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Dynamics of quantized vortex lines in a superfluid feature symmetries associated with the geometric char-
acter of the complex-valued field, w�z�=x�z�+ iy�z�, describing the instant shape of the line. Along with a
natural set of Noether’s constants of motion, which—apart from their rather specific expressions in terms of
w�z�—are nothing but components of the total linear and angular momenta of the fluid, the geometric sym-
metry brings about crucial consequences for kinetics of distortion waves on the vortex lines, the Kelvin waves.
It is the geometric symmetry that renders Kelvin-wave cascade local in the wave-number space. Similar
considerations apply to other systems with purely geometric degrees of freedom.
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Throughout various fields of physics, symmetries form
the very basis of the analytical approach to problems. Be-
sides immediately providing one with the corresponding in-
tegrals of motion, in many cases symmetries allow to avoid
lengthy calculations, a famous example being the selection
rules in atomic physics. For a wide class of systems de-
scribed in terms of purely geometrical fields of
displacements—such as liquid crystals, waves on strings,
surfaces, and membranes—geometrical symmetries affect
dynamics in a special way. Quantized vortices in superfluids
are a typical example of such systems.

Superfluid turbulence �ST� is a random or polarized tangle
of quantized vortex lines.1,2 Fundamentally interesting and
especially nontrivial in terms of relaxation dynamics is the
case of zero temperature intensively studied during last one
and a half decade3–17 with impressive recent experimental
achievements.18–23 It has been recognized that Kelvin waves
�kelvons�, distortion waves on quantized vortex filaments in
a �super� fluid, play a crucial role in the ST decay at T=0 by
providing the only mechanism of energy transfer3,9,10 to
shorter length scales, where the dissipation due to phonon
emission becomes efficient.4,12 Recently, physics of the
Kelvin-wave cascade has become one of the central topics in
ST research.11,13–16,24,25

In the theory of the Kelvin-wave cascade �see Ref. 17 and
references therein�, geometrical symmetries impose funda-
mental constraints on kelvon kinetics. They are usually dis-
cussed in connection with the kinematics of kelvon collisions
dictating the absence of inelastic kelvon scattering processes
and the fact that the leading kinetic channel is the three-
kelvon scattering. As important as kinematics, however, is
the question of locality �or its absence� of the kelvon colli-
sions in the wave-number space. The locality implies that the
main contribution to energy exchange at a given wave-
number scale is mostly due to scattering of kelvons with
wave numbers of the same order. If the locality is estab-
lished, the cascade spectrum immediately follows from kine-
matics and a basic analysis of dimensions.10 However, recent
Ref. 24 claimed kelvon kinetics to be essentially nonlocal,
declaring inadequacy of a wealth of theoretical results based
on the locality; an alternative nonlocal theory of the Kelvin-
wave cascade was then put forward in Ref. 25.

In this Rapid Communication, we explore additional sym-
metries of vortex dynamics that follow from the geometric
nature of the field describing the position of the vortex line.
We show that these symmetries impose further constraints on
kinetics; in particular, with respect to coupling between
waves of drastically different length scales. It is crucially due
to these symmetries that the generic nonlocal scenario of
Refs. 24 and 25 fails, yielding to the specific �and thus non-
trivial� local one. Our approach applies to geometric fields of
an arbitrary nature.

We start with a mathematical formulation of the problem
of Kelvin-wave dynamics on a single-vortex line in the limit
of zero temperature, when the normal component is negli-
gible. In this case, a convenient dynamical variable is the
complex geometrical field w�z , t�=x�z , t�+ iy�z , t�, param-
etrized by the time t and the z coordinate of the Cartesian-
coordinate system such that x�z0 , t� and y�z0 , t� are the coor-
dinates of the vortex-line crossing with the plane z=z0. In
terms of w�z , t�, the equations of motion take on a Hamil-
tonian form3

iẇ =
�H

�w�
, �1�

H = ��/4��� �1 + Re w���z1�w��z2��dz1dz2

��z1 − z2�2 + �w�z1� − w�z2��2
, �2�

where � is the fluid-specific quantum of circulation and the
integration is along the whole vortex line. The integral in the
right-hand side of Eq. �2� is singular at �z1−z2�→0 and re-
quires a regularization procedure at distances on the order of
the vortex core radius a0 described in detail in Ref. 17.
Clearly, Eq. �2� is well defined only in the case when the
function w�z� is single valued, which is the case for the prob-
lem of Kelvin-wave cascade where the amplitudes of distor-
tions get progressively smaller down the length scales,10 pro-
vided the z axis is chosen along the direction of the
unperturbed vortex line. The condition of smallness of
Kelvin-wave amplitudes relative to the wavelengths is given
by the small parameter ��z1 ,z2�= �w�z1�−w�z2�� / �z1−z2��1
allowing one to use the language of normal modes, kelvons.

PHYSICAL REVIEW B 82, 140510�R� �2010�

RAPID COMMUNICATIONS

1098-0121/2010/82�14�/140510�4� ©2010 The American Physical Society140510-1

http://dx.doi.org/10.1103/PhysRevB.82.140510


The kelvon dispersion follows from the standard �bi-� linear-
ization of the Hamiltonian �2� with respect to ��1 and the
Fourier transform w�z�=L−1/2�wk exp�ikz�, L being the
linear-system size in z direction. Correspondingly, the higher
order nonlinear terms are regarded as kelvon scattering �for a
detailed review, see Ref. 17�.

Let us now turn to implications of the six geometrical
symmetries. The translational symmetry along the z axis is
responsible for the conservation of the total momentum of
kelvons �equal to the kelvon contribution to the z component
of the total momentum of the liquid�

P �� dzw�w�. �3�

The symmetry with respect to the rotations around the z axis,
which in our representation is nothing but the global U�1�
symmetry, implies the conservation of the total number of
kelvons

N �� dz�w�2, �4�

which is proportional �with the negative sign� to the kelvon
contribution to the z component of the angular momentum.
Despite their geometric origin, the above two symmetries are
quite generic: the translational symmetry is standard in the
theory of fields of arbitrary nature and the U�1� symmetry of
complex-valued fields is very common. More specific sym-
metries, based essentially on the geometric nature of w�z�,
are the translations in the direction of a unit vector
n̂= �nx ,ny ,0� perpendicular to the z axis and the rotations
around n̂. In what follows we will refer to those symmetries
as the shift and tilt symmetries, respectively.

The shift of the line by the distance l is

w�z� → w�z� + nl , �5�

where n=nx+ iny. Invariance of the Hamiltonian with respect
to Eq. �5� implies n�	dzẇ+c.c.=0 and via linear indepen-
dence of n and n� means the conservation of

P� =� dzw . �6�

Up to a dimensional factor, P� is the xy component of the
momentum of the fluid. In the kelvon terminology, the quan-
tity P� is, up to a normalization, the amplitude of kelvon
condensate. The conservation of P� means that the kelvon
condensate does not interact with the rest of the system and
vice versa: kelvon dynamics are not sensitive to the conden-
sate amplitude. This fact, by no means surprising since the
condensate is a mere shift of the whole vortex line, proves
crucially important for the structure of the kelvon kinetic
processes �see below�.

An infinitesimal tilt by the angle �	 is expressed by
w�z�→w�z�−w��z��z+�w with �w
�x+ i�y and �z obeying
�r= �n̂
r��	, where �r= ��x ,�y ,�z�. Observing that
�z= �i /2��w�n−wn���	, �w=−izn�	, we write the tilt
transformation as

w�z� → w�z� − i�w��w�n − wn��/2 + zn��	 . �7�

Note that the arbitrariness in the choice of a particular direc-
tion of the z axis implies invariance of the Hamiltonian with
respect to Eq. �7�. It results in 	dzẇ��w��w�n−wn��+2zn�
+c.c.=0 and, by linear independence of n and n�, leads to the
constant of motion

L� =� dz�2wz − �w�2w�� , �8�

which, up to a dimensional factor, is the kelvon contribution
to the the xy component of the angular momentum.

Due to the conservation of P, N, and energy, and the fact
that our system is one-dimensional, the leading kinetic chan-
nel is the three-kelvon elastic scattering �i.e., the six-wave
process, in the nonlinear physics terminology�. This allows
one to write down a general form of the kinetic equation,10,17

ṅ1=Collk1

Collk1
�nk� = �

k2,. . .,k6

�V1,2,3
4,5,6�2��������k��f4,5,6

1,2,3 − f1,2,3
4,5,6� ,

�9�

where ni
nki
are the occupation numbers of kelvons with

momenta ki �related to the Fourier transforms of w�z� via
nk= �� /2���wk

�wk�,  being the fluid density�, �k=k1+k2
+k3−k4−k5−k6, ��=�1+�2+�3−�4−�5−�6, �k is the
kelvon dispersion, and f1,2,3

4,5,6=n1n2n3�n4n5+n4n6+n5n6�.
Only the effective three-kelvon vertex V1,2,3

4,5,6 needs to be de-
rived from Eq. �2�.

If the momentum-space locality of kelvon collisions is
proven, i.e., if the main contribution to Collk1

comes from
wave numbers of order k1, then the cascade spectrum

nk � k−17/5 �10�

follows by a straightforward dimensional analysis of Eq. �9�
with V1,2,3

4,5,6�k1
6.10,17 In our Ref. 10, the proof of locality was

done numerically. Subsequent direct simulation11 of the dy-
namic model in Eqs. �1� and �2� revealed perfect agreement
with the local spectrum in Eq. �10�. However, Ref. 24
claimed nonlocality and thus irrelevance of the spectrum in
Eq. �10�, the agreement with numeric simulation being at-
tributed to the lack of sufficient resolution. Mathematically,
nonlocality of a given solution manifests itself as a diver-
gence of the collision integral in Eq. �9�. For the power-law
solution, Eq. �10�, the scaling suggests divergence at the
lower limit, when one or more momenta are much smaller
than k1, which has to be removed by exact cancellations if
the solution is local. The conclusion of Ref. 24 is based on a
direct evaluation of the integrals, which suggests the absence
of such cancellations and thus should be taken seriously. The
situation is complicated by the following circumstances: �i�
the integrals are rather cumbersome;10,17 �ii� a technical mis-
take made in Ref. 10 �but fixed in Ref. 17� renders the nu-
meric analysis of Ref. 10 not trustworthy; and �iii� the form
of the integrals proposed in Ref. 24 is different from what we
find in Ref. 17 so that a direct evaluation of the integrals
does not yet resolve the controversy. Under these circum-
stances, it becomes extremely desirable to address the issue
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of locality without resorting to details of the integrals in the
collision term and the geometric symmetry yields this oppor-
tunity.

We observe that even when the leading contributions to
the collision term are due to interactions between dramati-
cally different wave-number scales, the kinetics is still
semilocal in the sense that interactions between short waves
are coupled to an effective quasistatic external potential
formed by the slow long-wave modes. Physically, the
semilocality is dictated by the separation of time scales of
the short- and long-wave dynamics with the observation that
the typical dynamical correlation length at a given short scale
� is of order �. Thus, the short-wave fast processes can, in
principle, only couple to spatially local instantaneous char-
acteristics of the slow modes, such as their amplitudes and
spacial derivatives. Our central point is that, for fields of
purely geometrical nature considered here, the tilt and shift
symmetries rule out coupling to the amplitude of the long-
wave field and its first derivative, the angle. This enforces the
key constraint on the asymptotic form of the integrand in the
collision term, Eq. �9�, when one of ki, say k2, is much
smaller than k1: the wave number k2�k1 can only enter the
collision term through the curvature of the long-wave com-
ponents or higher derivatives. On the other hand, for the
spectrum, Eq. �10�, the curvature is actually due to large
wave numbers k1, contributions from k2�k1 being negli-
gible. This immediately implies that Collk1

builds up exclu-
sively at k2 , . . . ,k6k1 and is therefore local.

To formalize this proof, with providing an explicit insight,
we consider an equation of motion for short-wave distortions
on a curved vortex line. Our starting point is the general
Biot-Savart equation for the radius vector s of an element of
a single vortex line, conveniently associated with the La-
grangian functional

L =
2

3
� ��ṡ − v�s�� 
 s� · ds − E, E =

�

4�
� ds · ds0

�s − s0�
,

�11�

where the effect of the rest of the tangle is taken into account
by the external velocity field v�r� and E is nothing but Eq.
�2� in terms of s. We split s into the long-wave part g with
the typical curvature radius R0 and the vector w of small
short-wave distortions of wavelengths ��R0, s=g+w.
Due to the Galilean invariance, the short-wave dynamics is
insensitive to v, which varies at the scales of order �and
larger than� the intervortex distance l0��, whereas for g one
can distinguish two regimes:14 �a� ġ�v�g� if R0� l0 and
there is a large-scale polarization of the tangle, and �b�
ġ��g�
g� with �= �� /4��ln�R0 /a0�, the local-induction
approximation �LIA�,1 if there is no large-scale flow or
l0�R0�� meaning that the velocity field v is negligible. For
the question of locality of the solution �10�, R0 needs to be
the largest scale of the pure Kelvin-wave cascade, the scale
at which LIA dominates the dynamics and Kelvin waves are
generated by reconnections, the case �b�. To the leading ap-
proximation, dynamics of g are insensitive to the short-wave
structure w �cf. Ref. 3� since the long-wave field plays the
role of a condensate amplitude with respect to short-wave
dynamics conserving the condensate in view of Eq. �6�. Tak-
ing into account that the LIA conserves the line length, it is
consistent to parametrize the fields g and w by the arc length
� of the filed g. In correspondence with the field w�z�, we
require that w��� lie in the plane perpendicular to the
local tangent g����, w��� ·g����=0. Introducing a local
basis attached to the curve g���, e3=g�, e1=g� / �g��, and
e2=e3
e1, so that w���=x���e1���+y���e2���, we define
w���
x���+ iy���, which for Eq. �11� yields

L =� d��1 − g��w + w��/3��iẇw� − iẇ�w�/2 − E , �12�

E =
�

4�
� d�1d�2

1 + Re���1 − �2��g2�w2� − g1�w1�� − g2�w2 − g1�w1 + w1�
�w2��

��1 + g1�
2��1 − �2�2/4 − Re�g1�w1 + g2�w2����1 − �2�2 + �w1 − w2�2

, �13�

where g1,2� 
�g���1,2�� and w1,2
w��1,2�. In deriving Eq.
�13�, we replace g by its Taylor-series expansion to the first
nonvanishing order, justified by the small parameter
� /R0�1. Note that g and g� explicitly drop out due to the
shift and tilt symmetries leaving the first nonvanishing con-
tribution to be proportional to the curvature g�. In the limit
g�→0, we recover Eqs. �1� and �2�. Equations �12� and �13�
substantiate our central observation prescribed by the sym-
metry: the leading contribution to Kelvon dynamics from
coupling to long-wave modes is proportional to the large-
scale curvature g�.

By the standard procedure, expanding with respect
to ��1 and g��w1,2��1, and introducing w���
=L−1/2�wk exp�ik�� with L the total line length, we observe

that the leading kinetic processes coupled to g� are five-wave
in terms of the fast components wk, which results in the
nonlocal contribution to the collision term

Collk1

�nl��nk� = �g��2 �
k2,. . .,k5

�Ṽ��ki���2��������k� f̃��ni�� ,

�14�

where �g��2=L−1	��g��2����d�; Ṽ and f̃ are some

functions such that Ṽ��k1 , . . . ,�k5�=�4Ṽ�k1 , . . . ,k5� and

f̃��n1 , . . . ,�n5�=�4 f̃�n1 , . . . ,n5�. For the fast field with
the typical wave numbers kik, Eq. �14� yields
Collk

�nl��g��2k9nk
4, whereas the local contribution follows
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from Eq. �9�: Collk
�l�k14nk

5. The derivation of Eq. �14� re-
quires two conditions to be satisfied: �i� typical kinetic rates
for the modes wk should be much smaller than the corre-
sponding frequencies �k�k2, which allows to use the Wick’s
theorem upon averaging the dynamic equations and �ii� the
Knudsen limit for the fast field, i.e., the mean-free path of the
fast modes much longer than the wavelengths of the slow
field g, enabling averaging over �. Both conditions are met
for the spectrum in Eq. �10� in question and large k.

Equation �14� reveals the major inconsistency of the as-
sumption of considerable coupling between different length
scales: for the spectrum in Eq. �10�, the mean-square curva-
ture builds up at large wave numbers, �g��2�k8/5, meaning
that the leading “nonlocal” term Collk

�nl� is actually local. In
real tangles, where dynamics at large scales can be rather
complex,14 it is relevant to estimate the correction to short-
wave kinetics due to the large-scale structure. The answer
follows from Eq. �14� if we restrict the spectrum of g to
kR0

−1: Collk
�nl� /Collk

�l��R0
−2 / �k5nk� and thus, at k�R0

−1,
where the pure Kelvin-wave cascade is expected to develop,
any coupling to the large scales quickly vanishes.

It is important to emphasize that the conclusion about
nonlocality of the spectrum in Eq. �10� made in Ref. 24
unquestionably applies to the differential model, the local �in
real space� nonlinear equation �LNE�, introduced and studied

there as a “simplification” of Eqs. �1� and �2�. That is be-
cause, as opposed to Eq. �2�, LNE does not respect the tilt
symmetry. This fact, however, means nothing but irrelevance
of LNE to the problem of the Kelvin-wave cascade. In their
evaluation of the effective vertex, the authors of Ref. 24
claimed revealing some relevant terms missed in our Ref. 17.
In view of the explicit tilt symmetry violation by the results
of Refs. 24 and 25, introducing these terms is likely to be the
main source the mistake.26 More generally, uncontrolled ap-
proximations and errors generically lead to the nonlocal
L’vov-Nazarenko cascade with the nk�k−11/3 �Ref. 25� spec-
trum.

As another example of a system characterized by the cru-
cial effect of geometric symmetries on nonlinear dynamics,
we mention smectic-liquid crystals27 where the tilt symmetry
is known to be responsible for nontrivial nonlinerar effects.
The relationship between geometric symmetry and locality
of weak-turbulent spectra found in the context of Kelvin
waves can thus prove important for other systems with geo-
metric degrees of freedom.

We are grateful to Christian Santangelo for introducing us
to the crucial role played by geometric symmetries in the
theory of smectic liquid crystals.
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