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We implement the contractor-renormalization method to study the checkerboard Hubbard model on various
finite-size clusters as function of the inter-plaquette hopping t� and the on-site repulsion U at low hole doping.
We find that the pair-binding energy and the spin gap exhibit a pronounced maximum at intermediate values of
t� and U, thus indicating that moderate inhomogeneity of the type considered here substantially enhances the
formation of hole pairs. The rise of the pair-binding energy for t�� tmax� is kinetic-energy driven and reflects the
strong resonating valence-bond correlations in the ground state that facilitate the motion of bound pairs as
compared to single holes. Conversely, as t� is increased beyond tmax� antiferromagnetic magnons proliferate and
reduce the potential energy of unpaired holes and with it the pairing strength. For the periodic clusters that we
study the estimated phase-ordering temperature at t�= tmax� is a factor of 2–6 smaller than the pairing
temperature.
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I. INTRODUCTION

It is by now generally accepted that spatial inhomogeneity
may emerge either as a static or as a fluctuating effect in
strongly coupled models of the high-temperature supercon-
ductors, and indeed in many of the real materials.1 What is
far from being settled is the issue of whether such inhomo-
geneity is essential to the mechanism of high-temperature
superconductivity from repulsive interactions. While most
researchers would probably answer this question in the nega-
tive one should bare in mind the absence of a conclusive
evidence that the single-band two-dimensional Hubbard
model, widely believed to be the “standard model” of high-
temperature superconductivity, actually supports supercon-
ductivity with a high transition temperature.2 On the other
hand, when examined on small clusters the same model and
its strong-coupling descendent, the t-J model, exhibit robust
signs of incipient superconductivity in the form of a spin gap
and pair binding.1 This fact points to the possibility that the
strong susceptibility toward pairing is a consequence of the
confining geometry itself.

This line of thought has been pursued in the past by con-
sidering the extreme limit where the electronic density
modulation is so strong that the system consists of weakly
coupled Hubbard ladders3,4 or plaquettes.5 Beyond the ques-
tionable applicability of such models to the physical systems,
which are at most only moderately modulated, it is clear that
strong inhomogeneity, even if beneficial to pairing, is detri-
mental to the establishment of phase coherence and conse-
quently to superconductivity. On both counts it is, therefore,
desirable to extend the analysis to the regime of intermediate
inhomogeneity.

Recently, the checkerboard Hubbard model, constructed
from four-site plaquettes with nearest-neighbor hopping t
and on-site repulsion U, was studied as function of the inter-
plaquette hopping t� �see Fig. 1�. Tsai et al.6 diagonalized
exactly the 4�4 site cluster �2�2 plaquettes� and found that
the pair-binding energy, as defined by Eq. �2� below, exhibits
a substantial maximum at t�� t /2 for U�8t and low hole
concentration. Doluweera et al.,7 on the other hand, used the

dynamical cluster approximation in the range 0.8� t� / t�1
and obtained a monotonic increase in both the strength of the
d-wave pairing interaction and the superconducting transi-
tion temperature, Tc, toward a maximum that occurs in the
homogeneous model.

In this paper, we use the contractor-renormalization
�CORE� method8 to derive an effective low-energy Hamil-
tonian for the checkerboard Hubbard model, which we then
diagonalize numerically on various finite-size clusters. We
begin by establishing the region of applicability of the CORE
approximation by contrasting its predictions with the exact
results of Ref. 6 for 2�2 plaquettes. Our findings indicate
that at low concentrations of doped holes the two approaches
agree reasonably well unless t� is larger than a value, which
increases with U. Deviations also appear for small t� when U
is large. We identify probable sources of these discrepancies.

Based on the lessons gained from the small system we go
on to study larger clusters of up to ten plaquettes. These
include the periodic 6�6 sites cluster and two-leg and four-
leg ladders with periodic boundary conditions along their
length. Within the region where CORE is expected to pro-
vide reliable results the pair-binding energy continues to ex-
hibit a nonmonotonic behavior with a pronounced maximum
at intermediate values of t� and U. The precise location of
the maximum depends on the cluster geometry but it typi-
cally occurs in the range tmax� �0.5t–0.7t and Umax�5t–8t.

FIG. 1. �Color online� The checkerboard Hubbard model.
Shown here are two of the clusters that we studied. The bonds
labeled ab, cd, and ef specify locations used in calculating the
pairing correlations.
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The spin gap of the doped system follows a similar trend,
often reaching the maximum slightly before the pair-binding
energy. These findings demonstrate that moderate inhomoge-
neity, of the type considered here, can substantially enhance
the binding of holes into pairs.

In an effort to elucidate the source of the maximum we
have looked into the content of the ground state and calcu-
lated the contributions of various couplings in the effective
Hamiltonian to its energy. Our results indicate that for
t�� tmax� the doped holes move in a background, which is
composed predominantly of plaquettes that are in their half-
filled ground state. This background possesses strong intra-
plaquette singlet resonating valence-bond �RVB� correla-
tions, which facilitate the propagation of pairs relative to
independent holes. The rise in the pair-binding energy while
t� grows toward tmax� is a result of a faster decrease in the pair
kinetic energy in comparison to that of unpaired fermions. As
t� crosses tmax� and approaches the uniform limit the ground
state contains a growing number of plaquettes that support
antiferromagnetic �AFM� magnons. In this regime of in-
creasing AFM correlations the kinetic energy changes rela-
tively little with t� and the decrease in the pair-binding en-
ergy for t�� tmax� is caused by the lowering of the energy of
single holes due to their interactions with the magnons. In-
terestingly, we find that the maximum in the pair-binding
energy of the periodic clusters is accompanied by a change in
the crystal momentum of the single-hole ground state from
the �−M and symmetry-related directions at t�� tmax� to the
Brillouin-zone diagonals at t�� tmax� . A similar correlation
was also found for the three-hole ground state of the 6�6
sites cluster.

While the pair-binding energy sets a pairing scale, Tp, a
phase-ordering scale, T�, is provided by the phase stiffness.
The latter was evaluated from the second derivative of the
ground-state energy with respect to a phase twist introduced
by threading the system with an Aharonov-Bohm flux. We
have found that as the twist is taken to zero, the CORE
energy curvature typically converges toward a limiting value
only when t�� tmax� . Within this region the phase stiffness
increases monotonically with t�. Our results indicate that for
the lightly doped periodic clusters that we have considered
phase fluctuations dominate over pairing, specifically,
Tp�2T�–6T� at t�= tmax� . The limitations of the present study
make it difficult to draw conclusions regarding the behavior
of Tc in the two-dimensional thermodynamic limit.

We have also calculated the pair-field correlations be-
tween Cooper pairs that reside on the most distant bonds
allowed by our finite clusters. As expected, these correlations
are consistent with d-wave pairing. However, in contrast to
the pair-binding energy and the phase stiffness the correla-
tions change little with t� and are small in magnitude. This
discrepancy might be resolved in light of our finding that
only few holes are tightly bound into pairs that reside within
a single plaquette. Moreover, we obtain that the number of
such pairs changes relatively little with t� with no apparent
correlation to the substantial maximum in the pair-binding
energy. Taken together these findings suggest that the corre-
lation function which we and others often use to identify and
quantify pairing in the Hubbard model may be ill constructed
to take account of the more extended and structured nature of
pairing in this model.

II. MODEL AND METHOD

The Hamiltonian of the checkerboard Hubbard model,
which we have studied, is given by

H = − �
�i,j�,�

�tijci,�
† cj,� + H.c.� + U�

i

ni,↑ni,↓, �1�

where ci,�
† creates an electron with spin �= ↑ ,↓ at site i of a

two-dimensional square lattice. Here ni,�=ci,�
† ci,� and �i , j�

denotes nearest-neighbor sites. The hopping amplitude is
tij = t for i and j on the same plaquette while tij = t� when they
belong to neighboring plaquettes, as shown in Fig. 1.

The first step in obtaining the CORE effective Hamil-
tonian, for the above model, is the exact diagonalization of a
four-site plaquette. Out of the full spectrum, the M lowest-
energy states are retained. The reduced Hilbert space, in
which the effective Hamiltonian operates, is spanned by the
tensor products of these states on different plaquettes. Next,
Hamiltonian �1� is diagonalized on N connected plaquettes
and the MN lowest-energy states are projected onto the re-
duced Hilbert space and Gram-Schmidt orthonormalized. Fi-
nally, after replacing the exact eigenstates by their projec-
tions, the N-plaquette Hamiltonian can be represented as one
for M types of hard core particles coupled via N-body inter-
actions. The CORE approximation consists of applying the
resulting effective Hamiltonian to the study of larger clusters.
By construction, the spectrum of the CORE Hamiltonian co-
incides with the low-energy spectrum of the exact problem
on N plaquettes. We note, however, that this ceases to be the
case if one or more of the exact low-energy states have zero
projection on the reduced Hilbert space, or, if some of them
are projected onto the same tensor-product state. In the fol-
lowing we demonstrate that such a problem arises in certain
parameter regions of the model Eq. �1�.

We concentrate on relatively low hole densities as mea-
sured from the half-filled system. The simplest truncation
used to describe this regime is to retain the ground state of
the half-filled plaquette �a total spin singlet S=0 with
plaquette momentum q= �0,0��, its S=1, q= �	 ,	� triplet of
lowest lying AFM magnon excitations, and the S=0,
q= �0,0� hole pair ground state.9 The inclusion of the mag-
non excitations is essential for retrieving the correct mag-
netic behavior at low hole doping.10 Below we show that
they also play an important role in the physics of hole bind-
ing. One can improve the approximation by including in the
CORE plaquette basis also the two degenerate doublets
Sz= 
1 /2, q= �0,	� , �	 ,0�, comprising the single hole
ground state.10,11 Moreover, the inclusion of these states is
mandatory for the purpose of calculating the pair-binding
energy, which is one of the goals of the present work. Con-
sequently, our CORE scheme consists of keeping the above-
mentioned M =9 states. We have considered only range-2
interactions, i.e., N=2.

The resulting effective Hamiltonian includes all possible
couplings, which respect the symmetries of the two-
plaquettes problem. These include the conservation of num-
ber of holes Nh, invariance under SU�2� spin rotations and
under reflections about the central bonds of the cluster in the
x and y directions. The latter, together with the conservation
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of Nh, imply that within our reduced Hilbert space, as defined
above, the total plaquette momentum q1+q2 is also con-
served �modulo 2	�. We will not list here the 45 couplings
which are allowed by the symmetries. Instead, we will de-
scribe the most important ones in the appropriate context and
refer the reader to the Appendix for a detailed description of
the Hamiltonian.

Many of the results reported in the following are derived
from the spectrum of the effective Hamiltonian as obtained
by exact diagonalization. We also calculate various ground-
state correlations. To this end we project the appropriate op-
erators on the reduced Hilbert space8 before evaluating their
ground-state correlation function.

III. RESULTS

Although the size of the Hilbert space is massively re-
duced by the CORE approximation it still grows exponen-
tially with the size of the system. Therefore, even the largest
clusters that we are able to diagonalize using this method are
too small for a direct calculation of Tc. Instead we calculate
various properties of the system which are indicative of the
two necessary ingredients for superconductivity: pairing and
phase stiffness. We begin with the former and study its be-
havior as function of t� and U on various geometries. These
include the 4�4 and 6�6 periodic clusters, seen in Fig. 1,
as well as two-leg and four-leg ladders with periodic bound-
ary conditions along their length, which extends up to 20
sites.

A. Pair-binding energy and spin gap

The pair-binding energy is defined by

�pb�M/N� = 2E0�M� − �E0�M + 1� + E0�M − 1�� , �2�

where E0�M� is the ground-state energy of the system with
M holes doped into the N-site half-filled cluster. Consider
two identical clusters each with M holes. If holes tend to pair
and M is odd it should be energetically favorable to move an
electron from one cluster to another in order to obtain a fully
paired state in both. On the other hand, such a redistribution
should be unfavorable if M is even. In this sense, a positive
�pb for odd M and a negative �pb for even M signifies an
effective attraction between holes.

Recently, Tsai et al.6 have found by exact diagonalization
of the periodic 4�4 cluster that the pair-binding energy ex-
hibits a pronounced maximum both as function of t� and U.
Their results allow for a critical evaluation of the validity of
the CORE method in a range of parameters. To this end we
present in Figs. 2 and 3 a comparison between the CORE
and the exact results for �pb�1 /16�. It is clear that CORE
introduces substantial errors in two specific regimes: small U
and large t� �Fig. 3�a�� and large U and small t� �Fig. 3�c��,
while it is in reasonable agreement with the exact results in
the intermediate parameter regime.

An obvious source for the discrepancies is the fact that
our CORE approximation includes only range-2 couplings.
Longer-range interactions are expected to become more im-
portant as the system becomes more homogeneous, i.e.,

when t�→ t. We believe that the deviations between the
CORE predictions and the exact results in this limit, espe-
cially for small U where the pair size is expected to be large,
are mainly due to insufficient range of the effective interac-
tions. A related problem may emerge at large U where the
extent of magnetic correlations grow. However, we did not
confirm these conjectures by explicit calculations.

A more subtle source of errors, which we have mentioned
already in the previous section, is the fact that low-energy
states may be projected out from the CORE effective Hilbert
space in the process of generating the effective Hamiltonian.
This happens when a low-lying state of a connected cluster
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FIG. 2. �Color online� The pair-binding energy in a periodic
4�4 cluster at 1/16 hole doping as obtained by �a� CORE and �b�
exact diagonalization �Ref. 6�. CORE projects out low-energy states
from the effective Hilbert space in the region above the dashed line.
The crystal momentum of the degenerate single-hole ground state is
�0,	� and �	 ,0� below the solid line and �0,0� and �	 ,	� above it.
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FIG. 3. �Color online� The pair-binding energy in a periodic
4�4 cluster at 1/16 doping for various values of the interaction
strength �a� U=4t, �b� U=8t, and �c� U=10t. Triangles depict the
CORE results and circles correspond to the exact diagonalization
results of Ref. 6.
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has zero overlap with the tensor-product states of the effec-
tive Hilbert space or when two or more low-lying states are
mapped onto the same state in the effective space. �Note,
however, that spin-rotation symmetry is preserved in the
sense that spin multiplets are either kept or projected out as a
whole.� Figure 4 depicts for each of the sectors in which such
a problem arises the excitation energy of the lowest
projected-out state in units of the bandwidth of the kept
states in the sector. We also denoted in Figs. 2 and 5 the
parameter region where the problem occurs.

The overlap issue is responsible for the failure of CORE
in the regime of small t� and large U. When U�7.858t and
for t�=0 the Nh=1, S=3 /2 double-plaquette �eightfold de-

generate� ground state 	Nh=1,S=3 /2�2 consists of one
plaquette in its half-filled ground state and a second plaquette
in a fully polarized S=3 /2 single-hole state. The latter re-
sides outside the effective Hilbert space and therefore
	Nh=1,S=3 /2�2 is projected out. This ceases to be the case
once t� is turned on as a result of a component which appears
in 	Nh=1,S=3 /2�2 and corresponds to a system with a mag-
non on one plaquette and a plaquette fermion on the other.
However, the amplitude of this component diminishes with
increasing U. This leads CORE to misidentify the nature of
	Nh=1,S=3 /2�2 and induces an abrupt increase in the
magnon-fermion interaction �Vft

3/2,�,q in Eq. �A5�� for small
t�. As a result, CORE underestimates the energy of the two-
hole ground state of the 4�4 cluster and consequently pre-
dicts an erroneously large pair-binding energy, see Fig. 3.
Nevertheless, it appears that away from this region of param-
eters the projected-out states are high enough in energy as to
not cause qualitative errors.

Based on the comparison of �pb depicted in Figs. 2 and 3
and similar plots presented below for the spin-gap �Fig. 6�a��
and pair-field correlations �Fig. 13�a�� we conclude that
CORE agrees semiquantitatively with the exact results pro-
vided U /50
 t�
U /8. Within this region, and across all ge-
ometries studied, we found the pair-binding energy to exhibit
the same qualitative behavior consisting of a broad peak both
as function of t� and U. This conclusion holds true also when
one varies the doping level �at least in the low-doping regime
which we have considered� as can be seen from the results
for the 6�6 cluster presented in Fig. 5. In addition, the same
figure suggests that the above-mentioned problems with the
CORE method become less severe as the size of the system
increases.

The association of positive pair-binding energy with Coo-
per pairing may be contested on the ground that it can also
be taken as evidence for a tendency of the system to phase
separate. We believe that this is not the case for the model
studied here for the following reasons. First, in accordance
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FIG. 4. �Color online� The excitation energy of the lowest en-
ergy state that is projected out by CORE in units of the bandwidth
of the kept states in its sector.
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FIG. 5. �Color online� The pair-binding energy in a periodic
6�6 cluster at �a� 1/36 and �b� 3/36 hole doping. CORE projects
out low-energy states from the effective Hilbert space in the region
above the dashed line. In �a� the crystal momentum of the degen-
erate single-hole ground state is �0, 
2	 /3� and �
2	 /3,0� below
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2	 /3� above it. In �b� the crystal
momentum of the degenerate three-hole ground state is
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2	 /3,0� elsewhere.
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doped systems at U=8t. �a� Comparison between CORE and exact
diagonalization results for the 4�4 periodic cluster. �b� CORE re-
sults for the spin-gap �s and the pair-binding energy �pb�1 /36� of
the 6�6 periodic cluster.
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with the interpretation discussed above of �pb as indication
for hole pairing we have found its sign to change according
to �−1�M+1 for all the clusters and doping levels which we
have considered. Second, while the appropriate criteria for
identifying regimes of phase separation from finite size stud-
ies include the Maxwell construction12 and measurements of
the surface tension in the presence of boundary conditions
that force phase coexistence, a crude way of identifying
phase separation is by calculating the inverse compressibility
�−1=n2�� /�n, where � is the chemical potential and n the
electronic density. For numerical purposes a discrete version
is used, which in our case reads

�−1 � E0�M + 2� + E0�M − 2� − 2E0�M� . �3�

Negative inverse compressibility indicates instability toward
phase separation. We always find �−1�0. Finally, whenever
the ground state is a spin singlet one can define the spin gap
as the energy gap to the lowest S=1 excitation. We have
calculated the spin gap for the two-hole doped systems and
found that in all cases it follows the pair-binding energy in
the regime of small to moderate t�, see Figs. 6 and 7. This
coincidence strongly suggests that in this regime the lowest
S=1 excitation is a result of a dissociation of a hole pair into
two separate holes. It is interesting to note that we always
observe that the spin gap reaches a maximum and starts to
drop before the pair-binding energy does so. This may be an
indication that moderate inhomogeneity supports the forma-
tion of a bound S=1 magnon-hole-pair state.10,13

Consequently, our findings and the above arguments lead
us to conclude that inhomogeneity of the type included in the
checkerboard Hubbard model substantially enhances hole
pairing. The precise position of the point of optimal inhomo-
geneity in the sense of strongest pairing depends on the clus-
ter geometry and interaction strength. Albeit, it typically oc-

curs in the range tmax� �0.5t–0.7t and Umax�5t–8t. We note
that this fact implies that the physics behind the large pairing
scale of the model necessarily involves interplaquette cou-
plings since the single plaquette does not support hole pair-
ing beyond Uc�4.6t.9

B. Energetics and structure of the ground state

What drives the enhancement of hole pairing and what is
the reason for its maximum as function of t�? In an attempt
to gain insights into these questions we have took advantage
of the fact that CORE provides us with an effective Hamil-
tonian whose various couplings can be classified and ana-
lyzed. To this end we have divided the 45 different couplings
into four groups, as described in the Appendix. They include:
fermion and hole-pair “bare” kinetic terms �including fer-
mion and pair hopping as well as Andreev-type pair creation
and disintegration�, magnon-assisted fermion and pair hop-
ping, fermion and pair interactions, and finally, interactions
involving magnons. Figure 8 depicts the contribution of each
group to the ground-state energy of the Nh=0,1 ,2
doped 6�6 periodic cluster and to its pair-binding energy
�pb�1 /36� at U=8t.
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FIG. 7. �Color online� The spin-gap �s and pair-binding energy
�pb at U=8t for two-hole doped �a� two-leg ladders, �b� four-leg
ladders.
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FIG. 8. �Color online� Ground-state expectation values of vari-
ous effective couplings for the 6�6 periodic cluster at U=8t: �a�
fermion and pair hopping; �b� fermion and pair magnon-assisted
hopping; �c� fermion and pair interactions; �d� interactions involv-
ing magnons; and �e� the full Hamiltonian. The insets show the
contribution of each group of couplings to the pair-binding energy.
The full binding energy reaches a maximum at t�=0.6t as indicated
by the dotted line.
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Figure 8 makes it clear that the increase in the pair-
binding energy from t�=0 to tmax� is dominated by a faster
decrease in the kinetic energy of hole pairs as compared to
unpaired holes. Furthermore, in this region the pair-binding
energy is largely determined by the bare kinetic terms while
the �negative� contribution of hopping processes that involve
magnons is much smaller. The small contributions of the
various interactions approximately cancel out. Looking more
closely at the way charges propagate in this range of t� we
found that the main channel for single holes is a direct hop
between neighboring plaquettes but that this process is virtu-
ally nonexistent for hole pairs. Instead, a pair propagates
predominantly by Andreev-type dissociation into single
holes on adjacent plaquettes and recombination of these
holes into a pair one register away from its original position
�as described by the last term in Eq. �A2��.

For t�� tmax� the behavior changes qualitatively and rather
abruptly. The gain in kinetic energy of the pair relative to
that of unpaired holes ceases to increase. While pairs con-
tinue to propagate mainly via a series of dissociation and
recombination events, single holes move almost exclusively
by hopping processes involving magnons �the second and
third terms in Eq. �A3��. The decrease in the pair-binding
energy in this regime is induced by a sharp decrease in the
potential energy of the unpaired holes owing to their interac-
tions with the magnons. On the other hand, the contribution
of interactions not involving the magnons to the pair-binding
energy does not show a significant change as t� is driven
through tmax� .

The above results suggest that the AFM magnons play an
important role in inducing the change in the behavior of the
pair-binding energy. To further test this conclusion we have
looked at the evolution of the ground-state content with t�.
Figure 9 shows the average number of magnons, fermions
and pairs in the Nh=0–4 ground states of the 6�6 periodic
cluster. Evidently, the magnons begin to proliferate slightly
before the maximum in the pair-binding energy is reached.
Concomitantly, there is an increase in AFM correlations in
the system as can be seen from Fig. 10, which depicts the
staggered magnetization m�	,	� defined by

m�	,	�
2 =
� 1

N
�
j=1

N

eiQ·rjSj�2
 , �4�

where Q= �	 ,	� and Sj is the electronic spin operator on site
j at position rj. In contrast to the behavior of the magnons,
the fermions-to-pairs ratio does not change considerably at
moderate values of t�. Note that at t�=0 all the holes appear
as single fermions. This is a manifestation of the absence of
pair binding on the single plaquette at U=8t.

We have found that the same behavior, both in terms of
energetics and structure of the ground state, persists across
the entire range of geometries and doping levels which we
have studied. Therefore, we conclude that the initial rise of
the pair-binding energy for t�� tmax� is kinetic-energy driven.
In this range most of the plaquettes are in their half-filled,
RVB-correlated ground state. This type of background facili-
tates the motion of bound pairs as compared to single holes.
When t� approaches tmax� the undoped background changes

its nature and becomes more AFM. The gain in kinetic en-
ergy associated with hole-pairing saturates and instead a gain
in the potential energy of unpaired holes sets in due to their
interactions with the AFM magnons. This leads to the de-
crease in the pair-binding energy.

Another correlation that we were able to establish is
between the maximum of the pair-binding energy and the
position of the single-hole ground state in momentum
space. In both the 4�4 and 6�6 periodic clusters the
ground state shifts from the �-M and symmetry-related di-
rections of the Brillouin zone to the zone diagonals as t� is
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increased through tmax� , see Figs. 2 and 5. Specifically, exact
diagnonalization14 of the 4�4 cluster shows that the crystal
momentum changes from �0,	� and �	 ,0� to �0,0� and
�	 ,	� �CORE finds a similar transition to �	 ,	� but misses
the �0,0� state.� In the 6�6 cluster the shift is from
�0, 
2	 /3� and �
2	 /3,0� to �
2	 /3, 
2	 /3� �except
for U=1t–3t where in a narrow region above tmax� the ground
state is at �0,0�.�

It is known from quantum Monte Carlo simulations that
the single-hole ground state of the homogeneous two-
dimensional t-J model resides at �
	 /2, 
	 /2�.15 One may
speculate whether this state is adiabatically connected to the
ground state of the inhomogeneous model for t�� tmax. The
answer to this question is beyond the present study as it
requires the diagonalization of larger clusters and the addi-
tion of higher-energy plaquette fermions with plaquette mo-
mentum �0,0� and �	 ,	� to the effective Hilbert space. Re-
gardless of this point, it seems that the transition in the
ground-state momentum is a possible consequence of the
maximum in �pb rather than its cause. We arrive at this con-
clusion based on the fact that in the 4�4 cluster �pb�3 /16�
exhibits a maximum of similar magnitude to that of
�pb�1 /16� while the three-hole ground state is located at
�0,0� and �	 ,	� over the entire parameter range.14 In the
6�6 cluster, on the other hand, the maximum in �pb�3 /36�
is accompanied by a change in the three-hole ground-state
momentum, as depicted in Fig. 5.

C. Phase stiffness

In the thermodynamic limit of a d-wave superconductor
the pair-binding energy vanishes as �pb�2�0N−1/2, where
�0 is the maximal value of the superconducting gap.6 In our
rather small clusters we can therefore roughly estimate
�0��pb /2, which together with the d-wave BCS gap rela-
tion Tc=�0 /2.14, gives

Tp =
�pb

4
, �5�

as a characteristic temperature at which pairs fall apart.
The actual Tc may be smaller than Tp if phase fluctuations

are important. To obtain an estimate for the phase-ordering
temperature T� we calculate the ground-state phase stiffness
defines as

�s =� 1

A

�2E

��2�
�=0

. �6�

Here E /A is the ground-state energy per unit area and � is a
phase twist per bond in the x direction.16 Neglecting the sup-
pression of the stiffness due to thermal excitation of gapless
nodal quasiparticles and using the relation Tc=0.89�s for the
two-dimensional XY model we obtain the estimator

T� = �s. �7�

We have calculated �s in two ways. In the first the phase
twist was introduced into Hamiltonian �1� by changing
tij→ tije

i�/2 for two nearest-neighbor sites in the x direction.
The effective CORE Hamiltonian for the twisted system was

then derived and diagonalized to obtain the � dependence of
the ground-state energy. In the second way the twist was
introduced on the plaquette level by modifying the couplings
in the effective CORE Hamiltonian for the untwisted model
Eq. �1�. This was achieved via multiplication of a coupling
between two neighboring plaquettes in the x direction that
changes the number of holes on the right plaquette by �n, by
ei��n.

The phase-ordering temperature of the periodic 6�6
cluster with two and four holes is depicted in Fig. 11. The
two methods yield similar results and they both encounter
problems in the region t�� tmax� . The nature of the difficulty
is demonstrated by the inset in Fig. 11, showing �s as calcu-
lated from a discrete derivative of the ground-state energy
with respect to a twist introduced at the bond level. When the
derivative is calculated for increasingly smaller values of �
the result does not converge for t�� tmax� . Rather, it becomes
negative and diverges, indicating that the CORE ground-state
energy develops a cusp as function of �. A similar behavior
is also found in the 4�4 periodic cluster and in the ladder
systems. It occurs at lower values of t� for systems with odd
number of holes. We take these findings as an indication that
CORE is unable to produce a reliable approximation for �s in
the region beyond the maximum in the pairing scale.

In the range t�� tmax� the estimated phase-ordering tem-
perature increases monotonically with t�, but is consistently
below the pairing scale. At t�= tmax� we find for the two-hole
system Tp /T��6. Increasing the doping to four holes de-
creases the maximal Tp slightly and increases T� by about
70% leading to Tp /T��t�= tmax� ��3. The same holds true for
the 4�4 cluster with two holes, which has a similar hole
density and Tp /T��t�= tmax� ��2. Such a behavior suggests
that superconductivity in the lightly doped two-dimensional
checkerboard Hubbard model is governed by phase fluctua-
tions. In ladders our definition Eq. �6� is equivalent to the
phase stiffness along the ladder �vcKc in the effective Lut-
tinger liquid description of the system� divided by its width.
As shown by Fig. 12 it is larger than the corresponding stiff-
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ness in the periodic clusters and grows with doping. How-
ever, since the one-dimensional system cannot order it does
not provide a phase-ordering temperature similar to Eq. �7�.

D. Pairing correlations

Another diagnostic tool for the presence of superconduc-
tivity is the pair-field correlation function. We have calcu-
lated the following equal-time correlator:

Dij,kl = ��ij
† �kl� , �8�

where ij denotes the bond between the nearest-neighbor sites
i and j and where the pair field on that bond is given by

�ij
† =

1
�2

�ci↑
† cj↓

† + cj↑
† ci↓

† � . �9�

Figure 13 shows the results for the pair-field correlations
between the two most distant parallel �D�� and perpendicular
�D�� bonds on the periodic clusters with Nh=2 and Nh=4.
Similar results were also obtained for the ladder systems. We
find that D� is positive and D� is negative, consistent with
d-wave pairing. The pairing correlations diminish in the lim-
its t� / t→0 and t� / t→1 but unlike the pair-binding energy
and the phase stiffness they are nearly independent of t� in
the range of moderate inhomogeneity �from t�=0.1t to
t�=0.6t�pb, �s and D change by a factor of 7.5,4.5, and 1.5,
respectively.� The magnitude of the correlations is small and
comparable to results of previous studies of Hubbard
ladders17 and Hubbard2 and t-J periodic clusters.18

The behavior of D suggests that pairing is very weak in
the systems that were studied. This conclusion is in apparent
contradiction with the large pair-binding energy found in the
same clusters. In addition, as we already noted, the t� depen-
dence of the two quantities is very different. We believe that
the fault may lie in the specific form of the pair field, Eq. �9�,
that was used for calculating the pairing correlations. It as-
sumes a pair wave function which is strongly localized in
space. This may be wrong, as suggested by our results for the

structure of the ground state. Figure 9 clearly shows that
most holes are not bound into pairs on a single plaquette.
This is expected since for U=8t the plaquette does not pro-
vide a positive pair-binding energy. It seems, therefore, that
thinking about Cooper pairing in such systems in terms of
real-space pairs occupying single bonds is a misleading over-
simplification. Most likely, the phenomenon is more compli-
cated and the pair wave function, while being much more
localized than its counterpart in conventional superconduct-
ors, still possesses a nontrivial real-space structure.

IV. CONCLUSIONS

This study had a dual motivation. First, to explore the
utility of the CORE approximation as a method to investigate
fermionic strongly correlated systems and second to shed
additional light on the role of inhomogeneity in the physics
of high-temperature superconductivity.

As far as CORE is concerned, it is difficult to carry out
the original scheme of Morningstar and Weinstein8 who it-
eratively applied the CORE method to obtain and analyze a
fixed point Hamiltonian. In the case of the Hubbard model
there are simply too many couplings that are generated at
each step. One is, therefore, forced to apply CORE once and
investigate the resulting effective Hamiltonian either by
means of a mean-field approximation9 or via numerical di-
agonalization of finite clusters. The latter approach was pre-
viously implemented in the study of spin systems19,20 and the
t-J model10,11 and is the one which we pursued. As expected,
when applied to the checkerboard Hubbard model range-2
CORE provides results which are in good agreement with the
available exact diagonalization results in the limit of small t�.
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In the moderate t� regime the method may be considered as
semiquantitative and its validity in the uniform limit is ques-
tionable, particularly in the case of small U. More precisely,
this statement depends on the property that one tries to cal-
culate using the method. It seems that pairing is moderately
local such that range-2 CORE is able to capture its salient
features already in small systems. The establishment of
phase coherence, on the other hand, is a more extended phe-
nomenon, for which the inclusion of longer range effective
interactions and diagonalization of larger clusters are needed.
In this context we would like to note that signatures associ-
ated with nodal quasiparticles of the putative d-wave Hub-
bard superconductor, such as the suppression of the phase
stiffness at low temperatures, are particularly difficult to cap-
ture using range-2 CORE.9

Regarding the effects of inhomogeneity, our results dem-
onstrate that plaquettization of the Hubbard model may lead
to a substantial enhancement of pairing. Optimal pairing is
achieved at an intermediate scale of inhomogeneity, which
marks a crossover from a region with pronounced RVB char-
acteristics to one with stronger local AFM correlations. The
interactions of the doped holes with the spin background are
the driving force of the pairing process. One should bare in
mind, however, that the Hubbard plaquette, the building
block of our model, is a special system. Its undoped ground
state is a quintessential RVB state and it provides a positive
pair-binding energy in a wide range of interaction strengths.
Hence, it is interesting to ask whether a similar enhancement
occurs for other plane patterns, especially those constructed
from elementary clusters that do not exhibit pair binding.
The possibility of such an outcome gains support from the
fact that in the checkerboard model maximal pairing occurs
at an interaction strength for which the pair-binding energy
on each individual plaquette is negative.

In the lightly doped clusters that we have studied super-
conductivity appears to be controlled by phase fluctuations.
Owing to the reasons outlined above and our inability to
carry out significant finite-size scaling it is difficult to esti-
mate the phase-ordering temperature in the two-dimensional
limit and determine whether Tc indeed achieves a maximum
at an intermediate value of t�. Tc enhancement due to inho-
mogeneous pairing interaction was found in the attractive
Hubbard model21–25 and the phase-ordering transition tem-
perature is raised in the classical two-dimensional XY model
with certain “framework” modulations of the phase
couplings.26 We find it interesting to conclude by noting that
Fig. 11 hints at the possibility that a related inhomogeneity-
induced enhancement occurs in the model considered here as
well.
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APPENDIX: THE CORE HAMILTONIAN

The full CORE Hamiltonian includes all possible terms
that satisfy the symmetries of the problem, as detailed in Sec.
II. The resulting 45 effective couplings may be grouped in
the following way:

H = Kbf + Kbf+t + Vbf + Vt. �A1�

The kinetic energy of the fermionic holes and the bosonic
pairs is given by the first two terms. Kbf contains the contri-
bution of hopping processes involving only the charged de-
grees of freedom while Kbf+t contains similar processes in
which the triplet of AFM magnons also participate. The in-
teractions among the fermions and pairs comprise Vbf. Their
remaining interactions with the magnon triplet, as well as
couplings involving only the triplets, form the last group Vt.

In the following, bi
†, t�i

† , and fq�i
† create a hole pair, a

magnon with spin component Sz=� and a fermion with spin
component Sz=�, and plaquette momentum q at site i, re-
spectively. Our choice to use a basis where the two fermions
have a definite plaquette momentum q= �0,	� or q= �	 ,0�
results in different interaction strengths between nearest
neighbors in the x direction compared to the y direction. The
notation �i , j�� in the Hamiltonian below stands for nearest
neighbors in the �=x ,y direction and �AiBj�S,� signifies that
the operators Ai and Bj are coupled into an operator of total
spin S and spin component Sz=�. Finally, summation over S,
�, q, and � indices is implied.

The seven bare kinetic couplings include fermion and pair
hopping, as well as pair-fermion exchange and Andreev-type
pair creation and disintegration.

Kbf = Jb�
�i,j�

bi
†bj + Jf

�,q �
�i, j��

fq�i
† fq�j + Jbf

�,q �
�i, j��

bi
†fq�j

† bjfq�i

+ Jbf f
�,q �

�i, j��

�bi
†fq↑i fq↓j + bi

†fq↑j fq↓i + H.c.� . �A2�

Note that since the Hamiltonian is symmetric under rotations
and reflections some of the couplings are related. For ex-
ample, Jf

x,q=Jf
y,q̄, where q̄=q+ �	 ,	�mod 2	. These symme-

tries and the d-wave symmetry of the plaquette hole-pair
state also imply Jbf f

x,q =−Jbf f
y,q̄.

The remaining nine kinetic couplings are associated with
magnon-assisted hopping processes

Kbf+t = Jbt�
�i,j�

bi
†t�j

† bjt�i + Jft
S,�,q �

�i, j��

�ti
†fqj

† �S,��tj fqi�S,�

+ Jf ft
�,q �

�i, j��

��ti
†fqj

† �1/2,�f q̄�i + H.c.�

+ Jbft
�,q �

�i, j��

�bi
†t�j

† �fqi f q̄j�1,� + H.c.� . �A3�

The 16 fermion and pair on-site energies and interactions are
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Vbf = � fq�
i

fq�i
† fq�i + �b�

i

bi
†bi + Vb�

�i,j�
bi

†bj
†bjbi

+ Vbf
�,q �

�i, j��

bi
†fq�j

† fq�jbi + V1 f f
S,�,q �

�i, j��

�fqj
† fqi

† �S,��fqi fqj�S,�

+ V2 f f
S �

�i, j��

�fqj
† fqi

† �S,��f q̄i f q̄j�S,�

+ V3 f f
S �

�i, j��

�fqj
† f q̄i

† �S,��fqi f q̄j�S,�

+ V4 f f
S �

�i, j��

�fqj
† f q̄i

† �S,��f q̄i fqj�S,�. �A4�

The fermion on-site energies depend on q in ladders where
the symmetry between the x and y directions is broken. The
on-site energies on a plaquette depend on the number of its
nearest neighbors. Therefore, they may be position depen-
dent in finite clusters without periodic boundary conditions.

This does not happen for the clusters that we have investi-
gated.

The last group consists of 13 couplings involving the
magnons. They include their on-site energy, excitation am-
plitude from the vacuum, hopping matrix element, and the
strength of their mutual interaction together with their inter-
action couplings to the fermions and bosons. We find the
coupling to the bosons to be very small.

Vt = �t�
i

t�i
† t�i + Jtt�

�i,j�
��ti

†tj
†�0 + H.c.� + Jt�

�i,j�
t�i
† t�j

+ Vtt
S�

�i,j�
�ti

†tj
†�S,��tjti�S,� + Vbt�

�i,j�
bi

†t�j
† t�jbi

+ Vft
S,�,q �

�i, j��

�ti
†fqj

† �S,��fqjti�S,�

+ Vft
�,q �

�i, j��

��ti
†fqj

† �1/2,�f q̄�j + H.c.� . �A5�
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