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The non-Abelian topological order for superconductors is characterized by the existence of zero-energy
Majorana fermions in edges of systems and in a vortex of a macroscopic condensate, which obey the non-
Abelian statistics. This paper is devoted to an extensive study on the non-Abelian topological phase of spin-
singlet superconductors with the Rashba spin-orbit interaction proposed in our previous paper �M. Sato, Y.
Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103, 020401 �2009��. We mainly consider the s-wave pairing state
and the d+ id pairing state. In the case of d+ id-wave pairing, Majorana fermions appear in almost all parameter
regions of the mixed state under an applied magnetic field, provided that the Fermi level crosses k points in the
vicinity of the � point or the M point in the Brillouin zone while in the case of s-wave pairing, a strong
magnetic field, the Zeeman energy of which is larger than the superconducting gap is required to realize the
topological phase. We clarify that Majorana fermions in Rashba spin-singlet superconductors are much more
stable than those realized in spin-triplet p+ ip superconductors in certain parameter regions. We also investigate
the topological number which ensures the topological stability of the phase in detail. Furthermore, as a
by-product, we found that topological order is also realized in conventional spin �or charge�-density wave
states with the Rashba spin-orbit interaction, for which massless Dirac fermions appear in the edge of the
systems and charge fractionalization occurs.
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I. INTRODUCTION

Topological states of condensed-matter systems are char-
acterized by a bulk topological number such as the Chern
number �or the Thouless-Kohmoto-Nightingale-Nijs
�TKNN� number� which represents a topologically nontrivial
structure of the many-body Hilbert space. In such phases,
topologically protected surface states and fractionalized qua-
siparticles, e.g., anyons, appear.1–11 In particular, when topo-
logical order is realized in a certain class of superconductors,
this topological phase supports the existence of chiral Majo-
rana edge modes and a Majorana fermion in a vortex core.3–9

Vortices with Majorana fermion modes are neither fermions
nor bosons but non-Abelian anyons, obeying the non-
Abelian statistics for which the exchange operations of par-
ticles are not commutative.3–8 Because of this remarkable
feature, a vortex with a Majorana fermion may be utilized as
a decoherence-free qubit, and plays an important role for the
realization of fault-tolerant topological quantum
computation.12–14 The state with non-Abelian anyons, which
is called the non-Abelian topological phase, has been dis-
cussed to be realized in the fractional quantum Hall effect
state with �=5 /2 and 12/5.3–5,15 It has been also known that
spin-triplet superconductors such as chiral p+ ip
superconductors,6,7,16–20 and noncentrosymmetric �NCS�
p-wave superconductors with broken time-reversal
symmetry,21 possess a zero-energy Majorana mode, and re-
alizes a non-Abelian topological phase. In general, fully
gapped spin-triplet superconductors support non-Abelian
anyons if the number of the connected Fermi surfaces are
odd, in the case without time-reversal symmetry.22 For the
spin-singlet s-wave superconducting state, it was pointed out
by Fu and Kane that non-Abelian anyons are realized in the
proximity with a topological insulator.23 Also, the non-

Abelian anyons in the s-wave pairing state was discussed
before in the context of axion strings in cosmological
systems.24,25

Recently, the present authors proposed another scenario of
a non-Abelian topological phase in NCS s-wave superfluids
or superconductors. We pointed out that in the presence of
the Rashba spin-orbit �SO� interaction, s-wave superconduct-
ing states show a transition to the non-Abelian topological
phase with nonzero Chern number, under an applied strong
Zeeman magnetic field.26 Also, independently, it was pro-
posed by Sau et al.27 that such systems can be realized in
heterostructure semiconductor devices. The idea was subse-
quently generalized by Alicea.28

In this paper, we explore extensively properties of the
non-Abelian topological phase realized in NCS spin-singlet
superconductors with the Rashba SO interaction, which was
considered in our previous paper.26 There are two main pur-
poses. The first one is to present the detail analysis of chiral
Majorana edge states and a Majorana fermion mode in a
vortex core in the case of the NCS s-wave superconductor,
and the calculation of the topological number, which are
omitted in Ref. 26. The topological order for time-reversal
symmetry broken �TRB� systems in two dimensions �2D� is
characterized by the first Chern number. We present a formu-
lation for the calculation of the Chern number with the use of
a winding number, which makes the estimation of the topo-
logical number easier. Using this formulation, we explore the
non-Abelian topological order realized in NCS spin-singlet
superconductors. We, furthermore, analyze the vortex core
state by solving the Bogoliubov-de Gennes �BdG� equation.
We obtain the zero-energy Majorana fermion solution when
the Zeeman energy due to an applied magnetic field is larger
than the superconducting gap �. We also discuss that, in
some parameter regions, the Majorana fermion in NCS spin-
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singlet superconductors is remarkably stable compared to
that in chiral p+ ip superconductors. This feature is crucially
important for the application to the topological quantum
computation. The superior stability of Majorana mode in a
vortex core of NCS spin-singlet superconductors stems from
the fact that when the Zeeman energy �BHz satisfies the
condition ���BHz−��0, the Majorana fermion is mainly
formed by the superposition of quasiparticles in the vicinity
of the � point �or the M point� with the Fermi momentum
kF�0 �or �� ,���, in the long-distance asymptotic regime
sufficiently far from the center of the vortex core. Because of
this property, the excitation energy E0 in a vortex core which
separates the zero-energy Majorana mode and the first ex-
cited state is much larger than a typical energy scale of the
Andreev bound state of vortex cores ��2 /EF. Furthermore,
the vanishing Fermi momentum for a Majorana fermion im-
plies that decoherence due to quantum oscillations of quasi-
particle energy with a period �1 /kF raised by intervortex
tunneling,29 which may be an obstruction for the implemen-
tation of the topological quantum computation, is substan-
tially suppressed.

The second purpose of this paper is to extend the scenario
of the non-Abelian topological order for the case of s-wave
pairing state to other spin-singlet pairing states. In particular,
we consider the cases of d+ id-wave pairing, for which there
is a full gap in the energy spectrum, ensuring the nonzero
Chern number. It is demonstrated that in the d+ id-wave pair-
ing state with the Rashba SO interaction, when the Fermi
level crosses k points in the vicinity of the � point or the M
point in the Brillouin zone �BZ�, the non-Abelian topological
order, which supports the existence of chiral Majorana edge
states and a Majorana fermion mode in a vortex core, ap-
pears under an applied magnetic field. In contrast to the case
of s-wave pairing considered in Refs. 26–28, for which Ma-
jorana fermions appear only when there is Zeeman splitting
larger than the superconducting gap, a small magnetic field
larger than the lower critical field suffices for the realization
of the non-Abelian topological order in the d+ id-wave pair-
ing state. Thus, it may be easier to realize Majorana fermions
in the NCS d+ id-wave superconductor than in the NCS
s-wave superconductor.

Furthermore, we consider another direction of the exten-
sion of the scenario for the non-Abelian topological order.
Our results for Rashba s-wave superconductors imply that
the topological order is also realizable in the conventional
spin-density wave �SDW� state or the charge-density wave
�CDW� state with the Rashba SO interaction. We demon-
strate that in these density wave states, the Abelian topologi-
cal order appear under applied magnetic fields, leading to the
existence of gapless edge states described by the Dirac fer-
mion, which is analogous to the surface states of the topo-
logical insulator. We also discuss the scenario of charge frac-
tionalization in the topological density wave states.

The organization of this paper is as follows. From Sec. II
to Sec. III, we introduce the model for superconductors with
the Rashba SO interaction in two dimensions, upon which
our analysis is focused, and, as a first step of our analysis,
classify the parameter regions of the model, in which differ-
ent topological phases may be realized. In Sec. IV, we ex-
plain the duality relation which holds for our model Hamil-

tonian. This duality relation was utilized for the analysis of
topological properties in Ref. 26. In the most part of this
paper, we do not use the duality relation but instead, confirm
the argument based on it developed in Ref. 26 by adopting a
more direct approach to this issue. In Sec. V, we analyze and
discuss the topological number characterizing the non-
Abelian topological phases realized in NCS spin-singlet su-
perconductors. In particular, we prove the relation between
the Chern number and the winding number, which is useful
for the investigation of the topological order. Using this re-
lation, we elucidate the general condition for the realization
of the non-Abelian topological order. On the basis of the
analysis of the topological number, we obtain the phase dia-
gram of the topological order for spin-singlet NCS supercon-
ductors. We also give some physical arguments on the origin
of the topological order in spin-singlet NCS superconduct-
ors. In Sec. VI, the numerical results for chiral Majorana
edge modes are presented for the cases of s-wave pairing and
d+ id-wave pairing. In Sec. VII, we consider an approxi-
mated but analytical solution of the BdG equation for Majo-
rana zero-energy modes in vortex cores. We, also, discuss the
superior stability of the Majorana mode in NCS spin-singlet
superconductors compared to that in chiral p+ ip supercon-
ductors. In Sec. VIII, topological density wave states in
which gapless Dirac fermions on the edge of systems appear
and charge fractionalization occurs are considered. In Sec.
IX, we give a summary of our results and also discuss pos-
sible realization of the NCS spin-singlet superconductors
with the non-Abelian topological order in real systems.

Some technical details are presented in Appendices. In
Appendices A and B, we derive useful formulas for the
Chern numbers and the winding numbers, which were used
for the discussion on the topological number in Sec. V.
Supplementary discussions related to the topological argu-
ment given in Sec. V are presented in Appendix C. The de-
tails of the derivation of the BdG equation for a singlet vor-
tex are given in Appendix D. In Appendix E, we discuss
another mechanism of non-Abelian anyons in spin-singlet
superconductors, which was first discussed in Ref. 24, where
non-Abelian anyons are realized in time-reversal invariant
s-wave superconducting state without a Zeeman magnetic
field. This discussion is relevant to the non-Abelian topologi-
cal order realized in an interface between an s-wave super-
conductor and a time-reversal invariant topological insulator
proposed by Fu and Kane.23

II. MODEL

In this paper, we consider spin-singlet superconductors
with the Rashba SO interaction30 in two dimensions. For
concreteness, we define our model in the square lattice while
the following argument does not rely on the particular choice
of the crystal structure. It is also noted that our analysis and
results are also generalized straightforwardly to other type of
antisymmetric SO interactions raised by the lack of inversion
center of systems. The Hamiltonian is given by
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H = �
k,	


�k�ck	
† ck	 − �BHz �

k,	,	�

�	z�		�ck	
† ck	�

+ � �
k,	,	�

L0�k� · �		�ck	
† ck	�

+
1

2 �
k,	,	�

�		��k�ck	
† c−k	�

† +
1

2 �
k,	,	�

�	�	
� �k�c−k	ck	�,

�1�

where ck	
† �ck	� is a creation �an annihilation� operator for an

electron with momentum k= �kx ,ky�, spin 	. The energy-
band dispersion is 
�k�=−2t�cos kx+cos ky�−� with the
hopping parameter t and the chemical potential �, and the
Rashba SO coupling is �L0�k�=��sin ky ,−sin kx� ���0�.
We also introduce the Zeeman coupling
−�BHz�k,		��	z�		�ck	

† ck	� in the Hamiltonian.
For the spin-singlet superconductors, the gap function

�		��k� is written as

�		��k� = i��k��	y�		� �2�

with the y component of the Pauli matrices 	i �i=x ,y ,z�. In
the following, we assume two different full-gapped spin-
singlet superconductors: the first one is the s-wave pairing,
��k�=�s, and the other is the d+ id-wave pairing. For the
d+ id pairing, we consider two possible realization on the
lattice, ��k�=�d

�1��cos ky −cos kx�+ i�d
�2� sin kx sin ky or

��k�=�d
�1��sin2 kx−sin2 ky�+ i�d

�2� sin kxsin ky. The ampli-
tudes �s and �d

�i� �i=1,2� are chosen as real and positive.
The second type of the d+ id-wave pairing includes higher

harmonic contributions, which may arise depending on de-
tailed structures of electronic bands and the pairing interac-
tions. We use these two types of the d+ id-wave gap to
clarify that, although both of them support the non-Abelian
topological order, the precise condition for the non-Abelian
phase slightly depends on the detail of the gap structure.

For a noncentrosymmetric superconductor, the parity mix-
ing of the gap function generally occurs.31–35 Therefore, in
addition to the spin-singlet component of the gap function,
the spin-triplet one is induced generally. However, if the
spin-singlet amplitude dominates the gap function, the topo-
logical nature is not affected by the spin-triplet one. We ne-
glect the spin-triplet component in the following.

In the following, we mainly consider the case that SO
interaction is much larger than the Zeeman energy; i.e.,
��L0�k����BHz, which is an important condition for the sta-
bility of the superconducting state against the Pauli depairing
effect due to the magnetic fields.

III. GAP CLOSING CONDITION

In general, continuous topological phase transitions be-
tween topologically distinct phases occur only when the en-
ergy gap of the bulk spectrum closes. Thus, to identify pa-
rameter regions for which different topological phases are
realized, we first examine the bulk spectrum of the system.
To obtain the bulk spectrum, we rewrite the Hamiltonian as

H =
1

2 �
k,	,	�

�ck	
† , c−k	 �H�k�� ck	�

c−k	�
† 	 , �3�

where the BdG Hamiltonian H�k� is given by

H�k� = �
�k� − �BHz	z + �L0�k� · � i��k�	y

− i��k��	y − 
�k� + �BHz	z + �L0�k� · ��	 . �4�

Diagonalizing the BdG Hamiltonian, we find

E�k� = 

�k�2 + �2L0�k�2 + �B
2 Hz

2 + ���k��2 
 2

�k�2�2L0�k�2 + �
�k�2 + ���k��2��BHz
2. �5�

In our model, the gap of the system closes only when the
following condition is satisfied:


�k�2 + �2L0�k�2 + �B
2 Hz

2 + ���k��2

= 2

�k�2�2L0�k�2 + �
�k�2 + ���k��2��B
2 Hz

2. �6�

From a straightforward calculation,36 it is found that this
condition is equivalent to


�k�2 + ���k��2 = �B
2 Hz

2 + �2L0�k�2, ���k���L0�k� = 0.

�7�

We examine the gap closing condition using Eq. �7� for the
s-wave pairing state and the d+ id-wave pairing state in the
following.

A. s-wave Rashba superconductor

For the s-wave pairing, the second equation in Eq. �7� is
met only when L0�k�=0. Therefore, the gap closes at k
= �0,0� , �0,�� , �� ,0� , �� ,��. Substituting those values into
the first equation in Eq. �7�, we have three different gap
closing conditions �in the square lattice, the condition at k
= �� ,0� and that at k= �0,�� are the same, so we have only
three conditions�,

�4t + ��2 + �s
2 = ��BHz�2, �2 + �s

2 = ��BHz�2,

�4t − ��2 + �s
2 = ��BHz�2. �8�

When one of these Eq. �8� is satisfied, the energy gap closes.
From these conditions, we find that there are at least seven
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regions of parameter space, which may be topologically dis-
tinct, as shown in Fig. 1. We will explore the topological
numbers associated with these different regions and classify
the topological phases of our system in Sec. V.

B. d+ id-wave Rashba superconductor

1. Case of �(k)=�d
(1)(cos ky−cos kx)+ i�d

(2) sin kxsin ky

For this d+ id-wave gap, the second equation in Eq. �7� is
met either when L0�k�=0 or when ��k�=0. This condition is
satisfied at k= �0,0� , �� ,0� , �0,�� , �� ,��. Substituting these
ks� in the first equation in Eq. �7�, we have

�4t + ��2 = ��BHz�2, �2 + 4��d
�1��2 = ��BHz�2, �9�

�4t − ��2 = ��BHz�2.

The conditions obtained here are very similar to those for
s-wave pairing. However, there is an important difference
between them. The first and the last equations of the gap
closing condition �Eq. �9�� do not depend on the amplitude of
the pairing gap. Because of this feature, even for a relatively
weak Zeeman field where the orbital depairing effect is neg-
ligible, the gap can close, and the topological phase transi-
tion occurs, provided that the chemical potential � is prop-
erly tuned as �� 
4t. As will be seen later, this point is
crucially important for the feasibility of the realization of the

non-Abelian topological order in the d+ id-wave pairing
case, compared to the s-wave pairing state.

2. Case of �(k)=�d
(1)(sin2 kx−sin2 ky)+ i�d

(2) sin kx sin ky

As in the previous case, the second equation in Eq. �7� is
met either when L0�k�=0 or when ��k�=0. Accidently, both
of them are satisfied at the same momenta k
= �0,0� , �0,�� , �� ,0� , �� ,��. Substituting those values into
the first equation in Eq. �7�, we have

�4t + ��2 = ��BHz�2, �2 = ��BHz�2, �4t − ��2 = ��BHz�2.

�10�

In this case, all of the gap closing conditions �Eq. �10�� do
not depend on the pairing gap, and thus, the topological
phase transition can occur even for a weak magnetic field for
�� 
4t ,0. The difference between the second equation of
Eq. �9� and that of Eq. �10� yields a slight difference of the
parameter regions where a topological order occurs.

IV. DUALITY RELATION IN BdG HAMILTONIAN

As discussed in Ref. 26, an underlying mechanism of the
realization of the non-Abelian topological order in the
Rashba s-wave superconductor is understood in terms of the
duality relation satisfied by model �1�; i.e., the BdG Hamil-
tonian H�k� is unitary equivalent to the following dual
Hamiltonian HD�k�:

HD�k� = DH�k�D† = � Re ��k� − �BHz	z − i�
�k� − i Im ��k��	y − i�L0�k� · �	y

i�
�k� + i Im ��k��	y + i�L0�k�	y · � − Re ��k� + �BHz	z
	 , �11�

where D is the constant unitary matrix given by

D =
1

2

� 1 i	y

i	y 1
	 . �12�

As is shown in Appendix A, the dual transformation accom-
plished by the constant unitary matrix does not change the
first Chern number of the system. Therefore, the original
Hamiltonian has the same topological properties as the dual
one.

It should be remarked here that the Rashba spin-orbit in-
teraction �L0�k� ·� in the original BdG Hamiltonian H�k�
induces “the p-wave gap function” −�L0�k� ·�	y in the dual
BdG Hamiltonian. However, this does not necessary means
that the topological properties of our system is the same as
those of a p-wave superconductor since HD�k� has a non-
standard kinetic term given by Re �s�k�. Nevertheless, we
will show in the following sections that the topological order
similar to a chiral p+ ip-wave superconductor emerges under
a large Zeeman field. Furthermore, the topological order in
our system is much more robust than that of a chiral
p+ ip-wave superconductor.

In the most part of this paper, we do not use the dual
Hamiltonian HD�k�, but, instead, analyze the original Hamil-
tonian H�k� directly. Our analysis using H�k� in this paper
confirm the correctness of the argument based on the dual
Hamiltonian developed in Ref. 26.

V. TOPOLOGICAL NUMBERS

As a conventional long-range order such as magnetic or-
der is characterized by the existence of a nonzero local order
parameter, a topological phase is also specified by a charac-
teristic quantity similar to an order parameter; this is a topo-
logical number. In this section, we evaluate the topological
number characterizing the non-Abelian topological order re-
alized in Rashba spin-singlet superconductors.

For two-dimensional TRB superconductors, on which our
discussion is focused, an important topological number is the
TKNN number �equivalent to the first Chern number� ITKNN,
which is defined as follows. Let us consider the BdG
equation
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H�k���n�k�� = En�k���n�k�� . �13�

By using the normalized occupied states, “the gauge field”
Ai

�−��k� is defined as

Ai
�−��k� = i �

En�0
��n�k���ki

�n�k�� . �14�

Then the TKNN number is given by

ITKNN =
1

2�



T2
dkxdkyF�−��k� , �15�

where T2 is the first Brillouin zone in the momentum space,
F�−��k� is the “field strength of the gauge field” Ai

�−��k�, that
is, F�−��k�=�ij�ki

Aj
�−��k�.

The nonzero TKNN number implies the existence of to-
pological order in the system under consideration. In general,
the nonzero TKNN number allows both the Abelian topo-
logical order, for which there are no non-Abelian anyons,
and the non-Abelian topological order, which is character-
ized by the non-Abelian statistics. For the Rashba supercon-
ductor, the Hamiltonian of which Eq. �4� is a 4�4 matrix,
we can calculate ITKNN directly from the above equations.
However, here, we exploit a different method for the evalu-

ation of the topological number, which is practically easier to
be carried out. Furthermore, this method is quite useful for
the elucidation of the realization of the non-Abelian topo-
logical order. A key idea of our method is to utilize another
topological number specific to the Rashba superconductors,
which is called the winding number.21

The winding number is introduced as follows.21 Let us
consider the particle-hole symmetry of the BdG Hamil-
tonian,

�H�k��† = − H��− k� , �16�

where � is given by

� = � 0 12�2

12�2 0
	 . �17�

For ky =0 or �, it is found that the BdG Hamiltonian �4� of
our model satisfies H��−k�=H�k�. Thus the particle-hole
symmetry yields that

��,H�k��+ = 0 �18�

for ky =0,�. From this relation, it is found that if we take the
basis where � has the diagonal form as

� = �12�2 0

0 − 12�2
	 , �19�

then H�k� at ky =0,� becomes off-diagonal,

H�k� = � 0 q�k�
q†�k� 0

	 . �20�

By using q�k� in the above, the topological number I�ky� is
defined as

I�ky� =
1

4�i



−�

�

dkx tr�q−1�k��kx
q�k� − q†−1�k��kx

q†�k�� .

�21�

We call I�ky� as the winding number in the following.
As is shown in Appendix B 3, the winding number and

the TKNN number satisfies

�− 1�ITKNN = �− 1�I�0�−I���. �22�

Therefore, from the winding number, we can determine
�−1�ITKNN. The index �−1�ITKNN is of particular interest since it
give a hallmark of the non-Abelian topological phase: when
�−1�ITKNN=−1, there are an odd number of Majorana zero
modes in a vortex, which implies the vortex is a non-Abelian
anyon. In the following sections, we calculate the winding
number and the TKNN number for the cases of the s-wave
pairing state and the d+ id pairing state. The obtained phase
diagrams for the non-Abelian topological phases are summa-
rized in Fig. 1.

A. s-wave pairing

We consider an s-wave NCS superconductor with the gap
function

( H )z

2

B

4t-4t 0

( H )z

2

B

0 4t-4t

( H )z

2

B

-4t 4t0

(-1;0,-1)

(-1;-1,0)(-1;0,1)

(-1;1,0)

(-1;0,1)(-1;1,0)

(-1;-1,0)(-1;0,-1)

(-1;0,-1)(-1;1,0)

(-1;-1,0)(-1;0,1)

(a)

(b)

(c)

s
2

FIG. 1. �Color online� The diagrams of the non-Abelian topo-
logical phase for spin-singlet NCS superconductors. �a� s-wave
case. �b� d+ id-wave case with ��k�=�d

�1��cos ky −cos kx�
+ i�d

�2� sin kxsin ky. �c� d+ id-wave case with ��k�=�d
�1��sin2 kx

−sin2 ky�+ i�d
�2� sin kxsin ky. The topological numbers

(�−1��Ch; I�0� , I���) are given only in the phases supporting a non-
Abelian topological order. In each case, there are four different
non-Abelian topological phases. In the s-wave case, the non-
Abelian topological phase is realized only when the Zeeman mag-
netic field satisfies ��BHz�2� ��s�2 but in the d+ id-wave cases, the
non-Abelian topological phase can be realized even for a small but
nonzero Hz.
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��k� = �s. �23�

For the s-wave NCS superconductor, q�k� is given by

q�k� = − �
�k� − �BHz	z − � sin kx	y� + i�s	y , �24�

thus its determinant is

det q�k� = 
�k�2 − ��BHz�2 − �2 sin2 kx + �s
2 − 2i��s sin kx.

�25�

Denoting the real �imaginary� part of det q�k� as m1�k�
(m2�k�), we have

m1�k� = 
�k�2 − ��BHz�2 − �2 sin2 kx + �s
2,

m2�k� = − 2��s sin kx. �26�

From formula �B22� in Appendix B 2, the winding number is
evaluated as

I�ky� =
1

2
�− sgn�
�0,ky�2 − ��BHz�2 + �s

2� + sgn�
��,ky�2

− ��BHz�2 + �s
2�� . �27�

In Table I, we summarize the winding number I�ky� calcu-
lated from this equation. We also list �−1�ITKNN obtained from
formula �22�. Note that the topological numbers can change

only when one of the gap closing conditions �Eq. �8�� is met.
From Table I, we obtain the diagram of the non-Abelian
topological phase for s-wave pairing shown in Fig. 1�a�.

To get a better understanding of the origin of the non-
Abelian topological order, we, here, present some physical
discussions about the phase diagram shown in Fig. 1�a�. We
consider two different but complementary arguments. The
first one is based on mapping from the s-wave pairing state
to an effective spinless p-wave pairing state in the chirality
basis. The second one is the argument based on the duality
relation introduced in Sec. IV. The former is applicable to the
case of �BHz��s while the latter is particularly useful in the
vicinity of the topological phase-transition point �BHz��s.
In this sense, these two arguments are complementary.

We, first, present the former argument which utilizes the
mapping onto an effective p-wave pairing state in the chiral-
ity basis representation and is applicable to the case of
�BHz��s. In the chirality basis, the SO coupling term and
the Zeeman coupling one in the Hamiltonian are diagonal-
ized, leading to the two SO split bands. As is shown in Ap-
pendix C, in the parameter region where the non-Abelian
topological phase is realized, we can map our model �4� into
a spinless chiral p-wave superconductor in the chirality ba-
sis, provided that �BHz��s. For ��0, the low-energy ef-
fective Hamiltonian in this case is

H̃−�k� = � 
�k� − �
�k� ��L0x�k� − i�L0y�k�����k�/�
�k��

��L0x�k� + i�L0y�k������k�/�
�k�� − 
�k� + �
�k�
� �28�

and for ��0, it is

H̃+�k� = � 
�k� + �
�k� ��L0x�k� + i�L0y�k�����k�/�
�k��

��L0x�k� − i�L0y�k������k�/�
�k�� − 
�k� − �
�k�
� �29�

with �
�k�=
��L0�k��2+ ��BHz�2. For the s-wave pairing
state in the original Hamiltonian, the gap function in Eq. �28�
or Eq. �29� is given by

��L0x�k� � i�L0y�k�����k�/�
�k��

� i��sin kx � i sin ky���s/�BHz� , �30�

thus, for both �’s, the chiral p+ ip wave superconductors are
realized in the chirality basis. By using the effective Hamil-
tonian, the phase diagram of our system can be understood
more intuitively. The above effective Hamiltonian �28� or
Eq. �29� is obtained by using the fact that, when �BHz��s,
and � is in the region of the phase diagram where the non-
Abelian topological order is realized, only one of the two
Fermi surfaces survives and the other is pushed away by the
Zeeman magnetic field. As a result, the spinless chiral p
+ ip-wave superconductor is realized effectively. The non-
Abelian topological phase obtained here is effectively the

same as that in the spinless chiral p+ ip-wave supercon-
ductor.

We, now, present the second argument on the origin of the
topological order which is based on the duality relation.37 To
grasp the physics shown in the phase diagram, let us see
what happens at the transition between the trivial phase �i.e.,
the phase with �BHz=0� and the non-Abelian topological
one ��−1�ITKNN=−1�. From Fig. 1�a�, it is found that if we
increase the Zeeman magnetic field, such a phase transition
occurs at �= 
4t when �BHz=�s. For simplicity, we con-
sider the case with �=−4t, where the Fermi surface is close
to the � point. A similar analysis is possible for the transition
at �=4t. In the former case, the gap of the system closes at
k= �0,0�.

To examine the topological phase transition, it is conve-
nient to use the dual Hamiltonian instead of the original one.
Using the duality transformation �Eq. �11��, we recast the
original BdG Hamiltonian into its unitary equivalent dual
Hamiltonian HD�k�. Then, we find that for ��−4t, the dual
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Hamiltonian HD�k� around k= �0,0� is decomposed into the
following two 2�2 matrices,

H↑↑
D �k� = ��s − �BHz ��ky + ikx�

��ky − ikx� − �s + �BHz
	 , �31�

H↓↓
D �k� = � �s + �BHz ��− ky + ikx�

��− ky − ikx� − �s − �BHz
	 , �32�

where ↑ and ↓ denote the spin in the basis of the dual Hamil-
tonian.

We notice here that these Hamiltonians have a close simi-
larity to the Hamiltonian of the spinless chiral p+ ip super-
conductor discussed in Ref. 5. The spinless chiral
p+ ip-wave superconductor shows a phase transition between
the non-Abelian topological phase �or weak-pairing phase in
the terminology used in Ref. 5� and the topologically trivial
phase �strong-pairing phase�, and the transition is described
by the following low-energy effective Hamiltonian:

Hp+ip�k� = � �p �p�kx + iky�
�p

��kx − iky� − �p
	 , �33�

where �p and �p are the chemical potential and the paring
amplitude for the p+ ip-wave superconductor, respectively.
For �p�0, the state is topologically trivial, and for �p�0,
the state supports non-Abelian topological order. The phase
transition occurs at �p=0. By identifying �s−�BHz and � in
Eq. �31� with �p and �p in Eq. �33�, respectively, the simi-
larity between H↑↑�k� and Hp+ip�k� is evident. This similar-
ity immediately implies that the phase transition at �BHz
=�s is also accompanied with the emergence of the non-
Abelian topological order. �We also have a similar phase
transition at �BHz=−�s by decreasing the Zeeman magnetic
field. From the similarity between H↓↓

D �k� and Hp+ip�k�, this
transition is also found to be accompanied with the emer-
gence of the non-Abelian topological order.�

Indeed, using the dual Hamiltonian �31�, we can see di-
rectly that the TKNN number change by �ITKNN=−1 at the
transition. For this purpose, we slightly generalize the gauge
field Ai

�−��k� as follows:

A�
�−��k� = �i �

En�0
��n�k���k�

�n�k�� for � = x,y ,

i �
En�0

��n�k����BHz
�n�k�� for � = z , �

�34�

where the z component is introduced additionally. Then, con-
sider the rectangle illustrated in Fig. 2. Here the top face
BZ�I� and the bottom one BZ�II� denote the first Brillouin
zones of the system after ��BHz��s� and before ��BHz
��s� the transition, respectively. Because of the periodicity
of the Block wave function ��n�k�� in the momentum space,
“the magnetic field” F�

�−��k�=�����k�
A�

�−��k� on the side faces
Si �i=1,2� are identical to that on the opposite ones Si�.
Therefore, the change in the TKNN number

TABLE I. The TKNN integer ITKNN and the winding number
I�ky� for 2D s-wave superconductors with the Rashba coupling.
�−1�ITKNN=−1 corresponds to the non-Abelian topological phase.

�a� ��−2t

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2� �4t+��2+�s
2 1 0 0

�4t+��2+�s
2� ��BHz�2��2+�s

2 −1 1 0

�2+�s
2� ��BHz�2� �4t−��2+�s

2 −1 0 1

�4t−��2+�s
2� ��BHz�2 1 0 0

�b� −2t���0

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2��2+�s
2 1 0 0

�2+�s
2� ��BHz�2� �4t+��2+�s

2 1 −1 1

�4t+��2+�s
2� ��BHz�2� �4t−��2+�s

2 −1 0 1

�4t−��2+�s
2� ��BHz�2 1 0 0

�c� 0���2t

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2��2+�s
2 1 0 0

�2+�s
2� ��BHz�2� �4t−��2+�s

2 1 −1 1

�4t−��2+�s
2� ��BHz�2� �4t+��2+�s

2 −1 −1 0

�4t+��2+�s
2� ��BHz�2 1 0 0

�d� 2t��

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2� �4t−��2+�s
2 1 0 0

�4t−��2+�s
2� ��BHz�2��2+�s

2 −1 0 −1

�2+�s
2� ��BHz�2� �4t+��2+�s

2 −1 −1 0

�4t+��2+�s
2� ��BHz�2 1 0 0

FIG. 2. �Color online� Topological phase transition at �BHz

=�s. BZ�I� and BZ�II� indicate the Brillouin zones after and before
the transition, respectively. The gap closes at �kx ,ky�= �0,0� when
�BHz=�s. Si and Si� �i=1,2� are the side faces of the rectangle in
which the top and bottom faces are BZ�I� and BZ�II�. For simplic-
ity, only S1 and S1� are explicitly indicated.
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�ITKNN =
1

2�



BZ�I�
dkxdkyF�−��k� −

1

2�



BZ�II�
dkxdkyF�−��k�

�35�

is rewritten as the total magnetic field penetrating the surface
of the rectangle �V,

�ITKNN =
1

2�



BZ�I�
dkxdkyFz

�−��k� −
1

2�



BZ�II�
dkxdkyFz

�−��k�

+
1

2�



S1

dkydkzFx
�−��k� −

1

2�



S1�
dkydkzFx

�−��k�

+
1

2�



S2

dkzdkxFy
�−��k� −

1

2�



S2�
dkzdkxFy

�−��k�

=
1

2�



�V

dS�F�
�−��k� , �36�

with kz=�BHz−�s. Therefore, �ITKNN is nonzero only if the
“magnetic monopole” of A�

�−��k� exists inside the rectangle:
if there is no such a source of the magnetic field, �ITKNN
should be zero from the Gauss-Bonnet theorem. On the other
hand, if the magnetic monopole exists, we have a net mag-
netic flux penetrating the surface of the rectangle.

Actually, we have a magnetic monopole located at
(kx ,ky ,kz�=�BHz−�s�)= �0,0 ,0�, where the gap of the sys-
tem closes. The magnetic charge can be read from the dual
Hamiltonian H↑↑

D �k�. By rewriting H↑↑
D �k� as H↑↑

D �k�
=R�k� ·� with (R1�k� ,R2�k� ,R3�k�)= ��ky ,−�kx ,−kz�, the
monopole charge is given by

Q =
1

8�



S2
dS�����R̂ · ��k�

R̂ � �k�
R̂� , �37�

where R̂�k�=R�k� / �R�k�� and S2 a small sphere surrounding
the gap-closing point. Noting that the right-hand side of Eq.

�37� counts the number of times the unit vector R̂ wraps
around the origin, we obtain Q=−1. Therefore, from Eq.
�36�, we immediately find that �ITKNN=−1. Before the tran-
sition, the system is topologically equivalent to the ordinary
s-wave superconductor without the Zeeman magnetic field,
thus ITKNN=0. Therefore, we have ITKNN=−1 after the
transition.38 Again, this result indicates that the system after
the transition belongs to the same topological class as the
spinless chiral p+ ip-wave superconductor with ITKNN=−1.

As mentioned before, the above two arguments are appli-
cable, respectively, to the different parameter regions, and
thus, they are complementary. It is noted that these argu-
ments are also straightforwardly applied to the case of the
d+ id pairing state discussed in the next sections.

As seen from Table I, the non-Abelian topological order
�i.e., �−1�ITKNN=−1� appears only in the case that the Zeeman
energy �BHz is larger than the superconducting gap �s. As is
well known, the Rashba superconductors are stable against
the Pauli depairing effect due to applied magnetic fields even
for �BHz��s when the magnetic field is applied perpendicu-
lar to the xy plane,33,35 as long as the Rashba SO interaction

is sufficiently strong. However, there is also the orbital de-
pairing effect due to applied magnetic field. An important
question is how the superconductivity survives the orbital
depairing effect for such a strong magnetic field �BHz��s.
One possible scenario is to realize this system in the prox-
imity between a superconductor and a semiconductor as pro-
posed in Refs. 27 and 28. Another possibility is to realize it
in strongly correlated electron systems for which the orbital
depairing field is large. Also, one more promising scheme is
to utilize ultracold fermionic atom as proposed in Ref. 26.
This issue will be discussed in more detail in Sec. IX.

B. d+ id wave pairing

1. Case of �(k)=�d
(1)(cos ky−cos kx)+ i�d

(2) sin kxsin ky

For the case of the d+ id-wave superconductor with the
gap function

��k� = �d
�1��cos ky − cos kx� + i�d

�2� sin kxsin ky , �38�

q�k� and its determinant are given by

q�k� = − �
�k� − �BHz	z − � sin kx	y�

+ i�d
�1��cos ky − cos kx�	y , �39�

det q�k� = 
�k�2 − ��BHz�2 − �2 sin2 kx

+ ��d
�1��cos ky − cos kx��2

− 2i� sin kx�d
�1��cos ky − cos kx� . �40�

Therefore, the real and imaginary parts of the determinants
are

m1�k� = 
�k�2 − ��BHz�2 − �2 sin2 kx

+ ��d
�1��cos ky − cos kx��2, �41�

m2�k� = − 2i� sin kx�d
�1��cos ky − cos kx� .

To apply formula �B22�, we slightly change m2�k� as
−2i� sin kx�d

�1��cos ky −cos kx�+� ���1�. After using for-
mula �B22�, we put �=0 again. Since I�ky� is a topological
number, this procedure does not change the value of I�ky�. In
this manner, we estimate the winding number I�ky� as

I�0� =
1

2
�− sgn�
�0,0�2 − ��BHz�2� + sgn�
��,0�2 − ��BHz�2

+ 4��d
�1��2�� �42�

and

I��� =
1

2
�− sgn�
��,��2 − ��BHz�2� + sgn�
�0,��2 − ��BHz�2

+ 4��d
�1��2�� . �43�

We summarize the winding number I�ky� and �−1�ITKNN in
Table II. The non-Abelian phases are realized in the param-
eter regions that �−1�ITKKN=−1. From Table II, we obtain the
phase diagram shown in Fig. 1�b�.

In a manner similar to the NCS s-wave superconductor, if
�BHz���k�, the obtained phase diagram can be understood
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by the effective Hamiltonian �28� for ��0 or Eq. �29� for
��0 obtained in the chirality basis. For simplicity, suppose
that �d

�1�=�d
�2���d. The gap function in Eq. �28� or Eq. �29�

yields

��L0x�k� 
 i�L0y�k�����k�/�
�k��

� � i��sin kx 
 i sin ky��cos ky − cos kx + i sin kx sin ky�

���d/�BHz� , �44�

thus the chiral f + if-wave superconductor or the chiral p
+ ip-wave superconductor is realized both in the effective

Hamiltonians H̃��k�. �Whether the p-wave state or the
f-wave state realizes depends on the relative chirality be-
tween the d+ id order parameter and the p-wave factor in Eq.
�44� which stems from the SO interaction.� Therefore, the
non-Abelian topological phases obtained here are effectively
the same as that in either the spinless chiral f + if-wave su-
perconductor or the spinless chiral p+ ip-wave supercon-
ductor.

One remarkable point observed from Table II �or Fig.
1�b�� is that, in contrast to the s-wave pairing case, for the
d+ id-wave pairing state, the non-Abelian topological order
appears even for small but nonzero magnetic fields, provided
that �� 
4t. Thus, in this case, we do not need to worry
about the orbital depairing effect due to applied magnetic
fields. This point makes it easier to realize the Majorana
fermion state in the d+ id Rashba superconductor than in the
s-wave pairing state from the perspective of the stability
against applied magnetic fields, though, unfortunately, the
experimental realization of d+ id superconductors has not yet
been established to this date.

Since the d+ id pairing state breaks time-reversal symme-
try, the TKNN number is nonzero even for zero magnetic
fields. In the absence of the Zeeman field, we can evaluate
the TKNN number ITKNN directly. In this case, we smoothly
eliminate the Rashba SO interaction by setting �→0 without
gap closing. This means that the TKNN number of the d
+ id-wave NCS superconductor is the same as that of the d
+ id superconductor without the Rashba coupling.

2. Case of �(k)=�d
(1)(sin2 kx−sin2 ky)+ i�d

(2) sin kxsin ky

For the d+ id-wave NCS superconductor with the gap
function

��k� = �d
�1��sin2 kx − sin2 ky� + i�d

�2� sin kx sin ky , �45�

q�k� is given by

q�k� = − �
�k� − �BHz	z − � sin kx	y� + i�d
�1� sin2 kx	y .

�46�

Thus its determinant becomes

det q�k� = 
�k�2 − ��BHz�2 − �2 sin2 kx + ��d
�2��2sin4 kx

− 2i��d
�1� sin3 kx, �47�

and the real and imaginary parts of the determinant are

m1�k� = 
�k�2 − ��BHz�2 − �2 sin2 kx

+ ��d
�1��2sin4 kx, m2�k� = − 2��d

�1� sin3 kx.

�48�

In a manner similar to the previous d-wave case, we regulate
m2�k� as m2�k�→−2��d

�1� sin3 kx+�3 ���1�. Then, we ob-
tain

I�ky� =
1

2
�− sgn�
�0,ky�2 − ��BHz�2� + sgn�
��,ky�2

− ��BHz�2�� . �49�

We summarize the winding number I�ky� and �−1�ITKNN in
Table III. The results are also summarized in the phase dia-
gram, Fig. 1�c�.

When �BHz���k�, the obtained non-Abelian topological
phase can be understood by using the effective Hamiltonian
�28� or Eq. �29� in a manner similar to the previous cases. In
the parameter region where the non-Abelian topological
phase is realized, only one of the Fermi surfaces survives and
the other is pushed away by the Zeeman magnetic field, then,

TABLE II. The TKNN integer ITKNN and the winding number
I�ky� for the 2D d+ id-wave NCS superconductor with ��k�
=�d

�1��cos ky −cos kx�+ i�d
�2� sin kx sin ky. �−1�ITKNN=−1 corre-

sponds to the non-Abelian topological phase.

�a� ��−2t+ ��d
�1��2 /2t

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2� �4t+��2 1 0 0

�4t+��2� ��BHz�2��2+4��d
�1��2 −1 1 0

�2+4��d
�1��2� ��BHz�2� �4t−��2 −1 0 −1

�4t−��2� ��BHz�2 1 0 0

�b� −2t+ ��d
�1��2 /2t���0

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2��2+4��d
�1��2 1 0 0

�2+4��d
�1��2� ��BHz�2� �4t+��2 1 −1 −1

�4t+��2� ��BHz�2� �4t−��2 −1 0 −1

�4t−��2� ��BHz�2 1 0 0

�c� 0���2t− ��d
�1��2 /2t

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2��2+4��d
�1��2 1 0 0

�2+4��d
�1��2� ��BHz�2� �4t−��2 1 −1 −1

�4t−��2� ��BHz�2� �4t+��2 −1 −1 0

�4t+��2� ��BHz�2 1 0 0

�d� 2t− ��d
�1��2 /2t��

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2� �4t−��2 1 0 0

�4t−��2� ��BHz�2��2+4��d
�1��2 −1 0 1

�2+4��d
�1��2� ��BHz�2� �4t+��2 −1 −1 0

�4t+��2� ��BHz�2 1 0 0
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it is found that the non-Abelian topological phases obtained
here are effectively the same as that in either the spinless
chiral f + if-wave superconductor or the spinless chiral p
+ ip-wave superconductor.

As in the previous section, the non-Abelian topological
order is realized even for small but nonzero magnetic fields,
provided that �� 
4t. This is a generic feature of the d
+ id-wave pairing state. However, in contrast to the case of
��k�=�d

�1��cos ky −cos kx�+ i�d
�2� sin kx sin ky, the parameters

which distinguish different phases do not depend on the su-
perconducting gap function.

VI. MAJORANA CHIRAL EDGE STATE

In this section, we investigate edge states for the 2D spin-
singlet NCS superconductors numerically. From the bulk-
edge correspondence, a nontrivial bulk topological number
implies the existence of gapless edge states. In the case of
TRB superconductors, the gapless edge states are a chiral
Majorana fermion mode. We confirm this in the following.

A. s wave

To study edge states, we consider the lattice version of
Hamiltonian �1�. For an s-wave NCS superconductor, the
lattice Hamiltonian is given by

H = Hkin + HSO + Hs, �50�

Hkin = − t �
�i,j�,	

ci	
† cj	 − ��

i,	
ci	

† ci	 − �BHz �
i,	,	�

�	z�		�ci	
† ci	�,

�51�

HSO = − ��
i

��ci−x̂↓
† ci↑ − ci+x̂↓

† ci↑�

+ i�ci−ŷ↓
† ci↑ − ci+ŷ↓

† ci↑� + H.c.� , �52�

Hs = �s�ci↑
† ci↓

† + H.c.� , �53�

where i= �ix , iy� denotes a site on the square lattice, ci	
† �ci	�

the creation �annihilation� operator of an electron with spin 	
at site i, and �=� /2. The sum ��i,j� is taken between the

TABLE III. The TKNN integer ITKNN and the winding number
I�ky� for the 2D d+ id-wave NCS superconductor with ��k�
=�d

�1��sin2 kx−sin2 ky�+ i�d
�2� sin kx sin ky. �−1�ITKNN=−1 corre-

sponds to the non-Abelian topological phase.

�a� ��−2t

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2� �4t+��2 1 0 0

�4t+��2� ��BHz�2��2 −1 1 0

�2� ��BHz�2� �4t−��2 −1 0 1

�4t−��2� ��BHz�2 1 0 0

�b� −2t���0

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2��2 1 0 0

�2� ��BHz�2� �4t+��2 1 −1 1

�4t+��2� ��BHz�2� �4t−��2 −1 0 1

�4t−��2� ��BHz�2 1 0 0

�c� 0���2t

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2��2 1 0 0

�2� ��BHz�2� �4t−��2 1 −1 1

�4t−��2� ��BHz�2� �4t+��2 −1 −1 0

�4t+��2� ��BHz�2 1 0 0

�d� 2t��

��BHz�2 �−1�ITKNN I�0� I���

0� ��BHz�2� �4t−��2 1 0 0

�4t−��2� ��BHz�2��2 −1 0 −1

�2� ��BHz�2� �4t+��2 −1 −1 0

�4t+��2� ��BHz�2 1 0 0

2

3
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ky ky
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FIG. 3. �Color online� The energy spectra of the 2D s-wave
NCS superconductor with open edges at ix=0 and ix=30 for
��−2t. Here ky denotes the momentum in the y direction, and ky

� �−� ,��. We take t=1, �=−2.5, �=0.5, and �s=1. The Zeeman
magnetic field Hz is �I� �BHz=0, �II� �BHz=2, �III� �BHz=3, and
�IV� �BHz=7. The cases of �I�–�IV� correspond to, respectively, the
four regions in Table I, �a�. The non-Abelian phases are �II� and
�III�. The two gapless modes found in �II� correspond to edge
modes for two open edges, respectively. Thus, they are chiral. The
same is also true for the gapless modes in �III�.
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nearest-neighbor sites. Suppose that the system has two open
boundary edges at ix=0 and ix=Nx, and impose the periodic
boundary condition in the y direction. By solving numeri-
cally the energy spectrum as a function of the momentum ky
in the y direction, we study edge states.

We illustrate the energy spectra for the 2D s-wave NCS
superconductor with edges at ix=0 and ix=30 in Figs. 3 and
4. In Fig. 3 �Fig. 4�, � satisfies ��−2t �−2t���0�, and
the corresponding bulk topological numbers are given in
Table I, �a� �Table I, �b��. We find that if the TKNN number
is odd, odd numbers of gapless edge modes appear. In this
case, the non-Abelian topological order appears, and the
edge zero mode is a chiral Majorana fermion. It is also found
that when the winding number I�ky� is nonzero for ky =0, or
�, the energy of the gapless edge mode becomes zero at this
value of ky. Therefore, all the results are consistent with the
existence of the correspondence between the bulk topologi-
cal numbers and the edge spectra.

B. d+ id wave

1. Case of �(k)=�d
(1)(cos ky−cos kx)+ i�d

(2) sin kx sin ky

The lattice Hamiltonian for the 2D d+ id-wave NCS su-
perconductor with ��k�=�d

�1��cos ky −cos kx�

+ i�d
�2� sin kx sin ky is given by H=Hkin+HSO+Hs with

Hs = −
�d

�1�

4
�ci+x̂↑

† ci↓
† + ci−x̂↑

† ci↓
† − ci+ŷ↑

† ci↓
† − ci−ŷ↑

† ci↓
† �

− i
�d

�2�

4
�ci+x̂+ŷ↑

† ci↓
† + ci−x̂−ŷ↑

† ci↓
† − ci+x̂−ŷ↑

† ci↓
† − ci−x̂+ŷ↑

† ci↓
† �

+ H.c. �54�

The kinetic term Hkin and the Rashba SO interaction HSO are
the same as Eqs. �51� and �52�, respectively.

In a manner similar to the s-wave NCS superconductor,
we obtain the energy spectra for the system with edges at
ix=0 and ix=30 numerically. We illustrate the energy spectra
for the 2D d-wave NCS superconductor with the gap func-
tion ��k�=�d

�1��cos ky −cos kx�+ i�d
�2� sin kx sin ky in Figs. 5

and 6. In Fig. 5 �Fig. 6�, � satisfies ��−2t+ ��d
�1��2 /2t(−2t

+ ��d
�1��2 /2t���0), and the corresponding bulk topological

numbers are given in Table II, �a� �Table II, �b��. We find that
if the TKNN number is odd, odd numbers of gapless edge

ky
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III IV

FIG. 4. �Color online� The energy spectra of the 2D s-wave
NCS superconductor with open edges at ix=0 and ix=30 for −2t
���0. Here ky denotes the momentum in the y direction, and ky

� �−� ,��. We take t=1, �=−1, �=0.5, and �s=1. The Zeeman
magnetic field Hz is �I� �BHz=0, �II� �BHz=2, �III� �BHz=4, and
�IV� �BHz=6. The cases of �I�–�IV� correspond to, respectively, the
four regions in Table I, �b�. The non-Abelian phase is �III�.
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FIG. 5. �Color online� The energy spectra of the 2D
d+ id-wave NCS superconductor ���k�=�d

�1��cos ky −cos kx�
+ i�d

�2� sin kx sin ky� with open edges at ix=0 and ix=30 for ��
−2t+ ��d

�1��2 /2t. Here ky denotes the momentum in the y direction
and ky � �−� ,��. We take t=1, �=−2.5, �=0.5, �d

�1�=0.5, and
�d

�2�=0.8. The Zeeman magnetic field Hz is �I� �BHz=0, �II�
�BHz=2, �III� �BHz=3, and �IV� �BHz=7. The cases of �I�–�IV�
correspond to, respectively, the four regions in Table II, �a�. The
non-Abelian phases are �II� and �III�.
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modes appear. The non-Abelian topological order �and hence
the chiral Majorana fermion mode� is realized in this case. In
addition, it is found that if the winding number I�ky� �ky
=0,�� is nonzero for some ky, the energy of the gapless edge
state becomes zero at this value of ky. These results are con-
sistent with the bulk-edge correspondence.

Since the d+ id-wave superconductor breaks time-reversal
symmetry even in the absence of a magnetic field, the TKNN
number is nonzero for Hz=0, and there are four chiral edge
modes, which are seen in diagram �I� in Figs. 5–8. Since
there are even numbers of gapless edge modes, they do not
behave as non-Abelian anyons. These edge modes crosses
the zero energy at some ky �0, 
�. In contrast, the Majo-
rana fermion mode associated with the non-Abelian topo-
logical order crosses the zero energy at ky =0 or � corre-
sponding to the nonzero values of the winding number I�ky�
at these points.

2. Case of �(k)=�d
(1)(sin2 kx−sin2 ky)+ i�d

(2) sin kx sin ky

In this case, we use the lattice Hamiltonian H=Hkin
+HSO+Hs with

Hs = −
�d

�1�

4
�ci+2x̂↑

† ci↓
† + ci−2x̂↑

† ci↓
† − ci+2ŷ↑

† ci↓
† − ci−2ŷ↑

† ci↓
† �

− i
�d

�2�

4
�ci+x̂+ŷ↑

† ci↓
† + ci−x̂−ŷ↑

† ci↓
† − ci+x̂−ŷ↑

† ci↓
† − ci−x̂+ŷ↑

† ci↓
† �

+ H.c. �55�

Here, the kinetic term Hkin and the Rashba SO interaction
HSO are the same as Eqs. �51� and �52�, respectively.

We calculate the energy spectra for the system with edges
at ix=0 and ix=30 numerically. The energy spectra for the 2D
d-wave NCS superconductor with the gap function ��k�
=�d

�1��sin2 kx−sin2 ky�+ i�d
�2� sin kx sin ky are shown in Figs.

7 and 8. In Fig. 7 �Fig. 8�, � satisfies ��−2t �−2t��
�0�, and the corresponding bulk topological numbers are
given in Table III, �a� �Table III, �b��. When the TKNN num-
ber is odd, odd numbers of gapless edge states appear, sig-
nifying the non-Abelian topological order. It is also found
that if the winding number I�ky� �ky =0,�� is nonzero for
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FIG. 6. �Color online� The energy spectra of the 2D
d+ id-wave NCS superconductor ���k�=�d

�1��cos ky −cos kx�
+ i�d

�2� sin kx sin ky� with open edges at ix=0 and ix=30 for −2t
+ ��d

�1��2 /2t���0. Here ky denotes the momentum in the y direc-
tion and ky � �−� ,��. We take t=1, �=−1, �=0.5, �d

�1�=0.5, and
�d

�2�=0.8. The Zeeman magnetic field Hz is �I� �BHz=0, �II�
�BHz=1.6, �III� �BHz=3.1, and �IV� �BHz=6. The cases of �I�–
�IV� correspond to, respectively, the four regions in Table II, �b�.
The non-Abelian phase is �III�.
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FIG. 7. �Color online� The energy spectra of the 2D
d+ id-wave NCS superconductor ���k�=�d

�1��sin2 kx−sin2 ky�
+ i�d

�2� sin kx sin ky� with open edges at ix=0 and ix=30 for
��−2t. Here ky denotes the momentum in the y direction and ky

� �−� ,��. We take t=1, �=−2.5, �=0.5, �d
�1�=1, and �d

�2�=1. The
Zeeman magnetic field Hz is �I� �BHz=0, �II� �BHz=2, �III�
�BHz=3.5, and �IV� �BHz=7. The cases of �I�–�IV� correspond to,
respectively, the four regions in Table III, �a�. The non-Abelian
phases are �II� and �III�.
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some ky, the energy of the gapless edge state becomes zero at
this value of ky. These results are consistent with the bulk-
edge correspondence again.

VII. MAJORANA ZERO MODE IN A VORTEX OF AN
s-WAVE RASHBA SUPERCONDUCTOR

In this section, we discuss a Majorana fermion mode in a
vortex core of an s-wave Rashba superconductor, which is
one of the important features of the non-Abelian topological
order, and relevant to the application to the topological quan-
tum computation. We also discuss that, in certain parameter
region, the Majorana mode in the s-wave Rashba supercon-
ductors is strongly stable against thermal noise and intervor-
tex tunneling, which are serious obstructions to the imple-
mentation of the topological quantum computation in the
case of p+ ip superconductors.

A. Majorana solution of the Bogoliubov-de Gennes equation

The non-Abelian topological order is characterized by the
existence of the Majorana zero-energy mode in a vortex core,
which leads to the realization of the non-Abelian statistics. In

this section, we demonstrate that the Majorana fermion mode
in a vortex core exists for an s-wave Rashba superconductor
when the Zeeman energy �BHz is larger than the supercon-
ducting gap �=�s, by solving the BdG equation for a single
vortex of the superconducting order parameter; ��r�
=� exp�in�� with n vorticity. In Ref. 26, when n is odd, the
Majorana bound state for a vortex of the SO interaction is
obtained by the analysis of the BdG equation for the dual
Hamiltonian �11�. The existence of the Majorana bound state
in a vortex of the SO interaction strongly implies that there
exists the Majorana bound state also in a vortex of the su-
perconducting condensate because these two vortex states
are related by a singular gauge transformation. In the follow-
ing, we will find the zero-energy Majorana solution for a
vortex core of the superconducting condensate explicitly in
the case that the vorticity n is odd, and the condition �BHz
���0 is satisfied. This result is in accordance with the
finding of Sau et al.27 In the following analysis, instead of
using the dual Hamiltonian �11�, we deal with the BdG equa-
tion for the original Hamiltonian �4� directly. Since we can-
not obtain the exact solution of the BdG equation analyti-
cally, we adopt the following approximation scheme. As
clarified in the previous sections, the non-Abelian topologi-
cal order appears when the Fermi level crosses k points in
the vicinity of the � point or the M point in the Brillouin
zone. In this situation, there are two Fermi surfaces split by
the Rashba SO interaction. One is located in the vicinity of
the � �or M� point with the Fermi momentum kF�0 �or
�� ,���, and the other has the large Fermi momentum kF
�0, �� ,��. Since the momentum is not a good quantum
number in the presence of a vortex core, a bound state in the
vortex core generally consists of a superposition of quasipar-
ticles from both of these two Fermi surfaces. However, ac-
cording to the discussion based on the duality Hamiltonian
given in Sec. V A, it is strongly suggested that in the vicinity
of the topological phase-transition point �BHz��, quasipar-
ticles with k�0 �or �� ,��� play a very important role in the
realization of the non-Abelian topological order. This implies
that when the Zeeman energy is close to the superconducting
gap, the Majorana fermion mode is mainly formed by quasi-
particles with kF�0 or �� ,�� rather than those with kF
�0, �� ,��, in the long-distance asymptotic regime away
from the center of the vortex core. Thus, in the following, we
try to construct an approximate solution for the zero-energy
mode in a vortex from quasiparticles with kF�0 or �� ,��.
As will be shown below, the vortex core for this approxi-
mated solution has a characteristic length �vF / ��BHz−��
while quasiparticles with kF�0, �� ,�� give contributions to
the vortex core bound state with a characteristic length
�vF /�. Thus, the approximated solution presented in the
following is valid when 0��BHz−��� in the long-
distance asymptotic regime.

To solve the BdG equation, we choose the gauge for
which the gap function is real by applying the gauge trans-
formation eA→eA−n�� /2, � exp�in��→�. Then, the
BdG equation is

H�̃ = E�̃ , �56�
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FIG. 8. �Color online� The energy spectra of the 2D
d+ id-wave NCS superconductor ���k�=�d

�1��sin2 kx−sin2 ky�
+ i�d

�2� sin kx sin ky� with open edges at ix=0 and ix=30 for −2t
���0. Here ky denotes the momentum in the y direction and ky

� �−� ,��. We take t=1, �=−1, �=0.5, �d
�1�=1, and �d

�2�=1. The
Zeeman magnetic field Hz is �I� �BHz=0, �II� �BHz=2, �III�
�BHz=3.5, and �IV� �BHz=6. The cases of �I�–�IV� correspond to,
respectively, the four regions in Table III, �b�. The non-Abelian
phase is �III�.
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H =�
�k̂ − eA +
n

2
� �	 + g�k̂ − eA +

n

2
� �	 · � − h	z �i	y

− �i	y − 
�k̂ + eA −
n

2
� �	 + g�k̂ + eA −

n

2
� �	 · �� + h	z

� . �57�

Here �̃T= �ũ↑ , ũ↓ , ṽ↑ , ṽ↓�, 
�k�= k2

2m −�0, g�k�=2��ky ,−kx ,0�,
k̂=−i�, and h=�BHz. Assuming Hz�Hc2, we neglect eA
compared to n�� /2 in 
�k̂−eA+ n

2 ��� and g�k̂−eA
+ n

2 ���.39 We also assume that �=0 for r�rc, and ��0 for
r�rc, where rc��. For simplicity, we consider the case of
�0=0, for which one of the two SO split bands crosses the �

point k=0. This is a typical situation which realizes the non-
Abelian topological order �and hence the Majorana zero
mode� as discussed in the previous sections. In the following,
we restrict our analysis to the zero-energy state with E=0.
Furthermore, we impose the condition that the magnitude of
the SO interaction is much larger than the Zeeman energy
scale; i.e., h�m�2. Under this condition, we can find the
following approximated solution for the zero-energy mode in
a vortex core with the odd vorticity n. For r�rc,

ũ↑�r,�� = A↑e
−i��/2�H�n−1/2�

�1� �i
hr

2�
	 , �58�

ũ↓�r,�� = − iA↑e
i��/2�H�n+1/2�

�1� �i
hr

2�
	 , �59�

and for r�rc,

ũ↑�r,�� = 
2A↑e
−i��/2�e�rdr��h−��/2�H�n+3/2�

�1� �i
h − �

�
r	 ,

�60�

ũ↓�r,�� = − i
2A↑e
i��/2�e�rdr��h−��/2�H�n+1/2�

�1� �i
h − �

�
r	 ,

�61�

where H�
�1��z� is the first Hankel function and the constant A↑

is determined by the normalization condition. Also, ṽ	�r ,��
= ũ	�r ,��. The solution for r�rc and those for r�rc can be
matched at r=rc by using the asymptotic form of the Hankel
function, as explained in Appendix D. Since there is only one
zero-energy mode, the above solution indicates that there is a
Majorana zero-energy mode in a vortex core with odd vor-
ticity. Note that this approximated solution is constructed
from quasiparticles in the vicinity of the � point k�0. As
seen from Eqs. �60� and �61�, the above solution for the
vortex core bound state decays as �exp�− h−�

2� r� in the long-
distance regime. On the other hand, the contribution from
quasiparticles with the large Fermi momentum to the vortex
core state decays like �exp�− �

2�r� �note that when �0=0, the
Fermi velocity vF�2��. Thus, for 0�h−���, the long-

distance behavior of the vortex core state is dominated by
quasiparticles with k�0, and hence the above approximated
solution mainly constructed from quasiparticles with k�0 is
valid under this condition.

In the above derivation of the zero-energy Majorana
bound state, we have used several approximations. In par-
ticular, at the stage of matching the solutions for r�rc and
r�rc, we have neglected corrections of order O�h / �m�2��.
Actually, such approximations are not essential for the real-
ization of the Majorana zero-energy mode, but, rather, re-
quired by our approximation method of the construction of
the zero mode. In fact, the exact solution for the zero-energy
mode in a vortex core should be a superposition of quasipar-
ticles with k�0 and those with kF�0 because the momen-
tum is not a good quantum number in the presence of a
vortex core. Since it is quite difficult to obtain the exact
solution of the zero-energy mode constructed from both qua-
siparticles with k�0 and those with kF�0, we approximate
it by the bound state mainly formed by quasiparticles with
k�0, neglecting contributions of quasiparticles from the
large Fermi surface. Because of this approximation, we need
the additional approximations mentioned above, when we
match the solutions for r�rc and r�rc. We expect that for
the exact solution of the zero-energy Majorana mode, the
weight of quasiparticles from the large Fermi surface may
become substantially large in the short-distance region in the
vicinity of the center of the vortex core, compared to the
contributions from quasiparticles with k�0. If we properly
include the mixing with quasiparticles from the large Fermi
surface, we may be able to match the solutions without such
additional approximations. Also, our zero-energy solution is
not regular at r=0, though it is still normalizable, and physi-
cally allowed. We expect that this singular behavior for r
�0 is also raised by our approximation neglecting the mix-
ing with quasiparticles from the large Fermi surface, which
should be important for small r. If one takes into account
contributions of quasiparticles from the large Fermi surface,
it may be possible to cure this singular behavior of our so-
lution at r=0. Nevertheless, when the conditions h�m�2

and 0�h−��� is satisfied, the zero-energy solution may
be dominated by quasiparticles with k�0 in the long-
distance asymptotic regime sufficiently far away from the
center of the vortex core, and our analytical solution ob-
tained above may become a good approximation.

We would like to note that although the zero-energy so-
lution given by Eqs. �60� and �61� with the asymptotic forms
of Eqs. �D29� and �D30� in Appendix D looks like localized
even in the limit of �→0, this never means that there is a
zero-energy Majorana bound state in the normal state. In
fact, the above zero-energy solution is not applicable to the
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normal state without a vortex because of the following rea-
son. The zero-energy solutions in the normal state are indeed
given by Eqs. �58� and �59�. However, the Hankel function is
not regular at r=0. This singularity is unphysical because in
the absence of a vortex in the normal state, translation invari-
ance is recovered, and thus, there should not be a special
point in the coordinate space at which the wave function is
singular. This implies that the zero-energy solution given by
Eqs. �58� and �59� is not allowed in the normal state without
a vortex. Thus, there is no zero-energy bound state in the
limit of �→0. The Majorana bound state in a vortex core
exists only for �BHz���0.

The above analysis may be also extended to the case of
d+ id-wave pairing straightforwardly, since the d+ id-wave
state, which is the superposition of the dx2−y2-wave state and
the dxy-wave state, is an eigenstate of the orbital angular
momentum operator, as in the case of the s-wave pairing, and
the treatment for the gap function given above is applicable.
We obtain the Majorana fermion mode for a nonzero mag-
netic field h�0 in the case of the d+ id-wave pairing, which
is consistent with the existence of the chiral Majorana edge
discussed in Sec. VI.

We stress again that the Majorana zero-energy mode in a
vortex core is formed mainly by the superposition of an elec-
tron and a hole with the vanishing Fermi momentum kF�0
in the long-distance asymptotic regime, provided that the en-
ergy scale of the SO interaction is sufficiently larger than the
Zeeman energy and that 0�h−���. As will be discussed
in the following, this property is very important for the sta-
bility of the Majorana fermion against various sources of
decoherence which exist in real materials and may destroy
the Majorana fermion acting as a qubit.

B. Strong stability of the Majorana fermion mode against
thermal noise

For the detection of the non-Abelian anyons and also for
the implementation of the topological quantum computation
utilizing them, it is desirable that the Majorana zero-energy
state in a vortex core is well separated from excited states,
the interaction with which may cause decoherence. As was
pointed out in Ref. 26, in the non-Abelian phase of s-wave
Rashba superconductors, when the energy scale of the SO
interaction is much larger than the Zeeman energy and the
condition 0��BHz−��� is satisfied, the excitation energy
of the vortex core state is of order �BHz−�, which is much
larger than the typical size of the excitation energy in the
vortex core bound state of weak-coupling superconductors,
i.e., ��2 /EF.39 Thus, the Majorana fermion mode found here
is quite stable against thermal noise even at moderately low
temperatures, to which it is not difficult to access within
standard experimental techniques. We, here, explain the ori-
gin of the strong stability of the Majorana mode in more
details. The excitation energy in the vortex core is due to the
kinetic energy of quasiparticles in the Andreev bound state,
which stems from the derivative term in Eqs. �D1� and �D2�
in Appendix D. We restrict the following argument within the
case that the magnitude of the SO interaction is much larger
than the Zeeman energy, and that the condition 0��BHz

−��� is satisfied. In this case, the Majorana solution is
constructed mainly from quasiparticles with k�0, as clari-
fied in the previous section. Then, the first-order derivative
terms 2�� �

�r 

i
r

�
�� � give leading contributions to the kinetic

energy. On the other hand, from the solution of the BdG
equation �Eqs. �60� and �61��, we see that the characteristic
size of the vortex core is �core�2� / ��BHz−��. Thus, the
excitation energy is of the order �2� / �2� / ��BHz−���
��BHz−�. This large magnitude of the excitation energy
implies that the Majorana zero-energy mode in the s-wave
Rashba superconductor with �BHz�� is significantly stable
against thermal noise, compared to chiral p+ ip supercon-
ductors. Also, such large excitation energy ensures that the
experimental detection of the non-Abelian anyons is quite
feasible for our system. The origin of the strong stability of
the Majorana fermion mode is deeply related to the fact that
it is mainly constructed from quasiparticles in the Dirac cone
at the � point in the Brillouin zone for 0��BHz−��� in
the long-distance asymptotic regime, as mentioned above.
Since the Dirac cone has a vanishing Fermi momentum, the
kinetic energy is dominated by the SO interaction which is of
order � /�core rather than the standard kinetic-energy term of
order �core

−2 / �2m�. This feature leads to the strong stability of
the Majorana zero-energy mode. It is noted that the robust-
ness of the Majorana fermion mode in the s-wave Rashba
superconductor was also pointed out in Ref. 40 from a dif-
ferent point of view.

C. Stability against decoherence due to intervortex tunneling

It has been proposed that the Majorana fermion modes in
superconductors can be utilized as decoherence-free qubits,
which enable us the construction of the fault-tolerant topo-
logical quantum computer.12–14,41 Two Majorana fermions,
say �1 and �2, constitute one complex fermion state de-
scribed by �=�1+ i�2, which is occupied or unoccupied.

E

ky

FIG. 9. �Color online� The energy spectra of the NCS SDW
state with edges at ix=0 and ix=30. Here ky denotes the momentum
in the y direction and ky � �−� ,��. We take t=1=�=1=�S=1. The
Zeeman magnetic field Hz is �BHz=1.5. At ky =0, 
� /2,�, we
have gapless states on each edge. These gapless edge modes are
chiral.
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This doubly degenerate state stores a qubit nonlocally, which
is protected against any local perturbations, as long as the
distance between two vortices, each of which contains one
Majorana mode is sufficiently large. One crucial obstruction
to this scheme is the decoherence raised by intervortex tun-
neling; tunneling processes between two Majorana modes in
two vortices lift the degeneracy, leading to decoherence. In
particular, it was pointed out by Cheng et al.29 that the en-
ergy of the complex fermion � exhibits quantum oscillation
as a function of the spatial separation r between two vortices
as �cos kFr with kF the Fermi momentum, and thus takes
both positive and negative values depending on r. This rapid
change in the sign of the energy seriously flaws the initial-
ization and the readout of the qubit.

Here, we discuss the drastic suppression of the quantum
oscillation for intervortex tunneling in the Rashba s-wave
superconductors in a particular parameter region. As ex-
plained in Sec. VII A, the zero-energy Majorana bound state
in a vortex core obtained above consists of two contribu-
tions; one from quasiparticles with k�0 and the other from
quasiparticles with the large kF. The former contribution has
the characteristic length scale of order � / ��BHz−��, as clari-
fied by the solution �Eqs. �60� and �61��. On the other hand,
for the latter contribution, the characteristic length scale is of
order � /� since the Fermi velocity is of order � when �0
�0 in Eq. �57�. Then, in the case of 0��BHz−���, the
Majorana zero mode is mainly formed by quasiparticles with
the vanishing Fermi momentum kF�0 in the long-distance
asymptotic regime. That is, in the tunneling process between
two vortices separated by the distance R, the overlap of the
component with k�0, which is of order exp�−R��BHz
−�� /�� is much larger in the magnitude than the oscillating
contribution from the large Fermi surface which is of order
exp�−R� /��cos�kFR� for large R. The intervortex tunneling
mediated via quasiparticles with kF�0 does not involve the
quantum oscillation, making a sharp contrast to Majorana
modes found in p+ ip superconductors. As a result, the en-
ergy of a complex fermion made of the two Majorana fermi-
ons is dominated by the nonoscillating part from quasiparti-
cles with k�0, and thus, the decoherence due to the
quantum oscillation is suppressed. It is noted that this pro-
tection mechanism also works for a Majorana fermion mode
in the proximity between a topological insulator and an
s-wave superconductor,23 as long as the chemical potential is

properly tuned to realize kF�0 for the surface Dirac cone.
Since momentum is not conserved in the vicinity of a vortex,
there may be hybridization between the Majorana state in a
vortex core and quasiparticles with the finite Fermi momen-
tum, which raises intervortex tunneling involving the quan-
tum oscillation. However, the analysis of the zero-energy
Majorana mode in a vortex core in the previous sections
implies that we can construct the zero-energy Majorana state
which is mainly formed by quasiparticles with k�0, pro-
vided that the energy scale of the SO interaction is much
larger than the Zeeman energy, and that 0��BHz−���.
Thus, it may be possible to realize the Majorana fermion in
the vortex core of the Rashba superconductor which is stable
against decoherence due to the intervortex tunneling.

VIII. TOPOLOGICAL DENSITY WAVE STATES AND
CHARGE FRACTIONALIZATION

The above argument for the non-Abelian topological or-
der in s-wave superconductors implies that topological order
is realizable in conventional spin �or charge�-density wave
states. The Hamiltonian for the s-wave superconductivity on
a bipartite lattice is mapped to the Hamiltonian for the SDW
state or the CDW state by changing the basis of fermion
fields. Thus, an s-wave superconducting state with the topo-
logical order can be mapped to a density wave state with a
certain topological order. As shown below, the topological
order in the density wave state is Abelian, and quasiparticles
in this topological order are not Majorana fermions, but pos-
sess U�1� charge. However, the quasiparticles exhibit charge
fractionalization which characterizes the Abelian topological
order.

A. Topological spin-density wave state

We, first, consider the SDW state with the order parameter
�S= �ck↑

† ck+Q↑�=−�ck↓
† ck+Q↓�, where Q is the ordering wave

number vector. We also assume that there are the Rashba-
type SO interaction and the Zeeman magnetic field h
=�BHz. Then, the mean-field Hamiltonian is given by

HSDW =
1

2�
k

�k
†HSDW�k��k �62�

with

HSDW�k� = �
�k� − h	z + �L0�k� · � i�S	y

− i�S	y 
�k + Q� + h	z + �L0�k + Q� · 	x		x
	 �63�

and �k
T= �ck↑ ,ck↓ ,ck+Q↓ ,ck+Q↑�. In the following, we assume

the perfect nesting condition of the energy band 
�k+Q�=
−
�k�. This situation is realized in the case of the half-filling
electron density for our model on the square lattice with the
nearest-neighbor hopping. The nesting vector is Q
= �
� , 
��. Furthermore, we postulate L0�k+Q�=L0�k�.
This condition is satisfied when L0�k�= �sin 2ky ,−sin 2kx�

in the case of Q= �
� , 
��. Then, Hamiltonian �63�
has the same form as that of the Rashba s-wave supercon-
ductor considered in the previous sections, and topological
order is realized when the condition h��S is fulfilled.

In a similar manner as Sec. V, topological numbers of the
SDW state are calculated. The energy gap of the system
closes one of the following conditions are satisfied:
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�S
2 = ��BHz�2, 4t2 + �S

2 = ��BHz�2, 16t2 + �S
2 = ��BHz�2

�64�

and the winding number I�ky� is calculated as

I�ky� =
1

2
�sgn�
�− �/2,ky�2 − ��BHz�2 + �S

2� − sgn�
�0,ky�2

− ��BHz�2 + �S
2� + sgn�
��/2,ky�2 − ��BHz�2 + �S

2�

− sgn�
��,ky�2 − ��BHz�2 + �S
2�� . �65�

Because HSDW
� �−k�=HSDW�k� at ky =0, 
� /2,�, the wind-

ing number I�ky� is defined at these values of ky. We summa-
rize the winding number of the SDW state in Table IV. The
TKNN integer in the magnetic Brillouin zone, which we de-
note as ImTKNN, is also given in Table IV.

In a similar manner as s-wave NCS superconductors, gap-
less edge modes appear in the NCS SDW state considered
above when h��S. See Fig. 9. However, in comparison with
the case of s-wave superconductivity, we should taken into
account only half of the zero-energy modes, since the Bril-
louin zone is folded to the magnetic Brillouin zone in the
SDW state, and as a result, the k point k= �� ,0� is equiva-
lent to k= �0,��. In other words, when �−1�ImTKNN=−1, we
have odd numbers of zero-energy edge modes in the SDW
state. In Fig. 9, we see three zero-energy modes. The exis-
tence of odd numbers of zero-energy edge modes implies
that in the vortex core of the SDW order �Sei�, there are odd
numbers of zero-energy modes because of the bulk-edge cor-
respondence. These zero-energy modes have U�1� charge. As
in the case of the Su-Schrieffer-Heager model,42 these iso-
lated zero-energy modes with U�1� charge lead to the charge
fractionalization.43 That is, when these three zero modes are
occupied by electrons, the charge carried by the vortex core
is Q=3e /2.

B. Topological charge-density wave state

The above consideration for the topological SDW state is
also applicable to the CDW state. We consider the CDW
state with the order parameter �C= �ck↑

† ck+Q↑�= �ck↓
† ck+Q↓� in

the case with the Rashba SO interaction. The mean-field
Hamiltonian for the Rashba CDW state is

HCDW =
1

2�
k

�Ck
† HCDW�k��Ck �66�

with

HCDW�k� = �
�k� − h	z + �L0�k� · � i�C	y

− i�C	y 
�k + Q� + h	z + �L0�k + Q� · ��	 �67�

and �Ck
T = �ck↑ ,ck↓ ,−ck+Q↓ ,ck+Q↑�. We assume the prefect

nesting condition 
�k+Q�=−
�k� again, and also assume
that L0�k+Q�=−L0�k�. The condition for L0�k� is satisfied
when L0�k�= �sin ky ,−sin kx� in the case of Q= �
� , 
��.
Equation �67� is formally equivalent to the Hamiltonian of
the Rashba s-wave superconductor. In this CDW state, the
topological ordered phase with a single gapless edge mode
realizes. We depict an example of the energy spectra for the
system with open boundary edges in the case of h��C in
Fig. 10. There are two zero-energy edge modes at ky =0 and
�. Since the Brillouin zone is folded by the CDW order with
the ordering vector Q= �� ,��, the zero mode at ky =� is
equivalent to that at ky =0. Thus there is only one zero mode.

In this Abelian topological phase, the charge fractionalization
can occur, as in the case of the NCS SDW state. When there
is a vortex of the CDW order, the zero mode of which is
occupied by one electron, the vortex carries the fractional
charge e /2.

IX. DISCUSSION AND CONCLUSION

A. Realization scheme for the non-Abelian topological order in
spin-singlet superconductors

In this section, we discuss possible realization schemes
for the non-Abelian topological order considered in the pre-

ky

E

FIG. 10. �Color online� The energy spectra of the NCS CDW
state with edges at ix=0 and ix=30. Here ky denotes the momentum
in the y direction and ky � �−� ,��. We take t=1, �=0, �=0.5, and
�C=1. The Zeeman magnetic field Hz is �BHz=1.5.
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vious sections. Recently, it was discussed by several authors
that s-wave Rashba superconductors with the condition
�BHz�� are realizable in heterostructure semiconductor
devices.27,28 We, here, present two more possible schemes;
one based on quasi-two-dimensional bulk superconductors
and the other utilizing ultracold atoms.26

1. Possible realization in strongly correlated electron systems

The most crucial hurdle for the realization of the non-
Abelian topological order in the Rashba superconductors is
to stabilize the superconducting state under applied strong
magnetic fields �BHz��. As mentioned before, the Pauli
depairing effect due to magnetic fields is absent when the SO
splitting of the Fermi surface is sufficiently larger than the
superconducting gap and the Zeeman energy.33,35 Such large
SO interactions are typically realized in noncentrosymmetric
materials. Then, the issue which should be addressed here is
how to suppress the orbital depairing effect of magnetic
fields. The typical size of the orbital limiting field Hc2

orb is
given by �BHc2

orb��2 / �zEF�. Here z is the mass normaliza-
tion factor. If the mass enhancement factor 1 /z is sufficiently
large, it is possible to attain �BHc2

orb��. For instance, for
strongly correlated electron systems such heavy fermion su-
perconductors, 1 /z can reach to be �100. Thus, it is not
difficult to fulfill the condition �BHc2

orb�� even when
� /EF�0.01. The above argument implies that noncen-
trosymmetric heavy fermion superconductors may be good
candidates for the realization of the non-Abelian topological
order. Unfortunately, to this date, there are no noncentrosym-
metric heavy fermion superconductors with no gap nodes.
Experimental studies suggest that all heavy fermion super-
conductors without inversion symmetry discovered so far
such as CePt3Si and CeRh�Ir�Si3 possess nodes of the super-
conducting gap,44–49 excitations from which may destabilize
the topological order.

2. Possible realization in ultracold fermionic atoms

We now discuss an experimental scheme for the realiza-
tion of the non-Abelian topological order in ultracold fermi-
onic atoms. We can use the Feshbach resonance in the
s-wave channel for the formation of the s-wave Cooper pairs
in this system.50,51 For superfluid states of charge neutral
atoms, there is no orbital depairing effect due to applied
magnetic fields. Moreover, it was recently proposed by sev-
eral authors that effective SO interactions acting on charge
neutral atoms can be generated by spatially varying laser
fields.52–55 When the effective SO interaction is the Rashba

type �or more generally, antisymmetric�, and its magnitude is
sufficiently larger than the Zeeman energy due to an applied
magnetic field, the Pauli depairing effect is suppressed, as
mentioned before. Thus, the condition for the non-Abelian
topological order �BHz�� can be easily fulfilled. As dis-
cussed in the previous sections, the non-Abelian anyons are
stable for sufficiently low energies �min��BHz−� ,��.
Since the BCS gap � can be tuned to be large, i.e., ��EF,
by using the s-wave Feshbach resonance, the realization of
the non-Abelian anyons in this scheme is quite promising. In
the following, we present two schemes for the realization of
the topological phase in ultracold fermionic atoms with laser
generated SO interaction.

The first scheme utilizes an optical lattice with laser-
assisted tunneling of fermionic atoms. We consider fermionic
atoms loaded in a 2D periodic optical lattice.52 The atoms
occupy doubly degenerate Zeeman levels of the hyperfine
ground state manifolds, which correspond to the spin-up and
spin-down states of electrons. We introduce the Zeeman field
to lift the degeneracy. We assume that standard tunneling of
atoms between sites due to kinetic energy is suppressed by
the large depth of the optical lattice potential. Tunneling of
atoms between neighboring sites along the � direction ��
=x ,y� which conserves spins is caused by laser beams via
optical Raman transitions.52,56 In addition, tunneling which
accompanies spin flip is also driven by two Raman lasers.52

The Rabi frequency of the laser ��1 ���2� is resonant for
transition from the spin-up state to the spin-down state for
the tunneling between neighboring sites in the forward
�backward� � direction. Furthermore, the confining optical
potential is tilted along both the x direction and the y direc-
tion to assure that the forward and backward tunneling pro-
cesses are, respectively, induced by the lasers with the dif-
ferent Rabi frequencies ��1 and ��2. The tilting potential for
the x direction �x is different from that for y direction �y to
ensure that tunneling accompanying spin flip along the y�x�
direction is not raised by the lasers with �x�y�1,2. It is also
assumed that the detuning from excited states for optical
Raman transitions is much larger than �x�y�, and thus the
spatial variation in the amplitudes of the Rabi frequencies
due to the tilting potential is negligible. To realize the Rashba
SO interaction for the two Zeeman levels, we choose the
phases of the lasers as follows. The lasers are propagating
along the z direction with an oscillating factor eikzz. The Rabi
frequency �x2 is expressed as �x2= ��x2�eikzz. The phase of
the laser �x1 is shifted by � from that of �x2, and �x2=
−�x1 holds. The phase of �y1 ��y2� is shifted by −� /2
�� /2�, and �y2=−i�x1, �y2=−�y1. Then, the laser-induced
tunneling term which accompanies spin flip is expressed by

TABLE IV. The TKNN integer in the magnetic BZ, ImTKNN, and the winding number I�ky� for 2D SDW
state.

��BHz�2 �−1�ImTKNN I�0�= I��� I�� /2�= I�−� /2�

0� ��BHz�2��S
2 1 0 0

�S
2 � ��BHz�2�4t2+�S

2 −1 1 2

4t2+�S
2 � ��BHz�2�16t2+�S

2 −1 −1 0

16t2+�S
2 � ��BHz�2 1 0 0
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HSO = �
i

��x�ci−x̂↓
† ci↑ − ci+x̂↓

† ci↑� + i�y�ci−ŷ↓
† ci↑ − ci+ŷ↓

† ci↑�

+ H.c.� ,

�� = c�
 dr�↓
��r − ri−�̂���2�r��↑�r − ri� �68�

with �=x, y, and cx=1 and cy =−i. Since we consider the 2D
xy plane with z=0, �� is real. For �x=�y, Eq. �68� is the
Rashba SO interaction.

In the second scheme, we employ the idea that an effec-
tive SO interaction is created by utilizing the dark states
generated by spatially varying laser fields, as proposed in
Refs. 53 and 55. We can introduce a vortex of the superfluid
order parameter by changing the topology of the shape of a
trapping potential. Since the underlying topological effective
field theory is the SU�2�2 Chern-Simons theory,3,4,57 a vortex
with a zero-energy Majorana mode is equivalent to a hole
pierced in the system provided that the total number of the
holes in the system are odd. The trapping potential with
holes can be prepared by using a holographically engineered
laser technique.58 Furthermore, the dynamical motions of
holes are possible through a computer-generated hologram;
i.e., the positions of holes can be moved by changing tem-
porally the shape of the confining potential which may be
achieved by preprogrammed hologram. Remarkably, this en-
ables the braiding of vortices �holes�, which amounts to a
quantum gate for fault-tolerant quantum computation based
on the manipulation of non-Abelian anyons.12,13

B. Conclusion

We have verified that the non-Abelian topological order,
which is characterized by the existence of chiral Majorana
edge modes and a Majorana fermion in a vortex core, can be
realized in almost all classes of fully gapped spin-singlet
superconductors with antisymmetric SO interactions such as
the Rashba SO interaction in the case with the Zeeman mag-
netic field. Majorana fermions in superconductors have been,
recently, attracting much attention in connection with the to-
pological quantum computation. The idea of the topological
quantum computation has been examined for the non-
Abelian fractional quantum Hall state,12,14 spin-triplet chiral
p-wave superconductors,17 and the proximity between a to-
pological insulator and a conventional superconductor.23,41

Our results in the present paper provide another category of
promising systems for the realization of the topological
quantum computation. We would like to stress that our sys-
tems in the normal state are topologically trivial; i.e., the
combination of the conventional superconducting order and
the conventional antisymmetric SO interaction with the Zee-
man field gives rise to a highly nontrivial topological phase.
In our scenario, the existence of the Zeeman energy, the
magnitude of which exceeds the size of the superconducting
gap opened at time-reversal invariant k points in the Bril-
louin zone where the SO interaction vanishes, is important.
At these k points, there are Dirac cones in the absence of
magnetic fields. When the magnetic field is switched on, the
effective gap of electrons in the vicinity of the Dirac cone is

given by �−�BHz. As the magnetic field increases, and
�BHz exceeds �, the sign of the effective gap changes, and
topological phase transition occurs. As indicated by the
analysis of Majorana fermion modes in open boundary edges
and in a vortex core in Secs. VI and VII, and in the topo-
logical argument based on the winding number in Sec. V,
quasiparticles in the vicinity of the Dirac cone, i.e., time-
reversal invariant k points, play an important role for the
realization of the topological quantum phase transition. In
the case of the s-wave pairing state, the large magnetic field
satisfying �BHz�� is required to realize the non-Abelian
topological order. For conventional bulk weak-coupling su-
perconductors, it is difficult to fulfill this condition, though
there are some proposals to realize this system in hetero-
structure devices, for which �BHz�� is attainable.27,28 We
have proposed promising schemes for the realization of the
condition �BHz�� in the bulk s-wave pairing state; one
based on strongly correlated electron systems and the other
utilizing ultracold fermionic atoms.26 In contrast to the
s-wave pairing state, in the case of the d+ id wave pairing
state, a small magnetic field larger than the lower critical
field is sufficient to fulfill the condition �BHz��k in the
vicinity of time-reversal invariant k points, and thus the re-
alization of the non-Abelian topological phase is easier than
the s-wave case. However, unfortunately, up to our knowl-
edge, there is no superconductor for which the d+ id-wave
pairing state is experimentally established, though it was
suggested by some authors that this pairing state may be
realized in sodium cobalt oxide superconductors
NaxCoO2·yH2O.59,60 It is an interesting open issue to pursue
the experimental detection of Majorana fermions in such su-
perconductors mentioned above. We have also clarified that,
in certain parameter regions, the Majorana fermion realized
in Rashba spin-singlet superconductors is stable against vari-
ous sources of decoherence such as thermal fluctuations
which exist in real systems generically. Because of this fea-
ture, the Rashba spin-singlet superconductor may be a prom-
ising candidate for the realization of the topological quantum
computation.

As a by-product of our analysis, we have also found that
an Abelian topological order, which supports the existence of
gapless Dirac fermions in edges and the charge fractionaliza-
tion, is realizable in the conventional SDW or CDW state
with an antisymmetric SO interaction.
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APPENDIX A: TKNN NUMBER AND THE DUAL
TRANSFORMATION

In this appendix, we show that the dual transformation
�Eq. �11�� does not change the TKNN number, and hence the
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topological properties of the original Hamiltonian �4� and the
dual Hamiltonian �11� are the same. Let us consider the BdG
equations for the original Hamiltonian H�k� and that for the
dual one HD�k�,

H�k���n�k�� = En�k���n�k�� ,

HD�k���n
D�k�� = En�k���n

D�k�� . �A1�

Since the dual transformation is a unitary transformation, the
energy spectrum of the dual Hamiltonian is the same as that
of the original one. Moreover, the eigenstate ��n

D�k�� for the
dual Hamiltonian is related to the eigenstate ��n�k�� for the
original one as

��n
D�k�� = D��n�k�� �A2�

with D in Eq. �12�. As D is a constant unitary matrix, the
gauge field constructed from the occupied states for the dual
Hamiltonian is the same as that for the original one,

Ai
�−�D�k� = i �

En�k��0
��n

D�k���ki
�n

D�k��

= i �
En�k��0

��n�k���ki
�n�k�� = Ai

�−��k� . �A3�

This relation immediately means that the TKNN number
�Eq. �15�� is invariant under the dual transformation.

APPENDIX B: TKNN NUMBER AND WINDING NUMBER

1. TKNN number for TRB topological superconductors

In this appendix, we summarize useful properties of the
TKNN number for TRB topological superconductors.22 Let
us first consider the BdG equation,

H�k���n�k�� = En�k���n�k�� , �B1�

where the BdG Hamiltonian H�k� has the particle-hole sym-
metry,

�H�k��† = − H�− k�� �B2�

with the 4�4 matrix �

� = � 0 12�2

12�2 0
	 . �B3�

From the particle-hole symmetry, we can say that if ��n�k��
is a positive energy state with En�k��0, then ���n

��−k�� is a
negative energy state with −En�−k�. Therefore, in the follow-
ing, we use a positive �negative� n to represent a positive
�negative� energy state, and set

��−n�k�� = ���n
��− k�� . �B4�

For the ground state in a superconductor, the negative energy
states are occupied.

Now we introduce the following “gauge fields” Ai
�
��k�:

Ai
�
� = i�

n�0
��n�k���ki

�n�k�� . �B5�

From Eq. �B4�, the gauge fields Ai
�
��k� satisfy

Ai
�+��k� = Ai

�−��− k� . �B6�

It is also found that their sum Ai�k��Ai
�+��k�+Ai

�−��k� is
given by a total derivative of a function. To see this, we
rewrite ��n�k�� in the components,

��n�k�� =�
�n

1�k�
�n

2�k�
�n

3�k�
�n

4�k�
� �B7�

and introduce the 4�4 unitary matrix W�k� as

Wa,n�k� = �n
a�k� . �B8�

Then Ai�k� is rewritten as the total derivative of
i ln�det W�k��,

Ai�k� = i tr�W†�k��ki
W�k�� = i�ki

ln�det W�k�� . �B9�

This equation implies that the field strength of Ai�k� is iden-
tically zero,

F�k� = �ij�ki
Aj�k� = 0. �B10�

Combining this with Eq. �B6�, we find that the field strength
F�
��k� of Ai

�
��k� satisfies

F�
��k� = F�
��− k� . �B11�

By using the field strength of the occupied state, the
TKNN number is define as

ITKNN =
1

2�



T2
d2kF�−��k� , �B12�

where T2 is the first Brillouin zone in the momentum space.
Using relation �B11� and the Stokes’ theorem, we obtain

ITKNN =
1

�



T+
2

d2kF�−��k�

=
1

��
−�

�

dkxAx
�−��kx,0� − 


−�

�

dkxAx
�−��kx,��� ,

�B13�

where T+
2 is the upper half plane of T2. As is shown in Ap-

pendix B 3, this formula enables us to connect the Chern
number to the winding number defined in Eq. �21�.

2. Winding number

As was discussed in Sec. V, the winding number I�ky� is
defined by taking the basis where the BdG Hamiltonian has
the following particular form:21

SATO, TAKAHASHI, AND FUJIMOTO PHYSICAL REVIEW B 82, 134521 �2010�

134521-20



H�k� = � 0 q�k�
q†�k� 0

	 . �B14�

By using q�k�, the winding number is defined as

I�ky� =
1

4�i



−�

�

dkx tr�q−1�k��kx
q�k� − q†−1�k��kx

q†�k�� ,

�B15�

which is equivalently rewritten as

I�ky� = −
1

2�i



−�

�

dkx tr�q�k��ki
q−1�k��

=
1

2�i



−�

�

dkx�ki
ln�det q�k�� . �B16�

Now we derive a useful formula to evaluate the winding
number I�ky�. Denote the real and imaginary parts of det q�k�
as m1�k� and m2�k�, respectively,

det q�k� = m1�k� + im2�k� . �B17�

Then, I�k� is rewritten as

I�k� =
1

2�



−�

�

dkx�
ijm̂i�k��kx

m̂j�k� , �B18�

where m̂i�k� is given by

m̂i�k� =
mi�k�


m1�k�2 + m2�k�2
. �B19�

To evaluate Eq. �B18�, we use the technique developed in
Ref. 61. From the topological nature of I�ky�, we can rescale
one of mi�k�’s, say m1�k�, as m1�k�→am1�k� �a�1� without
changing the value of I�ky�. Then it is found that only neigh-
borhoods of kx

0 satisfying m2�kx
0 ,ky�=0 contribute to I�ky� if a

is small enough. By expanding mi�k� as

m1�k� = m1�kx
0,ky� + ¯ ,

m2�k� = �kx
m2�kx

0,ky��kx − kx
0� + ¯ , �B20�

the contribution from kx
0 is calculated as

1

2
sgn�m1�kx

0,ky�� · sgn��kx
m2�kx

0,ky�� . �B21�

Summing up the contribution of all zeros, we obtain

I�ky� = �
�kx

0:m2�kx
0,ky�=0�

1

2
sgn�m1�kx

0,ky�� · sgn��kx
m2�kx

0,ky�� .

�B22�

Exchanging m1�k� with m2�k� in the above argument, we
also have

I�ky� = − �
�kx

0:m1�kx
0,ky�=0�

1

2
sgn��kx

m1�kx
0,ky�� · sgn�m2�kx

0,ky�� .

�B23�

3. Relation between the TKNN number and the winding
number

Here we prove relation �22� between the TKNN number
and the winding number. As was shown in Eq. �B13�, the
TKNN number for a TRB superconductor is evaluated by the
line integral

1

�



−�

�

dkxAi
�−��kx,ky� �B24�

with ky =0 or ky =�. From the particle-hole symmetry, this
line integral itself is a Z2 topological number.22,62 In this
section, we relate this line integral to the winding number
defined in the previous section.

First, consider the eigenequation

q�k�q†�k��un�k�� = En�k�2�un�k�� , �B25�

where q�k� is given by an off-diagonal component of Hamil-
tonian �B14�. Using the components of �un�k��,

�un�k�� = �un
1�k�

un
2�k�

	 , �B26�

we define the 2�2 unitary matrix U�k�,

U�k�a,n = un
a�k� . �B27�

Then the eigenequation is recast into

q�k�q†�k�U�k� = U�k���k� , �B28�

where ��k� is given by

��k� = diag�E1�k�2,E2�k�2� . �B29�

Equation �B28� yields

q−1�k� = q†�k�U�k��−1�k�U†�k� . �B30�

By using q�k� and �un�k�� in the above, the occupied state
��n

�−��k�� of Hamiltonian �B14� is given by

��n
�−��k�� =

1

2

� �un�k��
q†�k��un�k��/En�k�

	 , �B31�

with negative n. Here �un�k�� is normalized as
�un�k� �un�k��=1. Thus the gauge field Ai

�−��k� is calculated
as

Ai
�−��k� = i�

n�0
��n

�−��k���ki
�n

�−��k��

=i�
n�0

�un�k���un�k�� + i�
n�0

1

2En�k�2un
a��k�qab�k�

��ki
qbc

† �k�un
c�k� + i�

n�0

1

2
En�k��ki

� 1

En�k��
=i tr�U†�k��ki

U�k��

+ i
1

2
tr�q�k��ki

q†U�k��−1�k�U†�k��

+ i�
n�0

1

2
En�k��ki

� 1

En�k��
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=i tr�U†�k��ki
U�k�� + i

1

2
tr�q�k��ki

q−1�k��

+ i
1

2 �
n�0

�ki
ln En�k� , �B32�

where we have used Eq. �B30� in the last line of the above
equation. We also notice here that the unitary transformation
used to obtain the Hamiltonian in form �B14� is accom-
plished by a constant unitary matrix, so it does not change
the value of Ai

�−��k�. Substituting this into Eq. �B13�, we
obtain

ITKNN = I�0� − I��� +
i

�
�


−�

�

dkx tr�U†�k��kx
U�k���ky=0

−
i

�
�


−�

�

dkx tr�U†�k��kx
U�k���ky=�. �B33�

Since we have

i

�



−�

�

dkx tr�U†�k��kx
U�k�� =

i

�



−�

�

dkx�kx
ln det U�k� = 2N ,

�B34�

with an integer N, the last two terms in the right-hand side of
Eq. �B33� are even integers. Therefore, we obtain

�− 1�ITKNN = �− 1�I�0�−I���. �B35�

APPENDIX C: TKNN NUMBER AND CHIRALITY BASIS

In Sec. V, it is discussed that the origin of the non-Abelian
topological order in spin-singlet Rashba superconductors is
understood in terms of mapping to spinless odd-parity super-
conductors which is derived from the chirality basis repre-
sentation. This mapping was first considered in Ref. 63,
though the parameter region in which this mapping is appli-
cable was not fully elucidated in Ref. 63. Actually, this map-
ping can be used when the Zeeman energy is much larger
than the superconducting gap. In this appendix, we will show
that this mapping does not change the topological number of
the original system. This property is not trivial since the
mapping depends on wave numbers and hence the band
structure of electrons in a nontrivial way.

1. Chirality basis

For simplicity, we suppose that �BHz�0 in the following.
In our Hamiltonian �4�, the normal dispersion of electron is
determined by

E�k� = 
�k� − �BHz	z + �L0�k� · � . �C1�

In the chirality basis, it is diagonalized as

E�k� = U�k��
+�k� 0

0 
−�k�
	U†�k� , �C2�

where 

�k�=
�k�
�
�k�, and �
�k� is given by

�
�k� = 
��L0�k��2 + ��BHz�2, �C3�

and U�k� is

U�k� =
1


2�
�k���
�k� + �BHz�
��L0x�k� − i�L0y�k� − �
�k� − �BHz

�
�k� + �BHz �L0x�k� + i�L0y�k� 	 . �C4�

From the following unitary transformation:

H�k� = G�k�†H̃�k�G�k� �C5�

with

G�k� = �U†�k� 0

0 UT�− k�
	 , �C6�

it is found that the BdG Hamiltonian H̃�k� in the chirality
basis is given by

H̃�k� = � 
�k� + �
�k�	z i��k��U†�k�	yU
��− k��

− i���k��UT�− k�	yU�k�� − 
�k� − �
�k�	z
	 . �C7�

Therefore, the gap function �̃		��k� in the chirality basis becomes

�̃		��k� = i��k��U†�k�	yU
��− k��		�=

1

�
�k����L0x�k� + i�L0y�k����k� �BHz��k�

− �BHz��k� ��L0x�k� − i�L0y�k����k� 	 . �C8�

This equation indicates that when the original gap function ��k� is even parity, the odd-parity gap functions �the diagonal
terms of Eq. �C8�� are induced in the chirality basis due to the existence of the SO interaction. However, this never means that
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the topological class is always the same as that of spin-triplet superconductors because the off-diagonal terms of Eq. �C8�
corresponding to the interband pairing may change its topological property. As a matter of fact, the non-Abelian topological
order appears when one of the two bands 

�k� is gapped by the large Zeeman field satisfying �BHz� ���k��, and only one
band survives in the low-energy region. More precisely, in the parameter regions of the non-Abelian phase shown in Tables
I–III in Sec. V, when ��0, the Zeeman term generates a large gap in the band 
+�k�, leaving only one band 
−�k� in the
low-energy region, and hence a spinless odd-parity superconductor is realized for the band 
−�k�. The effective Hamiltonian

H̃−�k� for the spinless chiral odd-parity superconductor is obtained by integrating out fermion fields for the high-energy
massive band,

H̃−�k� = � 
−�k� ��L0x�k� − i�L0y�k�����k�/�
�k��

��L0x�k� + i�L0y�k������k�/�
�k�� − 
−�k�
	 . �C9�

In a similar manner, in the non-Abelian phase with ��0, the Zeeman term generates a large gap in the band 
−�k�, leaving
only one band 
+�k� in the low-energy region, and thus, the following spinless odd-parity superconductor is realized for the
band 
+�k�:

H̃+�k� = � 
+�k� ��L0x�k� + i�L0y�k�����k�/�
�k��

��L0x�k� − i�L0y�k������k�/�
�k�� − 
+�k�
	 . �C10�

In both cases, the Rashba s-wave �d+ id-wave� supercon-
ductor in this situation is mapped into spinless chiral p-wave
�f-wave or p-wave� superconductor.

The above consideration based on the chirality basis is
also useful for understanding the origin of the Abelian topo-
logical order presented in Sec. VIII. The Abelian order real-
izes in the vicinity of the half filling ��0. In this case, there
are one particlelike band and one holelike band. In addition,
there are Dirac cones at k= �
� ,0� and �0, 
��. When
�BHz� ���k��, the Dirac cone bands have a large gap
��BHz, and can be integrated out in the low-energy region.
Then, there remain one particlelike band and one holelike
band. Furthermore, when ��L0�k����BHz� ���k��, the in-
terband pairs �off-diagonal terms of Eq. �C8�� are negligibly
small compared to the intraband pairs. Since the chiral gap-

less edge state associated with H̃+�k� which corresponds to

the particlelike band and that with H̃−�k� corresponding to
the holelike band have the same chirality, propagating in the
same direction, the perturbation due to the interband pairs
does not raise gap in the two edge modes. This implies that
the system is mapped to two decoupled spinless chiral odd-
parity superconductors for ��L0�k����BHz� ���k��.

By contrast, in the parameter regions where there is no
topological order, there are two particlelike bands ���0� or
two holelike bands ���0�. In such cases, the edge modes

associated with H̃+�k� and H̃−�k� propagate, respectively, in
the opposite directions. Thus, even a small perturbation due
to the interband pairing terms of Eq. �C8� gives rise to a gap
in the edge excitations, and hence there is no topological
order.

2. TKNN number in the chirality basis

Here we will show that the unitary transformation �Eq.
�C5�� for the chirality basis does not change the TKNN num-
ber in the presence of the Zeeman magnetic field, and hence

the topological properties of the original Hamiltonian H�k�
and the Hamiltonian H̃�k� in the chirality basis are the same.

Let us first rewrite formula �B13� in a more convenient
form. Using Eq. �B6�, the TKNN number is recast into

ITKNN =
1

�



0

�

dkx�Ax�kx,0� − Ax�kx,��� . �C11�

We will use this formula to prove the above statement.

As was shown in Appendix C 1, H̃�k� is related to the
original Hamiltonian H�k� as follows:

H�k� = G�k�†H̃�k�G�k� . �C12�

Therefore, the eigenstate ��̃n�k�� for H̃�k� is also related to
the eigenstate ��n�k�� for H�k� as

��̃n�k�� = G�k���n�k�� . �C13�

When �BHz�0, G�k� is nonsingular, thus we have

Ai�k� = i�
n

��n�k���ki
�n�k��=i�

n

��̃n�k���ki
�̃n�k��

− i tr�G†�ki
G�k��=Ãi�k� − i�ki

ln�det G�k�� = Ãi�k� ,

�C14�

where we have used det G�k�=1. Therefore, from Eq. �C11�,
it is found that the TKNN number remains the same in the
chirality basis.

APPENDIX D: AN APPROXIMATED SOLUTION FOR THE
MAJORANA ZERO-ENERGY MODE IN A VORTEX

CORE

We, here, present a derivation of an approximated solu-
tion for the Majorana zero-energy mode in a vortex core
considered in Sec. VII. Zero-energy solutions of the BdG
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equation generally satisfy the condition ũ	= ṽ	
� because of

the particle-hole symmetry of the BdG Hamiltonian. Thus,
the BdG equation �Eq. �56�� for E=0 can be recast into the
following two equations for ũ↑ and ũ↓:

�−
1

2m
� �2

�r2 +
1

r

�

�r
+

1

r2

�2

��2 + i
n

r2

�

��
−

n2

4r2	 − �0 − h�ũ↑

+ 2�e−i�� �

�r
−

i

r

�

��
+

n

2r
	ũ↓ + �ũ↓

� = 0, �D1�

�−
1

2m
� �2

�r2 +
1

r

�

�r
+

1

r2

�2

��2 + i
n

r2

�

��
−

n2

4r2	 − �0 + h�ũ↓

− 2�ei�� �

�r
+

i

r

�

��
−

n

2r
	ũ↑ − �ũ↑

� = 0. �D2�

Here �=0 for r�rc, and ��0 for r�rc with rc��.
We first consider the solution for r�rc. Then, we put �

=0 in Eqs. �D1� and �D2�. We examine the following form of
the solution:

ũ↑�r,�� = e−i�n�/2�ei� −1��f↑
��r�, ũ↓�r,�� = e−i�n�/2�ei �f↓

��r� .

�D3�

Here  is a constant which will be determined later. Substi-
tuting Eq. �D3� into Eqs. �D1� and �D2�, we have the equa-
tions for f↑�↓�

� ,

� 1

2m
� �2

�r2 +
1

r

�

�r
−

� − 1�2

r2 	 + �0 + h� f↑
� − 2�� �

�r
+

 

r
	 f↓

�

= 0, �D4�

� 1

2m
� �2

�r2 +
1

r

�

�r
−

 2

r2 	 + �0 − h� f↓
� + 2�� �

�r
−

 − 1

r
	 f↑

�

= 0. �D5�

We search for the solutions of Eqs. �D4� and �D5� in the
form f↑

��r�=A↑Z −1��r� and f↓
��r�=A↓Z ��r�, where Z���r�

is the Bessel function and � is a constant. Substituting these
expressions into Eqs. �D4� and �D5� and using the following
relations for the Bessel functions Z���r�:

�Z���r�
�r

=
�

r
Z���r� − �Z�+1��r� = �Z�−1��r� −

�

r
Z���r� ,

�D6�

we obtain

� �2

�r2 +
1

r

�

�r
−

� − 1�2

r2 + 2m��0 + h� − 4m��
A↓
A↑
�Z −1��r�

= 0, �D7�

� �2

�r2 +
1

r

�

�r
−

 2

r2 + 2m��0 − h� − 4m��
A↑
A↓
�Z ��r� = 0.

�D8�

Equations �D7� and �D8� are actually the Bessel differential
equations with the solutions Z −1��r� and Z ��r�, respec-

tively, provided that the following relation is satisfied:

2m��0 + h� − 4m��
A↓
A↑

= 2m��0 − h� − 4m��
A↑
A↓

= �2.

�D9�

� and A↑ /A↓ are determined from Eq. �D9�. For simplicity,
we consider the case of �0=0, for which one of the two SO
split bands crosses the � point k=0. This is a typical situa-
tion which realizes the non-Abelian topological order �and
hence the Majorana zero mode� as discussed in the previous
sections. We obtain two sets of solutions of Eq. �D9�, �i� �
=�+, and A↓ /A↑= ��−−�+� / �4m��. �ii� �= i�−, and A↓ /A↑=
−i��−+�+� / �4m��.

Here �
=

64m4�4+4m2h2
8m2�2. Thus, we have two
solutions of the BdG equation for r�rc,

ũ↑ = e−i�n�/2�ei� −1��A↑Z −1��+r� ,

ũ↓ = e−i�n�/2�ei ��− − �+

4m�
A↑Z ��+r� solution I,

�D10�

ũ↑ = e−i�n�/2�ei� −1��A↑Z −1�i�−r� ,

ũ↓ = e−i�n�/2�ei � − i

4m�
��+ + �−�A↑Z �i�−r� solution II.

�D11�

Note that the solution I corresponds to the contribution from
electrons with the finite Fermi momentum kF=�+ while the
solution II is dominated by electrons in the vicinity of the �
point k�0. In the following, we try to construct a solution
for the Majorana zero-energy mode which is mainly formed
by quasiparticles with k�0 corresponding to the solution II
above.

We now proceed to analyze the solution of the BdG equa-
tions �Eqs. �D1� and �D2�� for r�rc. The dependence on � of
the wave function can be separated by assuming the follow-
ing form of the solution:

ũ↑�r,�� = e−i��/2�f↑
��r�, ũ↓�r,�� = ei��/2�f↓

��r� . �D12�

Since ũ	�r ,�� is multiplied by �−1�n when � is changed from
0 to 2� in this gauge,39 the solution �Eq. �D12�� satisfies the
correct boundary condition with respect to � only when the
vorticity n is odd. Thus, we will find the zero-energy solution
only for odd n.

Substituting Eq. �D12� into Eqs. �D1� and �D2�, we obtain

� 1

2m
� �2

�r2 +
1

r

�

�r
−

�n − 1�2

4r2 	 + �0 + h� f↑
�

− 2�� �

�r
+

n + 1

2r
	 f↓

� − �f↓
�� = 0, �D13�
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� 1

2m
� �2

�r2 +
1

r

�

�r
−

�n + 1�2

4r2 	 + �0 − h� f↓
�

+ 2�� �

�r
−

n − 1

2r
	 f↑

� + �f↑
�� = 0. �D14�

In the following, we set �=0, as mentioned before. We pos-
tulate that the solutions of Eqs. �D13� and �D14� consist of a
slowly varying function of r, g↑�↓��r� and the Bessel function;
i.e.,

f↑
��r� = g↑�r�Z�n−1/2����r�, f↓

��r� = g↓�r�Z�n+1/2����r�

�D15�

with �� a constant. Substituting these expressions into Eqs.
�D13� and �D14�, we have

1

m

�Z�n−1/2�

�r

�g↑

�r
− 2�Z�n+1/2�

�g↓

�r
− 2���Z�n−1/2�g↓

− �g↓
�Z�n+1/2�

� + hg↑Z�n−1/2� −
��2

2m
g↑Z�n−1/2� = 0,

�D16�

1

m

�Zn+1/2

�r

�g↓

�r
− 2�Z�n−1/2�

�g↑

�r
− 2���Z�n+1/2�g↑ + �g↑

�Z�n−1/2�
�

− hg↓Z�n+1/2� −
��2

2m
g↓Z�n+1/2� = 0. �D17�

To derive the third terms of the left-hand sides of Eqs. �D16�
and �D17�, we have used relation �D6�. We assume that the
Bessel functions Z����r� appearing in the solution of f↑,↓ are
the first Hankel function H�

�1����r�. To solve Eqs. �D16� and
�D17� for g↑ and g↓, we use the asymptotic form of the
Hankel function H�

�1��z��
 2
�z exp�i�z− �

4 �2�+1���, and the
asymptotic relations,

1

Z����r�
�Z����r�

�r
→ i�� +

�

r
, Z�−1/Z� → i . �D18�

In the following analysis, it will be revealed that the param-
eter �� is determined as a pure imaginary number. �See Eq.
�D25�.� Thus, we approximate Z�n+1/2�

� /Z�n−1/2�→exp�i �
2 �n

+2�� in the asymptotic regime. Then, Eqs. �D16� and �D17�
are rewritten into

i��

m

dg↑
dr

+ 2i�
dg↓
dr

− 2���g↓ − �g↓
�ei��/2��n+2� + hg↑ −

��2

2m
g↑

= 0, �D19�

i��

m

dg↓
dr

+ 2i�
dg↑
dr

− 2���g↑ + �g↑
�ei��/2��n+2� − hg↓ −

��2

2m
g↓

= 0. �D20�

We here introduce new functions g
�r�=g↑
 ig↓. From Eqs.
�D19� and �D20�, we have

i��

m

dg+

dr
− 2�

dg−

dr
− 2i���g− + i�g−

�ei��/2��n+2� + hg− −
��2

2m
g+

= 0, �D21�

i��

m

dg−

dr
+ 2�

dg+

dr
+ 2i���g+ − i�g+

�ei��/2��n+2� + hg+ −
��2

2m
g−

= 0. �D22�

To solve Eqs. �D21� and �D22�, we examine the following
two possible solutions: �a� g−�0, and g+ gives a nontrivial
solution. �b� g+�0, and g− gives a nontrivial solution.

We, first, consider the solution �a�. We postulate that g+

= g̃+ exp�i �
4 �n−1�� with g̃+ a real function. Then, Eqs. �D21�

and �D22� are recast into

dg̃+

dr
= − i

��

2
g̃+, �D23�

dg̃+

dr
= �− i�� −

h − �

2�
	g̃+. �D24�

These two equations are equivalent to each other provided
that

�� = i
h − �

�
. �D25�

Thus, we obtain �� as a pure imaginary, as already noticed
above �below Eq. �D18��. Therefore, the approximation used
for the derivation of Eqs. �D19� and �D20� from Eqs. �D16�
and �D17� is justified. Solving Eq. �D23� or Eq. �D24� with
Eq. �D25�, we obtain the solution for g̃+,

g̃+ = C+e�rdr��h−��/2�. �D26�

Then, from Eq. �D15�, and g↑=g+ /2, g↓=−ig+ /2, we obtain
the radial part of the wave functions f↑

� and f↓
� for the solu-

tion �a�,

f↑
��r� =

C+

2
ei��/4��n−1�e�rdr��h−��/2�H�n+3/2�

�1� �i
h − �

�
r	 ,

�D27�

f↓
��r� = − i

C+

2
ei��/4��n−1�e�rdr��h−��/2�H�n+1/2�

�1� �i
h − �

�
r	 .

�D28�

From the asymptotic form of the Hankel function H�
�1��iar�

�
 2
�iar exp�−ar− i �

4 �2�+1��, we find that for large r, Eqs.
�D27� and �D28� are given by

f↑
��r� � − i

C+

2

 2�

��h − ��r
e−��h−��/2��r, �D29�

f↓
��r� � i

C+

2

 2�

��h − ��r
e−��h−��/2��r. �D30�

Thus, these functions are normalizable when h−��0. We,
now, consider the matching of the solution �a� for r�rc and
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the solution for r�rc at r=rc. As shown below, we can
match the solution �a� for r�rc with the solution II for r
�rc given by Eq. �D11�. Putting  = �n+1� /2 and Z��i�−r�
=H�

�1��i�−r� in Eq. �D11�, we find the asymptotic behaviors
of the radial part of the solution II for r�rc,

f↑
��r� = A↑H�n−1/2�

�1� �i�−r� � A↑e
−i��/4��n+1�
 2

��−r
e−�−r,

�D31�

f↓
��r� = A↓H�n+1/2�

�1� �i�−r� � − iA↓e
−i��/4��n+1�
 2

��−r
e−�−r.

�D32�

To match the solutions, we adopt the following approxima-
tion. Assuming that the SO split is much larger than the
Zeeman energy, i.e., h�m�2, we have �−�h / �2��, A↓ /A↑
=−i��++�−� / �4m���−i. Then, noting that �→0 at r�rc,
we can match the solution for r�rc, Eqs. �D29� and �D30�,
with the solution for r�rc, Eqs. �D31� and �D32�, by choos-
ing C+=2
2i exp�−i �

4 �n+1��A↑. The solution for r�rc, Eqs.
�D31� and �D32�, is not regular at r=0, exhibiting logarith-
mic divergence �log�r� for r→0. However, the solution is
still normalizable. Thus, the solution �a� for r�rc and the
solution II for r�rc constitute the normalizable solution for
the Majorana zero-energy mode. This Majorana zero-energy
solution is constructed from quasiparticles in the vicinity of
the � point k�0, i.e., a single Dirac cone with a mass gap
�h, as mentioned before.

We, now, examine the solution �b� for r�rc; i.e., g+=0,
and g− gives a nontrivial solution. In this case, we assume
the solution of the form g−�r�=exp�i �

4 �n+1��g̃−�r� with g̃−�r�
a real function. Then, Eqs. �D21� and �D22� are recast in

dg̃−

dr
= − i

��

2
g̃−, �D33�

dg̃−

dr
= �− i�� +

h − �

2�
	g̃−. �D34�

These two equations are equivalent when

�� = i
� − h

�
. �D35�

For this choice of ��, the radial part of the solution �b� is
given by

f↑
��r� =

C−

2
ei��/4��n+1�e−�rdr��h−��/2�Z�n−1/2��i

� − h

�
r	 ,

�D36�

f↓
��r� = i

C−

2
ei��/4��n+1�e−�rdr��h−��/2�Z�n+1/2��i

� − h

�
r	 .

�D37�

We cannot match Eqs. �D36� and �D37� with the solution for
r�rc at r�rc for any choice of the Bessel function Z��i��
−h�r /��.

Thus, when h�� and the vorticity n is odd, we obtain the
only one normalizable zero-energy solution which is given
by Eqs. �D12�, �D27�, and �D28� for r�rc, and Eq. �D11� for
r�rc with  = �n+1� /2 and Z�=H�

�1�. The field operator for
the zero-energy mode is given by �†=�dr�ũ↑�r�c↑

†�r�
+ ũ↓�r�c↓

†�r�+ ũ↑
��r�c↑�r�+ ũ↓

��r�c↓�r��, which is self-
Hermitian. Thus, the zero-energy mode is a Majorana fer-
mion. There is only one Majorana fermion mode in a vortex
core with odd vorticity for h��.

APPENDIX E: NON-ABELIAN ANYON IN A
TIME-REVERSAL INVARIANT s-WAVE

SUPERCONDUCTING STATE: NON-ABELIAN AXION
STRING (REF. 24) AND THE FU-KANE MODEL (REF. 23)

In this paper, we mainly consider spin-singlet supercon-
ducting states under strong Zeeman magnetic field. Thus the
time-reversal symmetry is explicitly broken in the ground
state. Indeed, the time-reversal breaking is necessary to ob-
tain a nonzero TKNN number. From the bulk-edge corre-
spondence, the nonzero TKNN number ensures the existence
of topologically stable gapless Majorana fermions on a
boundary and Majorana zero modes on a vortex.

However, it has been also known that non-Abelian anyons
can be realized even when the ground state does not break
the time-reversal invariance. Because of the time-reversal in-
variance, the TKNN number in this case is trivially zero.
Nevertheless, the index theorem ensures the existence of a
topologically stable Majorana zero mode in a vortex. This
mechanism of non-Abelian anyon was discussed in Ref. 24.
Recently, Fu and Kane pointed out that Majorana fermions
�and hence, non-Abelian anyons� realize in an interface be-
tween a topological insulator and an s-wave superconductors
which preserves time-reversal symmetry.23 The following
analysis presents a general ground for the realization of non-
Abelian anyons in such time-reversal invariant systems.

To see this, consider the following Lagrangian for a 2
+1-dimensional Majorana fermion �M coupled with an sca-
lar field !=!1+!2:24

L =
i

2
�M

† �0�����M −
1

2
�M

† �0�!1 + i�5!2��M. �E1�

Here the Majorana fermion satisfies the Majorana condition,

i�2�M
� = �M �E2�

and the Dirac gamma matrices �� and �5 are given by

�� = � 0 	�

	̄� 0
	, �5 = �1 0

0 − 1
	 , �E3�

where 	�= �1,−	i� and 	̄�= �1,	i� with the Pauli matrices
	i. We also suppose that ! is an s-wave condensate with the
expectation value �!�=!0. In sharp contrast to other non-
Abelian topological phases, the system is time-reversal in-
variant, as was pointed out in Ref. 24.

The above system has the following U�1� symmetry:

�M → ei�5��M, ! → e−2�! , �E4�

which is spontaneously broken by the condensate !0. There-
fore, like an ordinary s-wave superconducting state, there
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exist a stable vortex solution that is given by

!�x� = !0f�"�ei�, �E5�

where " and � are the radial and angular coordinates from
the vortex, respectively. The function f�"� vanishes on the
core of the vortex and approaches to f�#�=1 far away from
the core.

The bound states in a vortex are studied by using the
Hamiltonian of the system,

H = �− i	i�i !�

!� i	i�i
	 �E6�

and the unique zero mode, which satisfies Hu0=0, is given
by

u0 = C�
0

1 + i

1 − i

0
�exp�− !0


0

"

drf�r�� �E7�

with a normalization constant C.64,65 The topological stabil-
ity of the zero mode is ensured by the index theorem.66 From

the Majorana condition Eq. �E2� in 2+1 dimensions, the op-
erator of the zero mode �=�dxu0

†�x��M�x� becomes real, i.e.,
�†=�. Therefore, the vortex obeys the non-Abelian statistics.

The above mechanism of non-Abelian anyons in an
s-wave superconducting state is applicable to axion strings in
cosmological systems,24 and also to an interface between a
topological insulator and an s-wave superconductor consid-
ered by Fu and Kane.23 Indeed, identifying a gapless Dirac
fermion on a surface of the topological insulator in the
Nambu representation ��↑ ,�↓ ,�↓

† ,−�↑
†� and an s-wave Coo-

per pair due to the proximity effect with the Majorana field
�M and the scalar field !, respectively, one can show that the
BdG Hamiltonian considered in Ref. 23 is essentially the
same as Hamiltonian �E6�. In this identification, the Dirac
fermion in the Nambu representation satisfies the Majorana
condition �Eq. �E2�� up to an unimportant factor. Further-
more, the electromagnetic U�1� gauge symmetry in the Fu-
Kane model reduces to the U�1� axial symmetry �Eq. �E4��.
Therefore, for the same reason mentioned above, a vortex in
the Fu-Kane model is found to obey the non-Abelian anyon
statistics.
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