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In this work we attempt to elucidate the nature of conductivity in polymers by taking the acid-base doped
polyaniline �PAni� polymer. We evaluate the PAni conductance by using realistic ab initio parameters and
including decoherent processes within the minimal parametrization model of D’Amato-Pastawski. In contrast
to general wisdom, which associates the conducting state with coherent propagation in a periodic polaronic
lattice, we show that decoherence can account for high conductance in the strongly disordered bipolaronic
lattice. Hence, according to our results, there is no need of considering a mix model of “conducting” polaronic
lattice islands separated by “insulating” bipolaronic lattice strands as is usually assumed for PAni. We find that
without dephasing events, even very short strands of bipolaronic lattices are not able to sustain electronic
transport. We also include a discussion of specific mechanisms that should be involved in decoherence rates of
PAni and relate them with Marcus-Hush theory of electron transfer.
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I. INTRODUCTION

In the late 70s, Alan MacDiarmid, Alan Heeger, and
Hideki Shirakawa led the investigations which put conduct-
ing polymers at the center stage by unraveling the transition
from insulator to metal upon doping of polyacetilene.1 The
following decades, these materials encountered numerous
technological applications.2,3 The novelty of polyacetilene’s
physical properties, e.g., transport through solitonic
excitations,4 made it the most intensively studied conductive
polymer. However, the interest then shifted to polyanilines5

and related compounds because they are inexpensive, stable,
and easy to made.

In spite of its long history, polyaniline �PAni� became a
new paradigm for polymeric conductors as it shows a dra-
matic increase in conductivity either by acidic treatment or
by electrochemical oxidation. Nevertheless, the physical ba-
sis of its transport mechanism and of the insulator-metal
transition proved more elusive. Starting from a semiconduct-
ing PAni in an emeraldine base form �Fig. 1�a��, protonation
leads to an internal redox reaction that converts it into a
metal �emeraldine salt�. In order to account for the highly
conducting nature of this doped polymer there are two well-
established models that imply two different lattice arrange-
ments. These are associated to the appearance of two pos-
sible charged defects upon protonation. On one hand, the
polaronic lattice �PL�, which describes a lattice of nitrogen-
bridged benzene rings that becomes fully periodic in the case
of 100% of protonation. Even when one of every two nitro-
gens is in the form N+ supporting a polaron, the correspond-
ing pz electrons form a collective band of Bloch extended
states which, being half filled, behaves as a metal �Fig. 1�c��.
On the other hand, in a crystalline bipolaronic lattice �BL�
the protonated quinoid units �NH+=Q=NH+� are bridged by
three benzene rings. The electron tunneling between neigh-
bor NH+ units, leads to a bonding basic unit that justifies a
bipolaronic description. Natural disorder appears through the

fluctuation of the bridge length �Fig. 1�b��. Hence while fur-
ther tunneling between units could be possible, within the
standard wisdom, disorder ensures localized eigenstates that
prevent propagation.6 Galvão et al.7 concluded that disorder
should be an essential ingredient in these systems. They
made molecular orbitals calculations of the electronic struc-
ture of PAni chains which showed that disorder pulls the
Fermi energy down through the localized states of the va-
lence band. Later on, Wu and Phillips8 agreed with Galvão in
the role of the protonation, further showing that induced dis-
order can be identified with a random dimer model
�RDM�.9,10 By adopting Landauer’s view that “conductance
is transmission,”11 the current motto of molecular
electronics,12 it was proved that the short-range order of the
RDM produces a set of delocalized or propagating
states.9,10,13 This opened the possibility that Fermi energy
might lie in a delocalized region. However, Farchioni et al.,14

by using an ab initio parametrization, made a detailed tight-
binding based study of PAni-HCl comparing the BL and PL
models.15 They showed that even when the BL model exhib-

FIG. 1. Three different forms of PAni: �a� emeraldine base and
two lattice models after a doping process, �b� bipolaron, and �c�
polaron.
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its extended states, its Fermi energy is far from the high
transmission regions. These ideas seemed to support the PL
as the only PAni emeraldine salt capable of metallic behav-
ior. Indeed, the observation of Pauli susceptibility on con-
ducting samples was attributed to extended states in a po-
laronic lattice.16 However, first-principles energy stability
calculations point into the opposite direction. A BL is by far
the more stable energy configuration when compared to a PL
�Ref. 17� or its variants.18 A picture that could unify these
conclusions is that of segregated metallic �PL� regions and
insulating �BL� domains. Transport would be mediated by
hopping between metallic fibers in the polymer backbone.19

However, it is not clear that such structures could give a
lower free energy than a pure BL one. Besides, in this model
disordered islands would constitute the conductance bottle-
neck for which a microscopic description is lacking. Further
emphasizing the role of BL, it was recently suggested that
susceptibility experiments could not be used to rule out the
bipolaronic structure from conducting samples. This is be-
cause an internal chemical redox equilibrium between bipo-
laronic structures and a number of polaronic defects with
Curie susceptibility, should manifest as an overall suscepti-
bility whose temperature dependence would be indistin-
guishable from the Pauli paramagnetism.20 In summary, the
early works associate the conducting state of PAni with pe-
riodic order because the existence of extended Bloch eigen-
states is a condition for coherent propagation.

In order to account for the surprising frequency depen-
dence of the dielectric constant and of the conductivity ob-
served on conjugated polymers,21 Prigodin and Epstein22

suggested a new mechanism of charge transport. They ar-
gued that the metallic state of polymers such as PAni is sus-
tained by a granular picture of transport where metallic is-
lands, separated by amorphous material, interact through
intrachain resonant tunneling events in a quasi-one-
dimensional �1D� variable range hopping theory. However,
after an energy scale analysis, Martens et al.23,24 arrived to
the conclusion that intrachain charge carrier delocalization
should extend over several grains. In consequence, there is
some critical mechanism that governs the formation of truly
delocalized states. They propose a quasi-1D model of weakly
coupled disordered chains with phase-breaking events that
are modeled in the Landauer-Büttiker framework. In this
case the 1D Schrödinger wave-function picture for a single
chain remains essentially correct with the additions of a finite
lifetime, i.e., decoherence, due to dephasing events. Their
source can be multiple, ranging from electron-phonon
coupling25,26 to through-space electron-electron interactions
between charge fluctuations,27 or even a weak interchain
coupling.28 Increasing the interchain coupling eventually will
give rise to a transition from a quasi-1D to a fully three-
dimensional behavior as demonstrated by numerical
simulations.29,30 However, for conjugated polymers such as
PAni, the interchain charge transfer is weak and a 1D model
that includes decoherence should be a good approximation.
Within this framework, Martens et al. invoke dimensional
arguments that explain the anomalous frequency dependence
of the dielectric constant and conductivity of several poly-
mers. However, their conclusions are based on estimations of
the relevant system quantities.

In this work we attempt to elucidate in detail the nature of
conductivity of polymers by taking the PAni bipolaron lattice
structure as the case study. For that purpose, we use realistic
ab initio based tight-binding parameters which can be easily
reduced31 to the minimal parametrization of the D’Amato-
Pastawski �DP� model.32 This provides a simple solution to
the otherwise complex Keldysh formulation of transport.33,34

Indeed, this strategy was applied before to PAni by Maschke
et al. and Schreiber et al.35–37 However, they focused on
already conducting PAni polaronic chains that are affected
by decoherence and/or interchain coupling. This also sums to
the recent efforts in including decoherent processes in mo-
lecular electronics.38–40

At this point a comment on the meaning of decoherence
seems in order since nowadays this term is mostly used in
connection with quantum information theory, where it de-
notes the �full or partial� collapse of a pure quantum state
due to usually unspecified interactions with the environment.
This might seem different from the usual language of elec-
tronic transport in the solid state. There, one is used to deal
with specific interactions, such as those with phonons, mag-
netic impurities or other electrons, which may involve tran-
sitions with given selection rules, e.g., �k�→ �k+q�. These
transition probabilities are evaluated within a Fermi golden
rule �FGR�. In this approximation, the coupling with the ex-
tra degrees of freedom, the environment, prevents the inter-
ference among the component remaining in �k� with that in
�k+q�. Thus, with some probability the environment “mea-
sures” an electron in the state �k� and “reinjects” it incoher-
ently in �k+q�. These processes, which usually involve some
inelasticity, are inherently different from the elastic scatter-
ing with imperfections and impurities that produce the inter-
ferences leading to localization.6 Quite often one realizes
that, regardless of the specific selection rule, the relevant role
of interactions is just to provide for decoherence, a mecha-
nism that competes with the coherent scattering that results
in localization. This is precisely the spirit of the “local pho-
non” bath or the fictitious voltage probes that lead to the
imaginary site energies introduced in the DP model.33,34

Thus, the idea is that decoherence from the system-
environment interaction provides a knob that sweeps trans-
port between a Mott’s variable range hopping regime and a
typical 1D metal.34,41 Transport in conducting PAni should
occur somewhere at this crossover.

We start in Sec. II by recalling the Landauer formulation
for the conductance and introducing the DP model for deco-
herent transport. In Sec. III we describe the application of
this model to the BL structure of PAni and we show in Sec.
IV the effective transmission results and associated currents
in the nonlinear regime. In Sec. V we present the main con-
clusion: at room-temperature decoherence can account for
high conductance in the strongly disordered bipolaronic lat-
tice. The mechanisms that can contribute to decoherence are
discussed in Appendix. There, we asses the possible role of
interchain coupling and various forms of electron-phonon
interactions. Moreover, a detailed treatment of these specific
models allows us to enlight their differences and similarities
with the well-known Marcus-Hush theory42 for vibration-
assisted electron transfer.
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II. EFFECT OF DECOHERENCE IN THE CONDUCTANCE

The Landauer formulation requires to calculate the trans-
mission of the system. Assuming that the sample’s Hamil-
tonian is known one must incorporate explicitly the leads
connecting to the electrodes. Besides, to take account of de-
coherent interactions with an environment DP included sev-
eral phase-breaking fictitious probes.43 Thus, an original mo-
lecular orbital Hamiltonian with N orbitals,

ĤS = �
i=1

N �Eiĉi
+ĉi + �

j�i

N

�Vi,jĉi
+ĉj + Vj,iĉ j

+ĉi�	 �1�

becomes an effective Hamiltonian that incorporates the leads
and the interactions with the environment

Ĥeff. = �ĤS − i�Î� + �̂L + �̂R + �̂�, �2�

where �̂L=�Lĉ1
+ĉ1 and �̂R=�RĉN

+ ĉN are, respectively, the
self-energies operators describing the escape to the left and
the right leads obtained through a Dyson equation,

�L�R� =
V2

� − �E0 − i�� − �L�R�
�3�

=�L�R���� − i�L�R���� , �4�

where �L�R� results proportional to the escape rate, and hence
to the Fermi velocity, at the L�R� lead. We include the effects
of the incoherent processes in the Hamiltonian, e.g.,
electron-phonon or through space electron-electron, simply
through an imaginary correction to selected site eigenener-
gies

�̂� = �
l

− i��ĉl
+ĉl. �5�

Hence, �� is an energy uncertainty associated to a decay rate
of the local state at site l described by the FGR. We drop any

possible dependence on l simplifying the description. Since Î
is the identity operator, � can be taken as an infinitesimal
imaginary part of the local energy, Ei→Ei−i�, resulting in a
decay to the environment in the same sense as the �’s above.

Given the effective Hamiltonian we have the retarded and
advanced Green’s functions in terms of the real energy vari-
able �

GR��� = ��I − Heff.�−1 �6�

=GA†��� , �7�

where Heff. may be nonlinear in � and non-Hermitian for �
�0. The imaginary part of the Green’s function enable to
evaluate the local density of states at site i as

Ni��� = −
1

	
lim

�→0+
Im Gi,i

R ��� . �8�

In a closed system, this is also obtained diagonalizing the
Hamiltonian.

According to the optical theorem, the local density of
states,

Nj��� =
1

	�
=L,R,�
�
j���

� �
i=1

sites

N

�
�,
=L,R,�

processes

�
j���Gj,i
R �����i���Gi,j

A ��� �9�

can be cast as a flux between the asymptotic states described
by a generalized Fisher-Lee formula. We adopt the notation
�L
�L1, �R
�RN , ��
��i, to emphasize that each site
can decay through different processes, e.g., � ,
�L ,R ,��
are the possible decay processes taking place at sites
i , j�1, . . . ,N�. With this notation the generalized transmis-
sion probability results

T�i,
j��� = 2�
j���Gj,i
R ���2��i���Gi,j

A ��� . �10�

Within the DP model current conservation is imposed at each
site and energy �. This requires an incoherent reinjection of
every electron that has decayed through the ��i. This leads to
the evaluation of the kernel W−1, describing incoherent den-
sity propagation, where43

Wi,j = ��
k=1

N

T�k,�i	�i,j + T�i,�j�1 − �i,j�� . �11�

From this we obtain the effective transmission through the
sample

T̃RL = TRN,L1 + �
i,j=1

N

TRN,�i�W−1�i,jT�j,L1. �12�

The right-hand side of Eq. �12� contains two contributions:
the first one represents electrons that propagate coherently
through the sample, the second term contains the incoherent
contributions due to electrons that suffer their first collision
at site i and their last collision at site j.

Since, T̃��� piles up all vertical processes into the energy
�, one can finally approximate the net current through the
sample by

I =
2e

h
� T̃RL����fL��� − fR����d� �13�

�
2e2

h
T̃RL��F�V 
 GV , �14�

where fR�L� is the Fermi distribution function at the right
�left� lead and the factor 2 accounts for spin degeneracy.
Here, we assumed that an electron with energy � coming
from the left lead arrives to the right lead with the same
energy, which is only true for very small ��. The second line
is the linear approximation for infinitesimal voltage V and
temperature, where G accounts for conductance.

III. PANI MODEL

We consider a fully protonated BL, which we expect to
correspond to the highly conducting emeraldine salt. By
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decimation of the benzenoid rings as it is shown in Fig. 2, we
reduce the PAni emeraldine salt chain to one-dimensional
effective system.31 Each ring is replaced by the proper renor-
malized sites at the place of the para-carbon atoms.

The sample Hamiltonian results

ĤS = �
j=1

N

�Ejĉj
+ĉj + Vjĉj

+ĉj+1 + Vjĉj+1
+ ĉj� . �15�

When j=3s+1 with s positive integer, Ej is the nitrogen
pz-orbital energy and Vj is the 	 binding energy �hopping�
between the nitrogen and the para-C pz orbitals. When j
=3s and j=3s−1 we have the renormalized parameters for
para-C pz orbitals

Vj =
VooVpo

2

�� − Eo��� − Eo −
Voo

2

� − Eo
	 �16�

and

Ej = Ep +
Vpo

2

� − Eo −
Voo

2

� − Eo

, �17�

where Eo and Ep are bare site energies for electrons in the pz
orbitals of ortho-C and para-C, respectively; Voo is the hop-
ping between ortho-C and Vpo is the hopping between a
para-C and ortho-C. In this work we use the tight-binding
parametrization of Vignolo et al.15 for the bipolaron lattice
model of base-emeraldine doped with HCl.

We will consider decoherent sources on effective electron
pz-orbitals sites by including a constant imaginary correction
to the site energy as in Eq. �5�. This is the most convenient
choice for computational purposes. A first-principles calcula-
tion of this imaginary correction is beyond the scope of this
work. Its complexity lying on the multiple effects that must
be considered. In the Appendix we discuss in certain detail
two mechanisms: interchain tunneling and the effect of tor-
sional modes on the crucial 	 bonds. However, it is enough
to resort to dimensional arguments based on spontaneous
symmetry breaking of the quantum coherent state.44 The rea-
soning takes into account that quantum bosonic modes with

energies �kBT should be occupied by many quanta, indicat-
ing that �� should be on the order of kBT.24 In accordance
with this general framework, Rebentrost et al.45 obtain a
comparable estimation for �� for excitons in photosynthetic
complexes interacting with a phonon bath. Indeed, experi-
ments on DNA strands fits �� of this order using the DP

model.46 Thus, we fix an effective �̃� on each effective site
such that the energy uncertainty per orbital site is ��=kBT.
We will see in the next section that small variations in the
precise value of �� have little impact on conductance.

Right and left leads are described by Eq. �3� choosing
E0=0 and V=5 eV to observe the appropriate bandwidth of
interest �−10 eV, 10 eV�. Furthermore, we calculated the
Fermi energy by diagonalizing the exact tight-binding
Hamiltonian for different configurations. For all possible
chain arrangements, the Fermi level is nearly the same,
around the average.

IV. NUMERICAL RESULTS

We have performed a detailed analysis of the conductance
properties of the BL model of polyaniline emeraldine salt.
Due to the fact that, according to experimental data, PAni
chains seem to have an average length of 400 rings,47 we
have taken that number in our numerical calculations. How-
ever, it should be noted that our results do not depend criti-
cally on this parameter. We first calculated the coherent
transmission probability as a function of energy for a set of
chain configurations drawn from the representative en-
semble. Results are in full agreement with the those of Far-
chioni et al.14,15,48 and evidence the mobility edges induced
by correlated disorder in this 1D system.9 While there is an
appreciable density of states at the Fermi energy, it corre-
sponds to localized states. Indeed, according to Fig. 3�a�, the
Fermi energy is far away from the extended state region.
Figure 3�b� shows the drastic differences in conductance
once that decoherent processes are taken into account. Con-
ductance at the Fermi energy now becomes appreciable for
any configuration. These results show that metallic transport
is possible within a purely BL model through an
environment-assisted transport.45 Even within a model of
perfectly conducting PL islands bridged by BL strands, the
calculated chains can be taken as representative of such
transport bottleneck. One expects that small differences in
quinoid ring concentrations would appear due to natural fluc-
tuations on the oxidation degree previous to doping. In Fig. 4
we show the resultant conductance for various quinoid con-
centrations and found no significant changes in transport.

We also studied the behavior of total conductance as a
function of decoherence rate. In accordance with recent
works,45,49 three regimes can be appreciated. Starting from
T=0 K, as the temperature rises dephasing events become
more successful in the destruction of localization caused by
coherent interference at the Fermi energy, rising the total
conductance of the system. In this regime, transport rate in-
creases as the energy uncertainty associated with temperature
is increased. However, there is a �� value for which the
conductance is maximal. If the temperature is increased fur-
ther, the associated energy uncertainty becomes larger than

FIG. 2. �Color online� Diagrammatic representation of ben-
zenoid rings decimated to obtain equivalent renormalized units in
one dimension. Incoherent channels of D’Amato-Pastawski model
also shown.
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the terms of the system Hamiltonian �characteristic hopping
and site energies�, and the decoherent process now are able
to suppress transport. This is commonly known in the litera-
ture as the quantum Zeno effect. In Fig. 5 we show our
results for the dependence of total conductance with ��, in
which the three regimes above described are clearly seen.
The thermal energy, in this case, lies on an area of great

influence on the total conductance of this system, and there-
fore decoherent processes should not be neglected. At room
temperatures, the PAni BL is safely placed in the range of
thermally assisted transport, and it is clear from the figure
that small variations in the exact value of �� do not alter the
outcome significantly �note the log-log scale�.

We studied the dependence of conductance on the chain
length. The results are shown in Fig. 6. With the exception of
some fluctuations at short lengths, conductance at T
=300 K decreases as the reciprocal of the chain length, as
expected for an Ohmic system. The fitting gives G / �2e2 /h�
=1 / �20,6NR�, where NR is the number of rings of the chain.
The log scale in the inset figure emphasizes the drastic dif-
ference between the full conductance and that restricted to
coherent tunneling processes. The coherent conductance de-
cays exponentially as expected for a one-dimensional disor-
dered system.50 In our case the localization length is small,
G / �2e2 /h�=22�103e−0.53NR, which implies that even for
very short disordered polymer chains, transport does not take
place unless decoherence processes are involved. Indeed,
conductance decays a factor 1/3 for every two rings. There-
fore, in a model of islands as that mentioned in Sec. I, de-
struction of localization by decoherence would have a fun-

FIG. 3. �Color online� Conductance for both: �a� T=0 K and �b�
T=300 K according to DP model for a 400 rings long PAni-HCl
chain. We also show the T=0 K Density of state for comparison
purposes.

FIG. 4. �Color online� Fluctuations in total conductance at T
=300 K in the main peak around the Fermi energy with the fraction
of quinoid rings along the chain.

FIG. 5. Conductance for a 400 rings long PAni-HCl chain as a
function of ��. The value for �� at T=300 K also shown in dash
line.

FIG. 6. �Color online� Total conductance at T=300 K as a func-
tion of the chain large. As an inset, it is shown the scale difference
between coherent and total conductance.
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damental role. However, our results go further and evidence
that even a fully BL PAni would sustain strong electronic
transport.

Figure 7 shows the net current through 50 random chain
configurations of bipolaronic PAni. The current was evalu-
ated by using Eq. �13� for symmetric voltages at room tem-
perature. As can be seen, the behavior of different chain con-
figurations is very similar and close to the linear regime. All
chain configurations exhibit an appreciable conductance with
an average value of 7 ,7�10−9 �−1. Taking the PAni-HCl
density as 1 ,329 g /cm3 �Ref. 51� we get a conductivity of
�=81 �−1 cm−1. This result is slightly higher than the ex-
perimental ones, 1 �−1 cm−1���20 �−1 cm−1 �Ref. 52�
which is reasonable because in the calculation of the conduc-
tivity we are considering the conductance of the ideal case of
chains directly connected to the leads.

V. CONCLUDING REMARKS

In this work we have discussed electron conductance in a
doped PAni. We show that the PAni ground state configura-
tion, the BL, has high conductance even in presence of dis-
order provided that decoherent processes are included. This
is done without leaving the convenient a là Landauer ap-
proach by using the generalization introduced by D’Amato
and Pastawski32 where an effective transmission accounts for
decoherent processes. While our formulation accepts further
improvements, it provides an answer from the robust de-
scription of Keldysh formalism within a minimal parametri-
zation. Roughly speaking, decoherent processes split each
chain into a series of portions whose length is given by the
decoherence length L�.53 These define the elemental conduc-
tivities from which the sample’s Ohmic transport builds on.

For many years, it has been assumed that conduction of
polyanilines is inseparably linked to the existence of a po-
laronic crystalline structure. However, although our main in-
tention is qualitative, we showed that decoherent processes
are able to give appreciable metallic conduction in the more
entropically favorable bipolaronic lattice. For this system,
the uncertainty of energy associated with thermal processes
cannot be neglected in the study of conductance since kBT
falls in a region in which the interplay between incoherent

and coherent dynamics results in an increased efficiency of
electron transport. One might then speculate that only when
the thermal energy scale becomes smaller than the Coulomb
energy of the localized states, one would actually start to
notice a qualitative difference with an ideal 1D metal.

The robustness of the results obtained is evident by noting
that they neither depend on variations in the oxidation degree
of PAni prior to the doping process, nor on the particular
arrangement of quinoid rings along the chain, or on the exact
value of the energy uncertainty associated to ��. This justi-
fies the fact that good conducting properties do not depend
much on the purity of the emeraldine base so that small
displacements toward the leucoemeraldine or pernigraniline
are acceptable. The evaluation presented in Appendix show
that, even when interchain coupling can contribute apprecia-
bly to conductivity, the coupling between the pz bonds with
torsional degrees of freedom is strong enough to provide
almost all the required decoherence. This hypothesis seems
consistent with the experiments that show that adding resi-
dues that restrict the torsional motion would also diminish
the conductivity as compared with the unmodified bipo-
laronic lattice.54

We do not attempt to rule out the presence of phase seg-
regation into metallic polaronic islands and “insulating” bi-
polaronic domains. However, these last strands constitute the
bottleneck where thermal decoherent processes activate the
conductivity. Moreover, our results go further ahead and evi-
dence that bipolaronic chains can sustain electronic transport
by themselves. In fact, based in our simulations we can es-
timate bulk conductivity for these chains and arrive to a re-
markably good value as compared with experimental data.
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APPENDIX

In this section we attempt to elucidate the meaning of ��

by presenting two physically meaningful sources of decoher-
ence which must be present in our system: interchain cou-
pling and a simple but general model of electron-phonon
interaction. These presentation also allows to compare the
similarities and differences between the decoherence rate and
the electron-transfer rate in the Marcus-Hush model.

1. Interchain hopping

We start considering the effect of VX, an interchain hop-
ping at site j. Any neighboring chain can act as an “environ-
ment” for an electron at this site. This is because an electron

FIG. 7. Average current �black line� and currents for 50 different
configurations �shadow lines� are shown.
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jumping into a side chain �see Fig. 8� has two options: �1� to
escape toward this alternative propagation channel and never
return. This is obviously decoherent as it cannot interfere any
longer with the main pathway.55,56 �2� To return after having
an ergodic walk on the side chain. In this case it is just the
excessive amount of interferences and antiresonances in-
volved that leads to a decoherent description.55 Each node in
the plot corresponds to a multichain electronic state. Notice
that the interaction structure looks the same as in the local
phonon picture discussed in Refs. 25 and 26. Using Eq. �3�,
we have for self-energy � j

X describing this coupling

� j
X =

�VX�2

� − �Ej − i�� − � j
= � VX

Vj,j+1
	2

� j , �A1�

where Ej, Vj,j+1 are site and hopping strength within the
chain. Thus the interchain rate can be expressed as ��

X

= �
VX

Vj,j+1
�2� j where � j and the imaginary part of total self-

energies at site j. We may evaluate an estimate for the typical
� j by disregarding localization and considering that the side
chain is an infinite PAni strand and using the representative

values of Ē�−0.3 eV for and site energy and V̄�−3.6 eV
for intrachain 	 bonds. Thus,

� j
X = �VX

V̄
	2�V̄2 − �  − Ē

2
	2

. �A2�

We might wonder which range of values would be required
from VX to yield an energy uncertainty of the order �X

�kBTR where kBTR stands for room-temperature energy. The

use of the discussed values yields VX� V̄ /12. While we can-
not ensure that this is the case, in every site of the PAni
chain, uncertainty energy associated with interchain coupling
is not too far below thermal energy and, therefore, it is not
negligible. Indeed, there could be sites in which interchain
couplings are stronger, and they would contribute substan-
tially to the decay of local states.

2. Torsional phonon coupling

Certainly, vibrational degrees of motion are natural
sources of decoherence. We analyze them by introducing a
simple model for electron-phonon couplings that enables the
evaluation of the corresponding contribution to ��. From the
geometrical inspection of the molecular structure, it is obvi-

ous that torsional strains on benzenoid rings disrupt 	 bonds
between pz orbitals of para-carbons and nitrogens. Their
overlap depends on the angle � between the orbital axes. As
a result, the corrected hopping energies can be written as V
=V0 cos����V0�1−�2 /2�. The natural frequency �� of this
torsional motion determine the vibrational energy of ben-
zenoid rings. A self-consistent description requires that the
restoring force I��

2�, written in terms of the moment of in-
ertia I of the benzenoid ring, should coincide with the net
change in the electronic energy described by the tight-
binding model. In this case it yields

V0 = I��
2

leading to ����2�10−2 eV�kBTR.

In terms of the second quantization operators b̂

=�I�� /2���+i�̇ /��� and b̂+=�I�� /2���− i�̇ /���� we get
the perturbation given by the coupling Hamiltonian

Ĥel−ph = −
1

4
����b̂+ + b̂�2�� j�,j + � j�,j−1�

��
j�

�ĉj�
+ ĉj�+1 + ĉj�+1

+ ĉj�� �A3�

A Fock-space representation of this interaction Hamil-
tonian is represented in Fig. 9. Notice the similarities and
differences with the representation of the linear electron-
phonon interaction discussed in Refs. 25 and 26 and the in-
terchain coupling. In the present case, the effect of the per-
turbation on the state on a local site j can evaluated with the
FGR

1

� j��
= �

n

P�n�2	

�
�
j�,n�

��j,n�Ĥel−ph�j�,n���2�
���� + n���� − �Ej� + n������ �A4�

where �j ,n�= 1
�n!

�b̂+�nĉj
+ �� � here �� � is the electron and

phonon vacuum and n label the number of vibrational quan-
tums whose thermal probability is P�n�. In the case of inter-
est, we consider electrons at the Fermi level, EF. Thus, after

FIG. 8. �Color online� Interchain hopping at site j. States are
written in Dirac notation including quantum numbers s which label
different PAni chains. This representation illustrates the similarity
with Fock-space representation of the electron-phonon system.

FIG. 9. �Color online� Fock-space representation of state �j ,n�
and its surroundings. The middle row represents electronic states
with n phonons in the PAni chain. Lower and upper rows represent
the same chain but with different numbers of phonons. Black dotted
lines are electron-phonon couplings.
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energy integration and using the thermal average ��n��
 n̄
=�P�n�n for the expectation number of n, the decay rate
becomes

1

� j
=

	

16�
�����2��n̄2 + 4n̄ + 2�N�EF − 2����

+ 2n̄2N�EF + 2���� + �8n̄2 + 8n̄ + 1�N�EF�� . �A5�

We must highlight that the quadratic dependence on dis-
placement in the electron-phonon interaction is the respon-
sible for the selection rules that can be appreciated in the last
equation. Electrons are allowed to interact with environment
only by absorbing or emitting phonon pairs. This is shown in
Fig. 9. However, without much loss of generality, we assume
that kBT����, so it is possible to approximate EF

�EF�2��� and n̄�
kBT

���
. As a result,

1

� j
=

	

8�
�����2N�EF�12� kBT

���
	2

+ 12� kBT

���
	 + 3� .

�A6�

The evaluation of the corresponding �� becomes trivial in
this high-temperature regime,

�� =
�

2

1

� j
=

3	

4
N�EF��kBT�2. �A7�

Here, it is crucial to notice that for highly localized states
the imaginary self-energy results mainly from the decoherent
process described above. Thus

N�� �
1

	

��

� − E0�2 + ��
2 �A8�

�1/	��. �A9�

Therefore, from Eq. �A7�,

�� � kBT . �A10�

Thus, any low-frequency modes yielding a quadratic de-
pendence of the electronic energy on the displacement,
which can be more general than expected, leads to an impor-
tant consequence: for localized regime, it would tend to pro-
vide an energy uncertainty �decoherence� on the order of the
thermal energy. A similar behavior remains valid if one re-
laxes the localization requirement to that of a sharply peaked
resonance. A simple example is a sharp resonance in a one
dimensional system57 in which the local density of states
could be written

N�� = − Im� 1

	

1

 − Ej + i�� − ��� − i�bulk�
� , �A11�

where �bulk represent the escape to the rest of the tight-
binding chain and � gives the energy shift due the presence
of the other sites. For  within the band edges, this equation
results

N�� =
1

	��

1 + 2��bulk/��

�  − Ej − 2��

��
	2

+ �1 + 2��bulk/���2

,

�A12�

which in the limit of large �� compared with ��bulk, gives
N���1 /	��. This limit is achieved at room temperature
whenever ��1.

3. Comparison to Marcus-Hush theory

In the previous section we deemed with the physically
relevant situation of a quadratic interaction with the vibra-
tional coordinate. This is not conceptually different with the
standard linear electron-phonon coupling used to describe
the Franck-Condon effect58 and the electron-transfer
process.59 All these physical processes are contained in a
simple Hamiltonian

Ĥ = �
j=A,B

Ejĉj
+ĉj + ��0�b̂+b̂ +

1

2
	 − Vg�b̂+ + b̂�ĉB

+ĉB

+ VAB�ĉA
+ĉB + ĉB

+ĉA� �A13�

whose interactions in the Fock space are represented in Fig.
10. The electron transfer problem is best represented resort-
ing to the polaronic transformation which would diagonalize
the Hamiltonian but for the tunneling described by VAB. The
essence of an estimation of the electron transfer rate is a
FGR evaluation of the tunneling between the electronic
states A and B in the regime of weak-coupling nonadiabatic
limit ��0�kBT , �VAB�� �Vg�.

kA→B =
1

�A→B
=

2	

�
�VAB�2�F��E�� , �A14�

where �E=EA− ẼB, ẼB=EB−Vg
2 /��0, and F��E� is a density

of directly connected states denominated Franck-Condon
factor. Thus it satisfies

�
−�

�

F��E�d�E = 1. �A15�

F��E� is estimated resorting to a thermal average and fol-
lowing the Marcus original treatment which interprets the
transition probability according to a Landau-Zener formula.
Thus

F��E� =
1

�4	ErkBT
exp−

��E − Er�2

4ErkBT
� , �A16�

where the reorganization energy Er is indicated in the plot.
In contrast to this treatment, in a decoherence problem

one focus on estimating how the electron-phonon interaction
degrades the standard coherent Rabi oscillation.60 This de-
scribes an electron jumping forth and back between states B
and A and attenuates within a decoherence time ��. Similarly
to Eq. �3.14� of Ref. 33 a FGR evaluation gives
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1

��

=
2	

�
�Vg�2���n + 1�N�EB + ��0� + nN�EB − ��0���

�
2	

�
�Vg�2 kBT

��0
2N�EB�� . �A17�

where �� �� stands for thermal average. The approximation
involves a high-temperature limit and again, the square
brackets indicate a density of directly connected states. As in
previous section, the assumption that phonon induced elec-
tron energy uncertainty leads to the self-consistent condition
of Eq. �A9�

�� =
�

2�B
= �Vg��2	kBT

��0
�A18�

which is valid provided that ��0�kBT , �Vg��VAB. Notice

that in an ab initio parametrization of the tight-binding
Hamiltonian, the coupling constant results from evaluating
the dependence of the parameter on the appropriate general-
ized coordinate, e.g., Vg��EB /��.

Thus, in both problems, electron transfer in presence of a
some reorganization energy and electron transport with de-
coherence from a phonon bath, the Hamiltonian is the same.
However, since the calculated observables are different, the
term used as perturbation in the FGR differ. In the first case
the perturbation is the electron jump VAB while in the deco-
herent situation the perturbation is the electron-phonon cou-
pling constant Vg.
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