx .

�23�

In Fig. 2 the magnitudes of the first and second harmonics
are plotted as a function of L /� using Eq. �23�. Here one can
see that with increasing disorder, the first harmonic becomes
more dominant.

Equation �23� can be further approximated in the zero-
disorder and in the diffusive limits. In the first limit

1000 1020 1040 1060
−0.5

0

0.5

k
F
L

<
I m

=
1

2D
>

/I 0

FIG. 1. The disorder-averaged PC depends on kFL, Nz, and Nr in
a nontrivial fashion. Here we plot �Im=1

2D �, see Eq. �13�, for L /�=5
and for Nz=70 �solid line� and Nz=100 �dashed line�. The typical
magnitude of the disorder-averaged current, given by Eq. �19�, for
the above two values of Nz is 0.25I0 and 0.30I0, respectively.
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��Im
3D�2�1/2 =

1

�m
I0

�Ntot. �24�

From Eqs. �20� and �24� we obtain37

��I3D�2�1/2 = I0
�Ntot

�����1 − 2���� . �25�

Note the enhancement of the PC magnitude by the square
root of the channel number. Deep enough in the diffusive
limit, L /��10, the PC is dominated only by its first har-
monic. Here, the magnitude of the PC is given by the limit
L /�	1 of Eq. �23�,

��I3D�2�1/2 =
2

�
��

L
I0

�Ntote
−L/2� sin�2��� . �26�

This reproduces the result38 of Ref. 16.
The PC harmonics of a 2D annulus are given by

��Im
2D�2�1/2 =

�2

�m
I0

�Nr ��
0

1

�1 − x2�exp�−
mL

��1 − x2�dx .

�27�

Results for a 2D annulus in the uncorrelated-channel regime
and the zero-disorder limit are given by Eqs. �24� and �25�
with Ntot replaced by 4Nr /3. Here, replacing Nr with Nz gives
the expression for the PC in a 2D cylinder obtained38 by
Cheung et al.15 In the diffusive limit, the PC of a 2D annulus
or a 2D cylinder in the uncorrelated-channel regime amounts
to multiplying the expression in Eq. �26� by the factor
��L /8� and replacing Ntot by Nr or Nz, respectively. The
latter yields the results obtained in Refs. 16 and 17. The
difference between the powers of L /� between the 2D and
the 3D expressions is due to the difference of the densities of
states of the transverse channels in these cases.

The similarity between the PC of a 2D annulus and the
PC of a 2D cylinder is hardly surprising since these two
cases of finite width and of finite height are topologically
equivalent for the AB flux, and the eigenenergies are the
same as long as W�L.

V. CORRELATED-CHANNEL REGIME

For a 2D cylinder, the correlated-channel regime is de-
fined by Eq. �16� �with H replacing W� and Eq. �22�. In this

case we replace the summation over q in Eq. �13� by an
integration and obtain

�Im
2D� =

2

�m
I0Nz�

0

1

�1 − x2

 cos�mkFL�1 − x2�exp�−
mL

2��1 − x2�dx . �28�

In the zero-disorder limit, Eq. �28� yields the result38 of Ref.
15,

Im
2D =� 2

�m3 I0Nz
1

�kFL
cos�mkFL − �/4� . �29�

The diffusive limit of the PC of a 2D cylinder in the
correlated-channel regime is found here to be given by

�I2D� =
�2 sin�2���

��kFL
I0Nze

−L/2� cos�kFL − �/4� . �30�

�The higher harmonics are negligible.� The conditions for the
correlated-channel regime in the zero-disorder limit, see
Table I, cannot be satisfied for the radial direction together
with the restriction W�L, for most reasonable values of kFL.
The limit of a diffusive annulus, see Table I, is satisfied, for
W�L, only when L /��130, but then the disorder-averaged
PC is irrelevant.

In Fig. 3 the magnitude of the disorder-averaged PC is
plotted using Eq. �30� as a function of L /� in the diffusive
regime. The results, Eqs. �29� and �30�, are reduced by
1 /�kFL compared to the results in the uncorrelated-channel
regime in the zero-disorder and the diffusive limits, see Sec.
IV. However, these results are enhanced by �Nz and by
�Nz�L /��1/4, respectively.

VI. rms FLUCTUATIONS VERSUS ŠI‹

The disorder-averaged PC is very sensitive to the exact
value of kFL, see, e.g., the cosine factor in Eq. �29�. In con-
trast, the rms fluctuations of the current in respect to the
disorder16,20

�I = ��I2� − �I�2�1/2 �31�

are not sensitive to kFL. The common practice in PC mea-
surements is to determine the total current, Itot, from the mea-

0 1 2 3 4 5
0

0.2

0.4

L/l

−
−

−
−

−
sq

rt
(

<
I m

>
2

)
/N

to
t

1/
2

4 6 8 10 12
0

0.5

1

L/l

m=1

m=2

FIG. 2. The PC of a 3D ring in the uncorrelated-channel regime.
The typical magnitudes of the first harmonic �solid line� and the
second harmonic �dashed-dotted line� are plotted in units of I0

�Ntot,
using Eq. �23�. In the inset ��Im=1

3D �2�1/2 / I0 �solid line� is obtained by
substituting Nz=Nr=20 in Eq. �23�. For a later discussion, the rms
fluctuations of the PC with respect to the disorder, �I / I0 �dashed
line� are plotted using Eq. �33�. Here ��Im=1�2�1/2=�I, when L /�
=8.5, in agreement with Eq. �34�. The horizontal axis of the inset
begins at L /�=3 since Eq. �33� is valid only in the diffusive limit.

5 10 15 20
0

0.2

0.4

0.6

L/l

<I
m=1
2D >

δ I

FIG. 3. The disorder-averaged PC of a 2D diffusive cylinder in
the correlated-channel regime �solid line� is plotted as a function of
� /L. We replace sin�kFL� by 1 /�2 in Eq. �30� to obtain the typical
magnitude, and use Nz=103 and kFL=5103. The rms fluctuations
�dashed line�, see Eqs. �31� and �33�, equals �Im=1

2D �, for the above
parameters, at L /��10, in agreement with Eq. �35�. Both �Im=1

2D �
and �I are given in units of I0.
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surement of the overall magnetic response of Ñ rings. This
current is related to both the disorder-averaged current and to
the current rms fluctuations by

Itot =�Ñ�I� � �Ñ�I ��kFL� � �

��Ñ���I�2�1/2 � �I� ��kFL� � � .
� �32�

Here ��kFL� is the variation in kFL in an ensemble of Ñ
rings. Equation �32� hold also for the harmonics �replacing I
by Im�. If the ring is in the uncorrelated-channel regime, one
may replace �I� by ���I�2�1/2 in the top equality of Eq. �32�,
while if the ring is in the correlated-channel regime, one
needs to replace the cosine factor in Eq. �28� for �Im� by
1 /�2 in order to obtain ��Im�2�1/2 in the bottom equality.

The rms fluctuation due to the disorder of the h /e har-
monic of the current for a thin-walled �L	 �W ,H�� ring in
the diffusive limit is given by16,20

�I =
�8

��3

�

L
I0 sin�2��� �� � L� . �33�

This result is independent of the number of channels, i.e., of
W and H. These current rms fluctuations do not exist for
� /L	1, see Eq. �31�. Thus, the contribution to Itot which is
not related to interactions, is expected to be given by Eq.
�13� in the zero-disorder limit. Equation �33� for �I is strictly
valid in the diffusive regime but is expected to give a correct
order of magnitude for systems in which � and L are com-
parable.

In Figs. 2 and 3, the crossover from the dominance of the
disorder-averaged PC to the dominance of �I can be ob-
served. In the uncorrelated-channel regime, the typical mag-
nitude of the disorder-averaged current of a 3D ring is equal
to �I at L /�=5, 10, and 14 for Ntot=20, 103, and 105, respec-
tively. These values are obtained, for L /��1, by comparing
Eq. �26� with Eq. �33�,

Ntot � 0.7
�

L
eL/� ⇔ ��Im=1

3D �2�1/2 � �I . �34�

The analogous result for a 2D cylinder in the correlated-
channel regime is

Nz � 0.9
�

L
eL/2��kFL ⇔ ��Im=1

2D �2�1/2 � �I . �35�

For kFL=H /L=100, the equality ��Im=1
2D �2�1/2=�I is satisfied,

see Eq. �35�, for Ntot=22, 135, and 700 at L /�=5, 10, and
14, respectively.

VII. DISCUSSION OF EXPERIMENTAL DATA

Since the first harmonic is not expected to be affected by
electron-electron interactions,13,14 we may compare its
measurements9–11,27,28 with calculations of the typical mag-
nitude of �I� and �I. Mailly et al.9 studied the PC in an
almost ballistic annulus of GaAlAs/GaAs, characterized by
L=8.5 �m, �=11 �m, kF=1.5108 m−1, vF=2.6
105 m /s, and W=0.16 �m. These parameters, which
yield I0=5 nA and Nr=8, satisfy conditions �16� and �17�

for the uncorrelated-channel regime. We insert these param-
eters in our result Eq. �27� and in Eq. �33�, adding a factor of
2 due to spin degeneracy. This yields ��Im=1

2D �2�1/2=1.4I0, and

�I=1.3I0 sin�2���. We see that �I and ��Im=1
2D �2�1/2 are com-

parable, and both are in fair agreement with the measured PC
of �0.8�0.4�I0. Using the expression for the PC of a 2D
cylinder in the zero-disorder limit obtained in Ref. 15 �re-
placing H with W� yields a value larger by a factor of �2
compared to our result. When ��L, the ballistic, diffusive
and exact expressions should give the same order of magni-
tude for the PC. Indeed, using the expression for the PC of a
diffusive annulus in the uncorrelated-channel regime16,17

gives a value that is very close to the one obtained from Eq.
�23� for the parameters of the annulus measured in Ref. 9.

Rabaud et al.10 measured the PC of an array of 16 ballistic
rings of GaAlAs/GaAs. Those rings are in fact squares
whose external total edge length is 16 �m and the internal
one is 8 �m, yielding L=12 �m. The rings are also char-
acterized by �=8 �m, kF=2108 m−1, W=0.8 �m, and
vF=3.2105 m /s, implying I0=4.2 nA and Nr=50. The
measured total PC obtained for disconnected rings, divided
by the square root of the number of rings,39 was
�0.33�0.07�I0. Neither the uncorrelated-channel regime nor
the correlated-channel regime can be associated with these
rings, since both Eqs. �17� and �22� are not obeyed by the
above parameters. Therefore, we use our result Eq. �13�, with
q=1 and a factor of 2 due to spin degeneracy, and obtain
values for �Im� in the regime �−3I0 ,3I0�, whose standard de-
viation is ��Im=1

2D �2�1/2=1.1I0. From Eq. �33� we find that �I
=0.7I0 sin�2���. The discrepancy between the measured
value, the above ��Im=1

2D �2�1/2, and �I may be due to the ge-
ometry �squares instead of rings� as well as due to
decoherence.10 The relative large W may also play a role.

One may compare our result for ��Im=1
2D �2�1/2 for the param-

eters of Ref. 10 with results of previous theoretical studies
for these short annuli.15–17 The latter correspond to
��Im=1

2D �2�1/2=7.5I0 in the zero-disorder limit and ��Im=1
2D �2�1/2

=4.5I0 in the diffusive limit �as given by Eqs. �24� and �26�,
adapted to 2D and including a factor of 2 due to the spin
degree of freedom, see Sec. IV�. Hence, our result is in a
smaller disagreement, compared to results of former
studies,15–17 with the measured one. This is due to the fact
shown above that the conditions for Eqs. �24� and �26� to be
valid are not satisfied by the parameters of the rings mea-
sured in Ref. 10.

The first harmonic, measured for the diffusive rings used
in the studies of Jariwala et al.,11 and of Bluhm et al.,27 fairly
agrees with the theoretical value for �I. Here the rings are
deep enough in the diffusive regime and so ��I�2�1/2��I. In
the very recent work of Bleszynski-Jayich et al.,28 where
aluminum rings were used, the high magnetic fields utilized
in the experiment cause �I� to be negligible, but leave �I
unaffected.29 Indeed, the rms fluctuations, given by Eq. �33�,
agree with the measured PC.28

VIII. DISCUSSION

In this work we have studied the disorder-averaged per-
sistent current of noninteracting electrons. We have extended
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earlier analytical studies, which considered only the zero-
disorder and the diffusive limits,15–18 and have given an ex-
pression, Eq. �13�, for a general35 ratio of L /�, as long as
kF�	1. We define the uncorrelated- and the correlated-
channel regimes in which Eq. �13� can be simplified38 to
expressions �23� and �28�, respectively. While previous
works15–19 dealt mostly with 1D rings or 2D cylinders, we
have considered here also rings of finite narrow width. In
particular, we have obtained an expression for 3D rings. In
addition, our expression for the PC in a 2D cylinder in the
correlated-channel regime in the diffusive limit is new.

The inset of Figs. 2 and 3 demonstrate that the disorder-
averaged PC may be a relevant contribution, compared with
the fluctuation �I, for slightly diffusive systems, typically
with L /�
10. The relation between the parameters of a ring
that satisfy ��Im�2�1/2��I, is given in Eqs. �34� and �35� for
the uncorrelated- and the correlated-channel regimes, respec-
tively. We find that for the parameters of the rings used in
Refs. 9 and 10 the disorder-averaged PC is relevant com-
pared to �I.

Interactions, repulsive13 or attractive,14 can contribute to
an h /2e flux-periodic disorder-averaged PC. However, as
long as the sample is not superconducting, the PC remains a
mesoscopic effect. We have recently suggested25,26 that if the
effect of pair breaking is taken into account, attractive inter-
actions can explain the h /2e signal measured in ensembles
of copper8 and gold11 rings. The contribution of interactions
to the PC is not sensitive to the exact value of kFL. There-
fore, the interaction-induced PC may be compared to mea-
surements using the top equality in Eq. �32�, for any value of
��kFL�. In contrast, since in reality ��kFL���, the
interaction-independent contributions of both �I and ��I�2�1/2

are compared to measurements using the bottom equality in

Eq. �32�. Thus, as Ñ increases the interaction-dependent con-
tributions to the PC become dominant over the contributions
which do not depend on electronic interactions. This explains
why measurements on ensembles of 105 and 107 rings re-
vealed only the h /2e harmonic.8,12 It seems that the h /e har-
monic can be accounted for only by the part of the PC that is
independent of interactions, which we study here. However,
since the h /2e periodicity of the interaction-dependent part
of the PC was obtained from calculations of the disorder-
averaged PC,13,14 further study is needed to assure that the
h /e harmonic is not present in the interaction-dependent
parts of �I. The special case of a single-channel �pure 1D�
interacting system40 can be solved using bosonization tech-
niques. Qualitative differences exist then between repulsive
and attractive interactions. In 1D rings, interactions affect the
first harmonic of the sample-specific current.

Each harmonic has a different temperature dependence.
Higher harmonics decay faster with temperature since they
necessitate multiple paths around the ring.15,16 For this rea-
son we treated the different harmonics separately, though our
calculations are carried out at zero temperature.

We call attention to the appearance of positive powers of
the channel number �although the negative power of kFL in
the correlated-channel regime may partially compensate that�
in the PC magnitude. This implies that once multichannel
ballistic systems would be manufactured, relatively large

PCs should appear. Both molecular and clean semiconduct-
ing systems come to mind in this connection, and perhaps
semimetals, such as Bi �see first reference of Ref. 30�. On the
other hand, in all regimes, the disorder-averaged PC in
the diffusive limit is highly suppressed by a factor of
exp�−L /2��. Again, achieving � not too small compared with
L, will be helpful.
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APPENDIX: AN ALTERNATIVE STATISTICAL
APPROACH FOR THE DESCRIPTION OF THE CURRENT

So far we have used the Green’s-function technique for
our calculations. In this section we develop an alternative
statistical approach to approximate the current in the
uncorrelated-channel regime and the zero-disorder limit. The
following approach leads to the magnitude of the PC, which
is given15 by Eq. �25�, in a more intuitive way. We study here
the probabilities that the channels are filled with an odd or an
even number of electrons, and use the results for PCs in
canonical 1D rings, to obtain the PCs of 2D or 3D rings.

In the regime −1 /2���1 /2, the PC of a 1D ring with
an odd or with an even number of electrons, see, for ex-
ample, Ref. 7, is given by

Iodd = − 2�
evF

L
, �A1�

Ieven = �sgn��� − 2��
evF

L
. �A2�

These currents have periodicity of unity in �. Consider a ring
of finite width in the grand-canonical ensemble at zero tem-
perature. The contribution of the �q ,s� channel to the PC is
obtained by replacing vF in Eqs. �A1� and �A2� by an effec-
tive Fermi velocity vF�q ,s�=MkF�q ,s�, see Eqs. �8� and �11�.
Here, the exact position where the chemical potential crosses
the energy levels of each channel determines whether the
channel is occupied by an even or an odd number of elec-
trons, see Fig. 4.

In an ensemble of rings with similar but not identical
parameters, the energy levels of a given channel are shifted
�among the rings� due to fluctuations in H and W, see Eq.
�4�. Also, the variation in these levels with � is changing due
to fluctuations in L. Therefore, the exact position of � rela-
tive to the energy levels of a given channel is distributed
randomly in the ensemble. When the levels with E�Eq,s,−n
in Fig. 4 are occupied the channel consists of an even num-
ber of electrons, and when the levels with E�Eq,s,n are oc-
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cupied the channel consists of an odd number. Taking
Eq,s,n���� � the probability that a channel consists of an
odd number of electrons is determined by

Podd =
Eq,s,−n−1��� − Eq,s,n���
Eq,s,−n−1��� − Eq,s,−n���

. �A3�

We assumed here ��0 and n�0. The difference appearing
in the nominator is shown in Fig. 4 as a vertical line. Insert-
ing the eigenenergies, Eq. �4�, in Eq. �A3� �considering n
	1�, yields

Podd = 1 − 2���, Peven = 2��� . �A4�

These probabilities are independent of the channel index.
We calculate the average current in an ensemble of similar

rings using the currents and the probabilities given in Eqs.
�A1�, �A2�, and �A4�, and find

I�q,s� = PoddIodd�q,s� + PevenIeven�q,s� = 0,

Ī = 
q,s

I�q,s� = 0. �A5�

For ����1, the probability to have an odd number of elec-
trons in a channel is much larger than the probability to have
an even number, see Eq. �A4�. However, since �Ieven�	 �Iodd�,
see Eqs. �A1� and �A2�, the average PC is zero. This suggests

very large fluctuations of the current at small flux. The typi-
cal magnitude of I�q ,s� is given by

�I2�q,s��1/2 = �PoddIodd
2 �q,s� + PevenIeven

2 �q,s�

= �2����1 − 2����
evF�q,s�

L
. �A6�

We add the assumption that the contributions of different
channels to the PC are uncorrelated, which, together with Eq.
�A5�, yields

I�q,s�I�q�,s�� = �qq��ss�I
2�q,s� . �A7�

Using Eqs. �A6� and �A7� we obtain the standard deviation
of the current

�I2�1/2 = 	
q,s

I2�q,s�
1/2
= �2����1 − 2����

evF

L
CD.

�A8�

Here

CD = 	
q,s

vF
2�q,s�
vF

2 
1/2

= � 1 1D

�2Nz/3 2D

�Ntot/2 3D,
� �A9�

depends on the dimensionality of the ring. The nonanalytic
�� behavior at ��1 at zero temperature is due to the para-
magnetic contributions, since Peven��, while Ieven� �const
at �→0. Thus, the slope of Eq. �A8� at �=0 diverges.41

Equation �A8� reproduces Eq. �25� obtained for the
uncorrelated-channel regime in the zero-disorder limit for 3D
rings. For one- and two-dimensional rings, Eq. �A8� repro-
duces the results of Refs. 15 and 19. The reason for this
equivalence is that Eq. �18�, which yields Eq. �25�, is equiva-
lent to Eq. �A7�.

For a finite ensemble of Ñ clean rings, whose typical
number of channels is Ntot, the probability that all channels
in all rings will be occupied by an odd number of electrons is
given for small � by

�Podd�ÑNtot →
�ÑNtot�1

1 − 2�ÑNtot. �A10�

This probability becomes arbitrarily close to unity for

�ÑNtot�1. Therefore, such a measurement will produce the
diamagnetic linear response of a clean superconductor �see
Sec. I�. By increasing the flux in a given finite ensemble �or

by increasing ÑNtot�, even channels will appear one by one,
each giving a large paramagnetic contribution, eventually
causing the zero average and anomalously large fluctuations
of the current.

Note that an ensemble of 1D rings, with equal probability
for an odd and for an even number of electrons in a ring,
should exhibit a very large paramagnetic response, see Eqs.
�A1� and �A2�.

-1/2 1/2

E

-n

n

-n-1

�
FIG. 4. The energy levels of a single channel are plotted as a

function of the flux. The consecutive energy levels for a given posi-
tive flux and longitudinal indices −n, n, and −n−1, are marked by
full circles. The bottom level corresponds to n=0. The random
choice of � in the interval �Eq,s,−n��� ,Eq,s,−n−1���� yields an odd
number of occupied levels when ��Eq,s,n��� and an even number
of occupied levels when ��Eq,s,n���. The former regime is marked
by the bold line in the figure. Here, without loss of generality, we
take n�0.
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