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The device for the Josephson flux qubit can be considered as a solid-state artificial atom with multiple
energy levels. When a large-amplitude harmonic excitation is applied to the system, transitions at the energy
levels avoided crossings produce visible changes in the qubit population over many driven periods that are
accompanied by a rich pattern of interference phenomena. We present a Floquet treatment of the periodically
time-dependent Schrödinger equation of the strongly driven qubit beyond the standard two-level approach. For
low amplitudes, the average probability of a given sign of the persistent current qubit exhibits, as a function of
the static flux detuning and the driving amplitude, Landau-Zener-Stückelberg �LZS� interference patterns that
evolve into complex diamondlike patterns for large amplitudes. In the case of highly coherent flux qubits we
show that the higher-order diamonds can not be simply described relying on LZS transitions in each avoided
crossing considered separately. In addition we propose a spectroscopic method based on starting the system in
the first excited state instead of in the ground state, which can give further information on the energy-level
spectrum and dynamics in the case of highly coherent flux qubits. We compare our numerical results with
recent experiments that perform amplitude spectroscopy to probe the energy spectrum of the artificial atom.
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I. INTRODUCTION

In recent years, several types of superconducting qubits
have been experimentally studied.1–5 These systems consist
on mesoscopic Josephson devices and constitute promising
candidates to be used for the design of qubits for quantum
computation.1–8 Indeed, a large effort is devoted to succeed
in the coherent manipulation of their quantum states in a
controllable way. The progress made along this line allows to
have nowadays Josephson circuits with small dissipation and
large decoherence times.3,4,6–8

In this work we will focus on the device for the Josephson
flux qubit �DJFQ�, which consists of a superconducting
quantum interference device �SQUID� loop with three Jo-
sephson junctions operated at or near a magnetic flux of half
quantum.2,6–8 When cooling down to millikelvin tempera-
tures this device exhibits quantized levels whose energies
can be tuned by a control parameter such as an external
magnetic field. This artificial atomlike behavior has moti-
vated several studies based on the analysis of the level spec-
trum and its dynamics beyond the simplified two-level ap-
proach. As an example it has been shown that, after the
inclusion of higher energy levels the DJFQ exhibits quantum
signatures of classical chaos;9,10 and a recent study11 focused
on the calculation of the intrinsic leakage �i.e., transitions
from the allowed qubit states to higher excited levels of the
system� has shown that for very strong resonant harmonic
pulses the two-level approximation breaks down.

What is more important, several recent experiments driv-
ing the flux qubit with a combination of a dc and large-
amplitude harmonic excitations in the magnetic flux have
studied the energy-level structure through Landau-Zener-
Stückelberg transitions.12–15 Mach-Zender interferometry13,14

and amplitude spectroscopy15 have been the subject of these
recent experimental studies of the flux qubit as an artificial
atom. In particular, the amplitude spectroscopy experiment
of Ref. 15 has revealed the higher energy level spectrum

when increasing the microwave amplitude. In this case, the
average population of one state of the DJFQ as a function of
the dc flux �flux detuning� and microwave amplitude exhibits
diamondlike interference patterns, which display a rich struc-
ture of multiphoton resonances.13 From these interference
patterns it is, in principle, possible to reconstruct a large
fraction of the energy spectrum and methods based on two-
dimensional Fourier transform have been recently proposed
to this end.16 In the experiment, the observed spectroscopic
“diamonds” arise due to combined contributions of Landau-
Zener-Stückelberg transitions, which provide the interference
fingerprint of different energy-level avoided crossings, to-
gether with intrawell fast relaxation and short coherence
times, which provide contrast in the observed pattern.

Recent theoretical efforts have been put forward to recon-
struct the experimentally observed interference patterns by
solving the dynamics of the model under strong driving.
Most of the reported approaches reduce the model for the
DJFQ to a simplified version which only considers the dy-
namics of the two levels involved in each avoided crossing.
In this case the well-known Landau-Zener-Stückelberg
theory has been applied, considering only the accumulated
phase of the two levels during a period of the driving.13,17

The beginning of the first spectroscopic diamond, that corre-
sponds to the first avoided crossing, is accurately reproduced
within this basic model.13,17 Additionally, extensions that in-
corporate several levels based on rate equations along all
coupled levels have been recently proposed.18 In this later
case more than one diamond can be obtained but the ap-
proach neglects the phase accumulated in the evolution of
several levels and can only be applied when decoherence and
relaxation effects are important. Since this case is somewhat
near the experiment of Ref. 15, a qualitative description of
the observed diamond patterns can be obtained. However,
the devices for the flux qubit can have larger decoherence
times8,19 than in the case of Ref. 15. In this case, the effect of
fast intrawell relaxation that provided contrast in the dia-
mond patterns, and the effect of short decoherence times that
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made possible to consider only the accumulated phases of
two levels at the avoided crossings, will be much weaker.
Then the question arises on how the interference patterns of
strongly driven DJFQ can be analyzed in the highly coherent
case and how much information on the energy spectrum can
be extracted in this situation.

The purpose of this work is to solve the dynamics of the
DJFQ under strong driving rf pulses considering the full
Hamiltonian of the system. We perform a first-principles cal-
culation taking as input only two parameters from the experi-
mental device: the ratio of the Josephson and charging ener-
gies, EJ /EC, and the asymmetry factor � of the Josephson
energy of one of the junctions with respect to the others.
Furthermore, our approach focus on the behavior of highly
coherent DJFQ when driven within time scales smaller than
the dephasing time. Therefore the interaction with the envi-
ronment is neglected and we solve the time-dependent
Schrödinger equation considering the DJFQ as a closed sys-
tem. As we will show, even when relaxation and dephasing
are neglected, our results reproduce several of the qualitative
features of the experiment of Ref. 15.

We will employ the Floquet formalism20 which has been
extensively applied to study time-dependent periodic evolu-
tions in systems ranging from two-level systems �TLSs�, in-
cluding simplified models of flux qubits,21 to more realistic
molecular and nanoscaled systems.22 The Floquet method al-
lows to transform the periodically time-dependent
Schrödinger equation into an equivalent infinitely dimen-
sional eigenvalue problem for a time-independent Floquet
matrix. In general several truncations schemes are employed
in order to tackle the analytical solution and reduce the infi-
nite Floquet matrix to an effective finite-dimensional
matrix.23

The paper is organized as follows. In Sec. II we introduce
the model Hamiltonian and equations for the Josephson flux
qubit. In Sec. III we present numerical results for the ampli-
tude spectroscopy for the Josephson flux qubit by direct nu-
merical calculation and using the Floquet formulation for the
time-dependent Schrödinger equation in the case of an har-
monic drive. In this section we compare our numerical re-
sults with recent experimental realizations. In Sec. IV we
propose an amplitude spectroscopy method by changing the
initial conditions. Numerical calculations using the Floquet
formulation are presented. Finally, Sec. V contains a sum-
mary and a discussion of the most relevant points of our
findings.

II. MODEL FOR THE DEVICE FOR THE JOSEPHSON
FLUX QUBIT

The DJFQ consists on a superconducting ring with three
Josephson junctions2 enclosing a magnetic flux �= f�0 with
�0=h /2e, see Fig. 1.

The junctions have gauge invariant phase differences de-
fined as �1, �2, and �3, respectively, with the sign conven-
tion corresponding to the directions indicated by the arrows
in Fig. 1. Typically the circuit inductance can be neglected
and the phase difference of the third junction is: �3=−�1
+�2−2�f . Therefore the system can be described with two

dynamical variables: �1 ,�2. The circuits that are used for the
DJFQ have two of the junctions with the same coupling en-
ergy, EJ,1=EJ,2=EJ, and capacitance, C1=C2=C, while the
third junction has smaller coupling EJ,3=�EJ and capaci-
tance C3=�C, with 0.5���1. In terms of the two-
dimensional coordinate �� = ��1 ,�2�, the Hamiltonian of the
DJFQ is2

H =
− �2

2
��

Tm−1�� + V��� � , �1�

where we have normalized H by the Josephson coupling
energy EJ, and �2=8EC /EJ, with EC=e2 /2C. The kinetic
term of the Hamiltonian corresponds to the electrostatic

energy of the system, where the momentum operator is P�̂ =
−i���, with ��= � �

��1
, �

l�2
�, and the “mass” tensor is given by

the matrix m,

m = �1 + � − �

− � 1 + �
� .

The potential term of the Hamiltonian corresponds to the
Josephson energy of the junctions and is given by

V��� � = 2 + � − cos �1 − cos �2 − � cos�2�f + �1 − �2� .

�2�

Typical flux qubit experiments have values of � in the
range 0.6–0.9 and � in the range 0.1–0.6.6–8,15

In quantum computation implementations2,6,7 the Joseph-
son flux qubit is operated at �static� magnetic fields near the
half-flux quantum, f =1 /2+	f , with 	f
1. For ��1 /2, the
potential of Eq. �2� has the shape of a double well with two
minima �within the domain −���1��, −���2���. After
a change in variables one can define the transverse phase
�t= ��1+�2� /2 and the longitudinal phase �l= ��1−�2� /2,
obtaining

V��� � = 2 + � − 2 cos �t cos �l − � cos�2�f + 2�l� . �3�

The two minima are along the longitudinal direction �l, at
��l ,�t�= ���� ,0� separated by a maximum at ��l ,�t�
= �0,0�. Each minima corresponds to macroscopic persistent
currents of opposite sign. Experimental measurements are
sensitive to the sign of the persistent current6 and therefore

E ,C E ,C
f

Eα Cα

J J

J

3

1 2

FIG. 1. Circuit for the DJFQ as described in the text. Josepshon
junctions 1 and 2 have Josepshon energy EJ and capacitance C, and
junction 3 has Josepshon energy and capacitance � times smaller.
The arrows indicate the sign convention for defining the gauge-
invariant phase differences. The circuit encloses a magnetic flux
�= f�0.
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they detect the probability of being on one side or the other
of the double-well potential. For 	f0 �	f�0� a ground
state �−� ��+�� with negative �positive� persistent current is
favored with energy ����	f . At 	f =0 the two minima
have the same energy and the two lowest energy eigenstates
���0� and ��1�� are symmetric and antisymmetric superposi-
tions of the two states ��−� and �+�� corresponding to the
macroscopic persistent currents. To describe the dynamics of
the device as a quantum bit, a two-level truncation of the
Hilbert space is performed.2 In the subspace expanded by
��0� and ��1�, the Hamiltonian of Eq. �1� is reduced to

HTLS = −
�

2
�̂z −

�

2
�̂x, �4�

where HTLS is written in the basis defined by �+�= ���0�
+ ��1�� /�2 and �−�= ���0�− ��1�� /�2. Here �=E1−E0 is the
two-level splitting at 	f =0, and �=4��EJS01	f �for 	f
1�,
with S01=−��0�sin�2�l���1�=−�+�sin�2�l��+�. �For typical
values of � and �, one has S01	0.8–0.9�. Most experiments
control the system varying the magnetic field detuning 	f .
The magnitude of the gap � depends exponentially on � and
�. Recently it has been shown experimentally that it is pos-
sible to manipulate the value of � by controlling �, replacing
the third junction by an additional SQUID loop.24,25

Landau-Zener-Stückelberg �LZS� interferometry is per-
formed by applying an harmonic field on top of the static
field such that f → f�t� with

f�t� = f0 + fp sin��t� . �5�

Hence Eq. �4� acquires an explicit dependence on time
through �→��t�=�0+A sin��t� with �0=4��EJS01	f , 	f
= f0−1 /2 and A
4��EJS01fp. The initial state corresponds
to prepare the system in the ground state �0, f0� for the static
field f0.

For values of �	f �
1 and small driving amplitudes fp

1, the DJFQ is adequately described as a TLS, whose time
evolution under an harmonic drive does not have, in general,
an exact solution. Thus the dynamics is usually
approximated17,26 by free evolutions of the basis states me-
diated by nonadiabatic LZ transitions,27 with probability
PLZ=exp�−2�	� with 	=�2 / fp�. In the last case, explicit
expressions for the occupation probability have been ob-
tained in the fast �slow� driving regime,17,26 	
 �� �1.

Here we will consider the case of nearly fast driving,
which corresponds to the series of experiments on amplitude
spectroscopy performed in Ref. 15. For f0�1 /2, the system
is started in the ground state �0, f0���+�, which has a posi-
tive persistent current. In this type of experiments, one asks
for the probability of switching to a state of negative persis-
tent current: P�+�→�−�= P−�t� during the time the harmonic
pulse is applied. For the TLS in the fast driving regime, the
occupation probability P− is approximately given as17,26

P−
TFD�t� = �

n

�n
2

2�n
2 �1 − cos��nt��� ,

�n = �Jn�A/�� ,

�n = ��n� − �0�2 + �n
2, �6�

being Jn�z� the order n Bessel function of the first kind. The
resonance condition �0=n� is attained when the total phase
accumulated over a single period of the driving, �
=2��0 /�, satisfies �=2�n for a given integer n.13,17 Under
resonance, the occupation probability P−

TFD�t�→1 /2�1
− cos��nt�� with �n=�Jn�A /��. Notice that �n depends on
the driving amplitude fp through A.

Besides the time dependence, the average occupation
probability is the key quantity for the spectroscopic analysis
performed in recent experiments.13,15 In the case of a TLS in
the fast driving regime, the average occupation probability
obtained from Eq. �6� is a sum of Lorentzian-shape n-photon
resonances13

P−
TFD =

1

2�
n

�n
2

�n� − �0�2 + �n
2 . �7�

Thus as �0 �or 	f� is changed, different n resonances are
explored. In addition the Bessel function entering in �n gives
a quasiperiodic character to the patterns of resonances as the
amplitude fp is varied keeping the frequency � fixed.

The analysis of the positions of the resonances as a func-
tion of fp and 	f was the route followed in Refs. 13 and 15 in
an effort to obtain the parameters characterizing the different
avoided crossings of the flux qubit.

III. AMPLITUDE SPECTROSCOPY FOR COHERENT
SYSTEMS

A. Direct numerical calculation

In this section we will focus on the study of the quantum
dynamics of the DJFQ driven by the time-dependent flux f�t�
given in Eq. �5� for f0 near 1/2 and varying the amplitude fp
of the harmonic drive.

In the absence of driving, i.e., for fp=0, the eigenvectors
�n��� � and eigenenergies En are obtained by solving,

�−
�2

2
��

Tm−1�� + V��� ���n��� � = En�n��� � . �8�

In Fig. 2 we plot the seven lower energy levels as a func-
tion of flux detuning f0, obtained by numerical diagonaliza-
tion of Eq. �8� using a discretization grid of ��=2� /M and
2�-periodic boundary conditions on �� = ��1 ,�2�. In this case
we set �=0.25 and �=0.8, close to the experimental values
employed in flux qubits experiments.2,15 The energy spec-
trum is rather sensitive to the values of � and �, and, in
particular, for the selected values, the energy landscape is
quite involved, presenting many avoided crossings �ij in the
range 0.45� f0�0.55. The slope of the energy levels
dEn /df0 is proportional to the average current in the loop.
Therefore an eigenstate with positive or negative slope cor-
responds to a wave function mostly weighted in one side or
the other of the double well. A gap �ij opens at the avoided
crossings of energy levels of opposite slope. We label the
gaps �ij as the avoided crossing of the ith level of positive
slope with the jth level of negative slope, see Fig. 2. �This
convention is different from the one used in Ref. 15 where a
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distinction among longitudinal and transverse modes is made
in the labeling of the gaps.�

It is evident from the energy-level diagram of Fig. 2 that
the description of the time evolution of the DJFQ in terms of
a TLS is valid only for a very small range of amplitudes fp.

In the presence of a finite driving amplitude fp, our first
approach to the problem is to solve numerically the time-
dependent Schrödinger equation �we have normalized time
by tJ=� /EJ�,

i
����� ,t�

�t
= H���� ,t� . �9�

We integrate numerically Eq. �9� with a second-order split-
operator algorithm,28 using a discretization grid of ��
=2� /M and �t=0.1tJ. We use 2�-periodic boundary condi-
tions on �� = ��1 ,�2�. The system is started in the ground state
�0, f0� for a given static field f0, obtained from the numerical
solution of Eq. �8�. Experimentally, what is measured is the
probability of being in a given state of positive, P+, or nega-
tive, P−, persistent current, which can be obtained as

P+�t� 
 1 − P−�t� = �
��l0

����1,�2,t��2d�1d�2,

�10�

where the integration is on one side of the double-well po-
tential defined by �l0 �i.e., −���1�� and �2��1�. The
quantity measured experimentally is the long-time occupa-
tion probability, which is equivalent to the time-averaged
probability in the stationary state. In Fig. 3 we plot the time-

averaged probability P̄−=1− P̄+ as a function of the static
flux f0 and the amplitude fp of the harmonic excitation. The
average is performed over several periods of the harmonic

drive �typically 	20–100 periods, until convergence of the
average�. The plot is obtained by calculating points with a
grid of �f0=1�10−3 and �fp=1�10−4. A pattern of “spec-
troscopic diamonds” is observed, similar to the one obtained
in the experiments, which can be related to the energy-level
spectrum of Fig. 2 as follows. At a fixed flux detuning 	f
= f0−1 /2, the first diamond, D1, starts when the �00 avoided
crossing is reached, at fp= f1s= f00− f0=−	f , with f00=1 /2
the location of �00. The first diamond ends when the �10
crossing is reached at fp= f1e= f0− f10 with f10 the location of
�10. Then the second diamond, D2, starts when the �01
avoided crossing is reached, at fp= f2s= f01− f0, with f01 the
location of �01, etc. The spectroscopic diamonds of Fig. 3
have much less contrast than in the experiments of Ref. 15 in
which the contrast is due to fast intrawell relaxation. This
induces population inversion, reducing the population in the
sectors between the diamonds �i.e., for example, between D1
and D2�. In DJFQs with less relaxation effects, the picture
should be closer to the one shown in Fig. 3. Within the first
diamond a regular pattern of resonances can be qualitatively
observed in Fig. 3. However to accurately describe all the
resonances of D1, as well as the complex structure of D2, a
finer grid sampling �f0 ,�fp is needed. Furthermore, simula-
tions at high fp, in the region of the second diamond and
above �where the dynamics has more weight in higher en-
ergy levels�, need a better discretization of the Schrödinger
equation and averaging of the population for larger times.
Therefore a finer description of the structure of diamonds
needs large time-consuming simulations of the full time-
dependent Schrödinger equation. Instead, in the following
we will employ an approach based on the Floquet formalism,
more adequate for time periodic Hamiltonians.

B. Floquet formulation

For a finite driving f�t�, we write H=H0+	V��� , t� with
H0 corresponding to Eq. �1� with f = f0 �i.e., the time-
independent part of the Hamiltonian� and

0.46 0.48 0.5 0.52 0.54
f
0

1.5

1.8

E

∆30

∆00
∆01

∆02

∆03∆11

∆10

∆20

FIG. 2. Lowest seven energy levels of the DJFQ as a function of
flux f0 for �=0.25 and �=0.80. Arrows indicate the position of the
avoided level crossings �ij measured from f0=0.497 �indicated by
the vertical dot-dashed line�. Calculations were done using M
=256 �see the text for details�. Energy is measured in units of EJ

and flux in units of �0.

FIG. 3. �Color online� Large-amplitude spectroscopic diamonds
obtained for the Josephson flux qubit with �=0.25 and �=0.8. The

intensity of P̄− is plotted as a function of flux detuning 	f and rf
amplitude fp. The system is driven at a frequency �=0.001 �in units
of EJ /��. Numerical calculations were done by direct numerical
integration using M =128 and �t=0.1tJ. Data points correspond to a
grid of �f0=1�10−3 and �fp=1�10−4.
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	V��� ,t� = �EJ sin�2�fac�t��sin�2�f0 + �1 − �2�

+ 2�EJ sin2��fac�t��cos�2�f0 + �1 − �2� ,

�11�

where fac�t�= fp sin��t�. The potential defined in Eq. �11� is
periodic in time with period T=2� /�. Thus, according to the
Floquet theorem,20 the time-dependent Schrödinger equation,
Eq. �9�, has a solution that can be written as

���t� = e−i��t���t� , �12�

where ���t�=���t+T� and �� is known as the quasienergy
or Floquet eigenvalue.

Substituting expression �12� into Eq. �9� we obtain an
eigenvalue equation for the quasienergies,

ĤF�t����t� = �����t� , �13�

where the Floquet Hamiltonian is defined as

ĤF�t� = H�t� − i
�

�t
. �14�

Since the function ���t� is periodic in time it can be ex-
panded in a Fourier series. We introduce the standard Floquet
nomenclature22 and define �n ,k�= �n� � �k�, where n is an in-
dex that labels the eigenstates of H0 and k is a Fourier index.
Then

�n����t�� = �
k=−�

�

�n,k����e−ik�t, �15�

where �n ,k ���� is a Fourier amplitude. From Eqs. �13�–�15�
it is straightforward to write

���n,q���� = �
m

�
k

�n,q�ĤF�m,k��m,k���� , �16�

where ĤF is the Floquet Hamiltonian previously defined
whose matrix elements are given by

�n,q�ĤF�m,k� = �En + q��	m,n	k,q

+
�

2�
�

0

2�/�

�n�	V��� ,t��m�e−i�q−k��tdt .

�17�

Then the time-dependent problem is reduced to solve the
eigenvalue equation, Eq. �16�.

We need to calculate the matrix elements of the Floquet
Hamiltonian defined in Eq. �17�. As it was mentioned before,
the first term in this equation is obtained by numerical diago-
nalization of Eq. �8�, using a discretization grid of ��
=2� /M and 2�-periodic boundary conditions on ��
= ��1 ,�2�. The second term in Eq. �17� is written as

Vnm
l =

�

2�
�

0

2�/�

�n�	V��� ,t��m�e−il�tdt , �18�

where 	V�t� was defined in Eq. �11� and l=q−k is an integer.
The integration is straightforward and we obtain

Vnm
l = �EJ � �Cnm�	l0 − Jl�2�fp�� for l even

iSnmJl�2�fp� for l odd,
� �19�

where Snm= �n�sin�2�f0+�1−�2��m�, Cnm= �n�cos�2�f0+�1
−�2��m�, and Jl�x� is the Bessel function of first kind of order
l.

Then we have all the ingredients to construct the Floquet
matrix,

�n,q�ĤF�m,k� = �En + q��	m,n	k,q + Vnm
q−k, �20�

where q and k range over all integers form −� to �. In order
to solve the problem numerically we must truncate the Flo-
quet matrix, Eq. �20�. The truncated matrix is of dimension
Nd= �2K+1�Nl, where K is defined by the maximum value of
the Fourier index and Nl by the number of levels considered
in the diagonalization of Eq. �8�.

Floquet eigenstates and quasienergies contain all the in-
formation to construct the large-amplitude spectroscopic dia-
monds. Following the experiments, we take as initial state
the ground state of H0 for a given value of flux detuning f0
that here for simplicity, we denote �0�. The initial state is
prepared at a time t0 and then at a time t the evolved solution
���t , t0�� can be expanded in the basis of eigenstates of H0 as

���1,�2,t,t0� = �
n

cn�t,t0��n��1,�2� , �21�

where �n��1 ,�2�= ��1 ,�2 �n� is the wave-function represen-
tation of eigenket �n� in terms of the variables ��1 ,�2�.

Using the Fourier amplitudes of the Floquet eigenstates
�n ,k ����, and their corresponding eigenenergies ��, one ob-
tains the coefficients22

cn�t,t0� = �
k

�
�

�n,k��������0,0�e−i���t−t0�ei�kt, �22�

which are the probability amplitudes that the system initially
in the ground state at time t0 evolves to a state �n� by time t
according to the time-periodic Hamiltonian. This equation
can be interpreted as the amplitude probability that the sys-
tem initially in the Floquet state �0,0� at time t0 evolve to the
Floquet state �n ,k� by time t according to the time-
independent Floquet Hamiltonian, summed over k with
weighting factors exp�i�kt�.

We can now calculate the time dependence of the prob-
ability P+ �or P−=1− P+� of a measurement of a positive
�negative� state of persistent current, replacing Eqs. �21� and
�22� into Eq. �10�, and obtaining

P+�t,t0� = �
n

�
m

 nm�t,t0�pnm, �23�

where the coefficients

pnm = �
W
�n��1,�2��m

� ��1,�2�d�1d�2 �24�

are evaluated by numerical integration using the eigenstates
of Eq. �8� and W is the triangular sector of the two-
dimensional space defined by �l0 �i.e., −���1�� and
�2��1�. The time-dependent coefficients  nm�t , t0�
=cn�t , t0�cm

� �t , t0� are calculated as
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 nm�t,t0� = �
k,l

�
�,!

�n,k��������0,0��0,0��!�

���!�m,l�e−i��!−����t−t0�ei��k−l�t. �25�

We can calculate now the time average of P+�t�. To this end,
we average  nm�t , t0� over many periods considering that for
long times ei���k−l�+�!−���t=	��k−l�,��−�!

. Using the periodic
properties of the quasienergies and eigenvectors of the Flo-
quet Hamiltonian,22 we get

 ̄nm�t0� = �
k,l

�
�

�n,k��������0,0��0,k − l����

�����m,k�ei��k−l�t0. �26�

In experiments the initial time, or equivalently the initial
phase of the field seen by the system in repeated realizations
of the measurement, is not well defined. Then, the quantity
of interest is the transition probability averaged over initial
times,22 in which case ei��k−l�t0 =	k,l. Finally, we obtain

P̄+ = �
n,m

pnm"nm, �27�

where

"nm = �
�

�
k

�n,k��������0,0��0,0��������m,k� .

Thus once equipped with the Floquet quasienergies and
eigenstates one can either compute the time-dependent occu-
pation probability, Eq. �23�, or the time-averaged probability,
Eq. �27�, which is indeed an exact average.

To summarize, we follow this procedure: �i� we take the
parameters � and � from the experimental device. �Here we
use �=0.25 and �=0.8.� �ii� For each value of the magnetic
flux f0 we solve numerically the eigenvalue Eq. �8� obtaining
the eigenstates �n��1 ,�2� and eigenvalues En, with a discreti-
zation ��=2� /M �M =256–1024�. �iii� We evaluate the
Floquet matrix elements of Eq. �19� and the coefficients pnm
of Eq. �24�. �iv� We solve numerically the Floquet eigenvalue
equation, Eqs. �16� and �20� obtaining the Floquet eigenval-
ues �� and the components �n ,q ���� of the corresponding
eigenvectors. A truncation of the matrix is performed: we
consider Nl energy levels �results for different Nl will be
shown� and we consider 2K+1 Fourier components in −K
�k�K. Large K is chosen until convergence of the quanti-
ties of interests. �K	150–400�. �v� The time-dependent oc-
cupation probability, Eq. �23�, for t0=0, or the time-averaged
probability, Eq. �27�, are then evaluated, with the sums over
energy levels between 0 and Nl−1, the sums over k compo-
nents between −K and K, and the sums over Floquet states
between 1 and Nd=Nl�2K+1�.

1. Time-dependent occupation probabilities

We start analyzing the explicit time dependence of the
probability P−�#� after a driving of duration # is applied. To
this end, we evaluate numerically Eq. �23� for t0=0. Differ-
ent initial states shall correspond to prepare the system in the
ground state �n=0; f0� for different f0�0.5.

For values of 	f = f0−1 /2 and �rather small� driving am-
plitudes fp, such that �00 is the only relevant avoided cross-

ing �see Fig. 2�, the DJFQ can be described as a TLS. In Fig.
4 we plot P−�#�=1− P+�#� as a function of time #=�t /2� in
units of the pulse period, for small fp. The numerical calcu-
lations were performed with the Floquet formalism, employ-
ing in Eq. �23� the lowest six energy levels �Nl=6� and K
=150–250. For this case, we find that calculations with Nl
=2 levels overlap almost exactly with the Nl=6 calculations,
and can not be distinguished in the plot, since the TLS ap-
proximation is correct for small fp, as expected. In panel �a�
we consider the case with frequency �=0.001 and with 	f
=−0.11�10−3 such that it corresponds to the fast driving
TLS n=1 resonance, �0=�. For the selected amplitude, fp
=0.25�10−3, the behavior of P−�#� is on the global scale
rather well described by the fast driving approximation for a
TLS given by Eq. �6�. The numerically obtained frequency is
very close to �1	�1=1.87�10−4, in agreement with the
on-resonance relation written in Eq. �6�. However, P−�#� ex-
hibits sudden jumps mediated by additional oscillations with
n local maxima on time scales 	� /�. These oscillations
reflect the quantum-mechanical interference between con-
secutive passages through the avoided crossing �00. This be-
havior is not captured by the fast driving TLS expression,
Eq. �6�, plotted for comparison by the red dashed line. In the
present case 	=�00

2 /�fp�0.5 and then, the interference ef-
fects are important. In panel �b� we consider for the same
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FIG. 4. �Color online� P− as a function of time #=�t /2� for
�=0.25 and �=0.8. �a� �0=�, for �=0.001, 	f =−0.11�10−3, and
fp=0.24�10−3 �black solid line�. The fast driving TLS Eq. �6� for
n=1 with �1=�00J1�4�S01fp /��=1.87�10−4 is plotted for com-
parison �red dashed line�. �b� �0=3�, for �=0.001, 	f =−0.33
�10−3, and fp=0.35�10−3 �black solid line�. The fast driving TLS
Eq. �6� for n=3 with �3=�00J3�4�S01fp /��=1.14�10−4 is plotted
for comparison �red dashed line�. �c� �0=3�, for a higher frequency
�=0.003, 	f =−0.99�10−3, and fp=1.05�10−3 �black solid line�.
Notice that the oscillations on time scales 	� /� are smaller for
�=0.003, as described in the text. The fast driving TLS Eq. �6� for
n=3 is plotted for comparison �red dashed line�. �d� Out of �n=3�
resonance, for �=0.001, 	f =−0.32�10−3, and fp=0.35�10−3

�black solid line�. Notice that the oscillations on time scales 	� /�
persist. Numerical calculations were done with Nl=6 levels, K
=180 and M =1024. Calculations with Nl=2 levels overlap almost
exactly with the Nl=6 calculations in this case.
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frequency as in �a�, the case of 	f =−0.33�10−3 to select the
fast driving TLS n=3 resonance ��0=3��. For a small am-
plitude fp=0.35�10−3, the qualitative description given for
panel �a� holds. For the driving parameters used in panel �b�
we have an adiabaticity parameter 	�0.25. In this case the
oscillations on time scales 	� /�, exhibit n=3 local
maxima. In panel �c� we also consider the case of the n=3
resonance but at a higher frequency, �=0.003, for which 	
�0.03. In this case the fast driving approximation is more
adequate, the local oscillations on time scales 	� /� are
washed out, improving the agreement with the fast driving
TLS expression, Eq. �6�. This can be understood taking into
account that the �adiabatic� Landau-Zener transition
probability27 at a single avoided crossing diminishes as the
frequency � increases. In Fig. 4�d� P−�#� is plotted for 	f =
−0.32�10−3 and �=0.001, a value which is out but close to
the n=3 resonance. We employ the same amplitude fp
=0.35�10−3 as in Fig. 4�b�. Notice that in this case is
max�P−�#���1, as expected in the off-resonance situation,
but the short-time scale oscillations on time scales 	� /�
persist.

In Fig. 5 we show that for a larger amplitude fp=16
�10−3 the TLS approach breaks down. For this amplitude,
the system is driven close to the avoided crossing �01 �see
Fig. 2�. In panel �a� we show the case where �0=3� is sat-
isfied while in panel �b� we show the case out of the �0
=3� condition. As expected, the magnitude of max�P−�#�� in
this case is completely unrelated with the resonance condi-
tions observed at smaller fp. We also compare the results
obtained considering up to Nl=6 levels when evaluating Eq.
�23� with the case with only Nl=2 levels. As it is evident in
the plots, for this large amplitude more than two levels are
needed to describe the behavior of P−�#�, since most of the
population is at the higher energy eigenstates.

2. Average occupation probabilities

Besides the time dependence, the average occupation
probability, Eq. �27�, is the key quantity for the spectroscopic
analysis performed in recent experiments.13,15 We analyze

the patterns of P̄− in the �fp ,	f� space. As we shall show

below, as the amplitude fp is increased, P̄− will exhibit a
richer and more involved structure.

Regarding the parameters employed in the numerical cal-
culations, for small driving amplitude fp and flux detuning
f0�0.5, the discretization grid needed to compute the eigen-
states �n ; f0� can be constructed with quite small values of
M 	128.11 However, in the strong driving regime, we need
to use M =256–1024. In addition, we employ K	150–400

to attain convergence in the values of P̄−. As we already
mentioned Nl is mainly determined by fp. All the calcula-
tions, otherwise specified, have been performed with the
lowest six levels.

In Fig. 6�a� we show the contour plot of P̄− as a function
of �fp ,	f� for 	f�0 and �=0.001. The range of values of fp
and 	f has been selected to explore the region of the energy
spectrum of Fig. 2 containing the avoided crossings �00, �10,
�11, and �20. The plot is obtained by calculating points with
a grid of �f0=2�10−5 and �fp=3�10−5. A clear pattern of
maxima and minima forming a half diamondlike structure
can be observed in Fig. 6�a�. For the sake of clarity we have
drawn lines indicating the boundaries of the first �half� dia-
mond D1 and the beginning of the second one D2. For 	f

0 the diamond pattern is completed with 1− P̄−. The quali-
tative agreement with the diamond structure observed in Ref.
15 is evident. However, in this coherent regime the spectro-
scopic diamonds have much less contrast than in the experi-
ments of Ref. 15.

In Fig. 6�b� we show a similar contour plot of P̄− for a
higher frequency �=0.002. A very similar pattern of maxima
and minima forming a half diamondlike structure can be ob-
served in Fig. 6�b�. For this larger driving frequency the
distance between resonances is increased, as it is expected
from Eq. �6�. It is important to remark that when we increase
the driving frequency and thus the sweep rate, we lose reso-
lution in the obtained spectroscopic diamonds as it can be
checked by inspection of Figs. 6�a� and 6�b�.

Emulating the experimental protocol, in the following we
analyze the structure of the diamonds in order to extract
spectroscopic information, focusing on a fixed frequency, �
=0.001. We start by considering a particular static flux de-
tuning f0�0.49691, i.e., 	f �−0.00309 �black dot in Fig.
6�a� and vertical dashed-dotted line in Fig. 2� that satisfies
for �=0.001 the fast driving TLS n=28 resonance condition,
�0=28�. The initial ground state is �0;0.49691� and thus for

fp=0 is P̄−=0. As the driving amplitude is increased, the net
transfer of population over many driving periods will trans-

late in a finite value of P̄−. Along the horizontal line defined
at 	f �−0.00309 in Fig. 6�a�, the first diamond D1 starts at
fp

D=0.003 �D labels the parameters extracted from the dia-
monds�. From Fig. 2 one can check that this value is roughly
the threshold amplitude needed to reach the first avoided
crossing �00 for the considered value of f0=0.49691. For
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FIG. 5. �Color online� P− as a function of time #=�t /2� for
�=0.25 and �=0.8. The flux qubit is driven at a strong amplitude
with fp=16�10−3. �a� Resonance condition for the TLS in the fast
driving regime: �0=3�, for �=0.001 and 	f =−0.33�10−3. �b� �0

�n�, for �=0.001 and 	f =−0.32�10−3. Numerical calculations
were done with Nl=6 levels, K=300 and M =1024. Calculations
with Nl=2 levels are plotted for comparison �lower curve, red line�.
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fp0.003 the multiple passages through the avoided cross-
ing �00 are reflected in the observed interference pattern that,
up to fp	0.01, it is rather well described by the quasiperi-
odic behavior of the Bessel function Jn=28�4��EJS01fp /��
entering in the definition of �n=28 in Eq. �7�. If the driving
amplitude fp is further increased the interference patterns
persist, but the positions of the maxima and minima do not
follow the Bessel function dependence, as the description of
the resonances in terms of the fast driving TLS formula is
not accurate for these amplitudes. A detailed evidence of this

behavior is shown in Fig. 7�a� where we plot a cut of P̄−
along the horizontal line 	f =−0.00309 depicted in Fig. 6�a�,
corresponding to the condition �0=28� �n=28 resonance
condition for the TLS in the fast driving regime�, together
with the same quantity computed keeping only the lowest

two levels, P̄−
�2�, i.e., with Nl=2. In Fig. 7�b� we plot a case

slightly different �slightly off n=28 resonance condition for
the TLS in the fast driving regime�, for 	f =−0.00308, where
P̄− is clearly smaller. For small amplitudes, P̄− is nicely fol-
lowed by P̄−

�2�, that indeed reproduces quite accurately the
interference patterns both on-resonance and off-resonance, in
Figs. 7�a� and 7�b�, respectively. However, for fp$0.01 the

departure of P̄−
�2� from the actual behavior is notorious, even

before the end of the first diamond D1. In addition, P̄−
�2�

→0 reflecting the fact that higher levels besides the lowest
two are populated as fp increases.

Unlike its beginning, the end of D1 is not so sharply
defined, showing a rather poor change in contrast. In the
experiments of Ref. 15 the data show a larger reduction in
contrast, due to fast relaxation through intrawell transitions.
Furthermore, in the experiment is �10��00 and the popula-
tion transfer is dominated by the transition at the avoided
crossing �10 with no explicit signatures of additional mul-
tiple passages through the extra avoided crossing �11 �see
Fig. 1�c� in Ref. 15�. In our case we have verified that, al-
though �10=2�10−3��00=3�10−4 is roughly the same re-
lation than in the Ref. 15, additional transitions at �11=1

�10−2 contribute to sustain the values of P̄−, resulting in an
effective reduction in the contrast at the end of D1. It is
plausible that in the experimental qubit,15 a high value of �11
gives, unlike our case, a negligible transition probability at
this avoided crossing.

Here, we find that despite the poor contrast in a highly
coherent DJFQ, the end of the first diamond is quite identi-
fiable at f1e

D 	0.013, giving a value of f10
D =0.484 in good

agreement with the position of the second avoided crossing
�10 obtained from the analysis of the spectrum depicted in
Fig. 2. Thus, the boundaries of the first diamond give a rather

FIG. 6. �Color online� Large-amplitude spectroscopic �half� dia-
monds obtained for the Josephson flux qubit with �=0.25 and �

=0.8. The intensity of P̄− is plotted as a function of flux detuning 	f
and rf amplitude fp. �a� The system is driven at a frequency �
=0.001. Calculations were done using Nl=6 �six levels�, 150�K
�300 and M =1024. The black solid lines indicate the edges of the
first diamond D1 and the beginning of the second one D2. The
black dot indicates a particular value of flux detuning 	f �−0.003
for fp=0. See text for a detailed analysis. �b� The flux qubit is
driven at a frequency �=0.002. Calculations were done using Nl

=6, 150�K�250 and M =1024. Data points correspond to a fine
grid of �f0=2�10−5 and �fp=3�10−5.

0 0.005 0.01 0.015 0.02
0 0

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

0.5 0.5

P
-

0 0.005 0.01 0.015 0.02
f
p

0 0

0.1 0.1

0.2 0.2

0.3 0.3

0.4 0.4

P
-

(a)

(b)

P
-
(2)

P
-
(2)

FIG. 7. �Color online� P̄− �black solid line� calculated employ-

ing the lowest six levels and P̄−
�2� �red dashed line� calculated em-

ploying the lowest two levels as a function of the driving amplitude.
Calculations were done using K=150–300 and M =1024. �a� 	f =
−0.00309 and �b� 	f =−0.00308. The circle, square, and triangle
denote the beginning of the first diamond D1, the end of D1, and
the beginning of the second diamond D2, respectively, for the
present value of 	f . See text for details.

FERRÓN, DOMÍNGUEZ, AND SÁNCHEZ PHYSICAL REVIEW B 82, 134522 �2010�

134522-8



satisfactory determination of the position of �00 and �10,
respectively.

For values of fp0.013 the competition between the dif-
ferent transitions at the avoided crossings �00, �10, and �11,

turns the interpretation of the pattern followed by P̄− rather
complicated. However the beginning of the second diamond
D2 at f2s

D =0.019, gives the position of the avoided crossing
�01, at f01

D =0.516 very close to the exact value �see Fig. 2�.
In analogy with the experimental analysis,15 the diamonds

profiles can be studied in more detail for a given amplitude
fp and sweeping the flux detuning f0. To this end, we select
two vertical lines in Fig. 6 that correspond to fp=0.001 and
fp=0.018, respectively.

In the upper panel of Fig. 8 we show P̄− along fp
=0.001. A dashed line indicates the value f0

D1=0.4988 at
which the vertical line defined by fp=0.001 intersects the
lower edge of the D1 �see Fig. 6�. As expected, the symmetry

P̄−→1− P̄− around f0=0.5 holds. The profile of P̄−, sweep-
ing the different equally spaced n resonances as f0 changes,
seems to be in very good agreement with the predicted TLS
resonance pattern. Indeed we have included the results for

P̄−
�2� computed employing the lowest two levels, which are

essentially superimposed to the actual P̄−. An estimate of the
observed number of resonances obtained employing Eq. �7�
is n= ��0 /��= �4��EJS01�	f � /��, being �¯ � the integer part.
In this case is �	f �= �0.5− f0

D1�=0.00122 and 4��EJS01	9.
Thus for �=0.001 we obtain n=11, which is exactly the
number of maxima displayed in the upper panel of Fig. 8 for
the selected range of flux detunings. Thus this analysis,
complemented with the previous one performed in Fig. 7,
confirms that close to the beginning of the first diamond D1,
the TLS description is quite accurate.

The lower panel of Fig. 8 displays P̄− for fp=0.018 and
the beginning of the second diamond D2 is indicated at f0

D2

=0.4974 by the vertical dashed line. The erratic pattern of

resonances in P̄− is in correspondence with the results pre-
sented in Fig. 7 for amplitudes inside the second diamond
D2. As it occurred in that case, the competition between the
transitions at different avoided crossings gives a profile of
the occupation probability that strongly departs from a
simple interference pattern as given by Eq. �7� and/or for the

pattern displayed by P̄−
�2�.

Coming back to complete the spectroscopic analysis of
Fig. 6, the end of the second diamond should be expected at
fp�0.018 corresponding to the position of the �20 avoided
crossing. However, as it is easily checked from Fig. 6, we do
not obtain the end of the second diamond for this value of fp.
Indeed D2 starts for a larger value of the amplitude. In our
case �20	1�10−7
�00 and therefore the transition prob-
ability ��20

2 /�fp4→0. As a consequence, the spectroscopic
diamond contains no visible information on the avoided
crossing �20. This small gap should correspond to a crossing
of transverse modes, which are not easily probed by the driv-
ing f�t� which acts mainly along the longitudinal �l direc-
tion. Similar drawback for detecting transverse modes has
been reported in the experiment.15 A possible way to increase
the resolution of this gap is to increase the transition prob-
ability by reducing the driving frequency �. However, larger
driving periods could be concomitant with the loss in reso-
lution of the individual n resonances.15

Obtaining numerically the diamond pattern besides the
beginning of the second one D2 is a formidable task, essen-
tially due to the extremely large CPU needed. Figure 9

shows a cut of P̄− for 	f =−0.0020 up to amplitudes fp
	0.04. For the larger amplitudes �fp0.02�, we needed to
perform the calculations employing eight levels �Nl=8�. For
the small amplitudes the edges of the first diamond D1 and
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FIG. 8. �Color online� P̄− �black solid line� as a function of the
static flux f0 for two different values of the driving amplitude fp

=0.001 �upper panel� and fp=0.018 �lower panel� calculated using
Nl=6. In both panels, a dashed line denotes the value of f0 that for
fp=0.001 �fp=0.018� gives the beginning of the first �second� dia-
mond D1 �D2�. As a comparison we plotted in red dashed line the

P̄−
�2� computed employing the lowest two levels. Numerical calcu-

lations were done with K=150–300 and M =1024. See Fig. 6 and
text for further details.
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FIG. 9. �Color online� P̄− for 	f =−0.002 calculated employing
the lowest eight levels as a function of the driving amplitude. Cal-
culations were done using K=150–400 and M =1024. The red sym-
bols in the axis show the values of fp for which the different
avoided crossings are reached �see Fig. 2�. The vertical dotted lines
indicate the borders of the different spectroscopic diamonds D1,
D2, and D3.
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the beginning of the second diamond D2 are clearly visible

in the abrupt changes exhibited by P̄−. On the other hand, as
we have already mentioned, no evidence of population trans-
fer is obtained for the transverse avoided crossings �20 and
�02. For larger amplitudes, one can distinguish a region

where P̄− is small �P̄−�0.1� as separating the end of the
second diamond D2 and the beginning of the third diamond
D3. In Fig. 9 we show the points in fp where the avoided
crossings at �30 �triangle down� and �03 �open circle� are
reached.

IV. EXCITED-STATE AMPLITUDE SPECTROSCOPY

In this section we explore an alternative amplitude spec-
troscopic method to study the quantum dynamics of the
DJFQ starting from a different initial condition. The gedan-
ken experiment consist on preparing the system in the first
excited state �n=1, f0� for f0�0.5. In this way, and depend-
ing on the value of f0 chosen, the �00 or �10 avoided cross-
ing could be reached first as the amplitude is increased. With
this initial state, the time-averaged occupation probability is

P̄+
e = 1 − P̄−

e = �
n,m=0

Nl−1

pnm"nm
e , �28�

where

"nm
e = �

�=1

Nd

�
k=−K

K

�n,k��������1,0��1,0��������m,k� .

If we compare with Eq. �27� we see that now P̄+
e depends

on the amplitude ��� �1,0� instead of ��� �0,0�. In general, in
highly coherent devices, one can define an average occupa-

tion probability P̄+
�s� depending on the initial state �s�, with

the amplitude ��� �s ,0� instead of ��� �0,0� in Eq. �27�.
For values of f0�0.5 and fp→0 we have P̄+=1 �P̄−=0�

and P̄+
e =0 �P̄−

e =1�. In Fig. 10 we plot P̄− and 1− P̄−
e as a

function of the driving amplitude for a fixed value for the

detuning �	f =−0.00066�, such that the avoided crossing �00
is reached for smaller amplitudes than the �10. For small
values of fp the system behaves as a TLS and both probabili-
ties give the same information. As the driving amplitude is

increased �fp	0.015� noticeable differences between P̄− and

1− P̄−
e emerge. Indeed, in the highly coherent case the initial

condition plays an important role in the quantum dynamics
of the system already when approaching the second avoided
crossing �10.

In Fig. 11�a� we show the contour plot of 1− P̄−
e as a

function of �fp ,	f� for 	f�0 and �=0.001. The range of
values of fp and 	f and the grid are the same used to obtain
the results showed in Fig. 6. By inspection of Figs. 6�a� and
11�a� we conclude that both amplitude spectroscopy methods
give the same information before the �10 avoided crossing is
reached. While the end of the first diamond D1 is determined
with a good contrast with the excited-state amplitude spec-
troscopy method, the beginning of the second diamond D2 is
still very difficult to determine.

In order to analyze the information hidden in the different
spectroscopic diamonds we plot the difference between the
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FIG. 10. �Color online� P̄− �red line� and 1− P̄−
e �black line� as a

function of the driving amplitude for 	f =−0.00066. Calculations
were done employing the lowest six levels using K=150–300 and
M =1024.

FIG. 11. �Color online� Large-amplitude excited-state spectro-
scopic �half� diamonds obtained for the DJFQ with �=0.25 and �
=0.8 at a driven frequency �=0.001. Calculations were done em-
ploying Nl=6 �six levels�, 150�K�300 and M =1024. �a� Inten-

sity plot of 1− P̄−
e . �b� Intensity plot of P̄−− �1− P̄−

e �.

FERRÓN, DOMÍNGUEZ, AND SÁNCHEZ PHYSICAL REVIEW B 82, 134522 �2010�

134522-10



probabilities used to construct the diamonds in Figs. 6�a� and

11�a�. In Fig. 11�b� we show the contour plot of P̄−+ P̄−
e −1 as

a function of �fp ,	f� for 	f�0 and �=0.001. As we men-
tioned, the difference is zero for values of fp such that the
�10 is not reached. It is interesting to mention that now the
end of the first diamond D1 and the beginning of D2 can be
determined with a rather good contrast, due the cancellation

of some intrincated interference patterns present in both P̄−

and 1− P̄−
e .

Finally we evaluate the probability P̄−
e as a function of the

driving amplitude for a fixed value of the flux detuning close

to the �10 avoided crossing. In this case P̄−
e follows the TLS

behavior up to the �10 avoided crossing but once the driving
amplitude reaches the �00 additional levels should be in-
cluded in order to properly describe the quantum dynamics

of the DJFQ. In Fig. 12 we plot P̄−
e for f0	 f10=0.484, as a

function of the driving amplitude up to values that drive the
system close to the �30, for which we have to employ eight
levels in the numerical calculations. In the figure the changes

in P̄−
e reveal the position of the different avoided crossings

allowing a clear detection of �10, �00, and �30.

V. SUMMARY AND CONCLUSIONS

We have numerically solved the quantum dynamics of the
device for the JFQ under strong harmonic driving in the fully

coherent regime. Starting from the ground state we have
studied the temporal evolution of the occupation probability
and analyzed the spectroscopic diamonds obtained for the
time-averaged occupation as a function of flux detuning and
driving amplitudes. We have shown that for small amplitudes
the description in terms of a TLS reproduces very well the
observed pattern of Landau-Zener-Stückelberg interferences,
as expected. On the other hand, the TLS description breaks
down for driving amplitudes such that the avoided crossing
�10 is reached. The spectroscopic diamonds exhibit in this
case interference patterns with a rather complex structure,
due to the coherent evolution among all coupled energy lev-
els. This situation is different from the experiment of Ref. 15
where there is a higher contrast in the diamond patterns due
to the intrawell relaxation and short coherence times. In spite
of this, in the fully coherent regime explored in this work, we
find that the edges of the diamonds clearly define the posi-
tion of the different avoided crossings, as can be observed in
Fig. 9, for example, even when the contrast is rather poor. In
Sec. IV we have proposed a way to obtain further informa-
tion in this case. In a highly coherent DJFQ it is possible to
prepare the system in the first excited state, for example,
with a � Rabi pulse. From there, the excited-state amplitude
spectroscopy could be performed. A comparison of the occu-
pation probabilities obtained from the ground-state ampli-
tude spectroscopy and the excited-state amplitude spectros-
copy, as performed in Fig. 11�b�, can now bring good
contrast for the resolution of the second diamond. In a per-
fectly coherent closed system one could continue even fur-
ther, performing another amplitude sweep starting from the
second excited state, compare it with the results obtained
starting from the first excited state, and so on. Of course, in
a real system the possibility of these “excited-state amplitude
spectroscopies” will be strongly limited by decoherence and
relaxation processes. In current highly coherent DJFQ �with
dephasing times on the order of 1 %s� the first excited-state
amplitude spectroscopy seems to be feasible. In this case,
this could give an important indication of the coherence of
the device as wells as additional and complementary infor-
mation of the multilevel structure of the energy spectrum of
DJFQ.
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