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Using molecular dynamics simulations, we report a study of the dynamics of two-dimensional vortex lattices
driven over a disordered medium. In strong disorder, when topological order is lost, we show that the depin-
ning transition is analogous to a second-order critical transition: the velocity-force response at the onset of
motion is continuous and characterized by critical exponents. Combining studies at zero and nonzero tempera-
ture and using a scaling analysis, two critical exponents are evaluated. We find v��F−Fc�� with �
=1.3�0.1 at T=0 and F�Fc, and v�T1/� with �−1=0.75�0.1 at F=Fc, where Fc is the critical driving force
at which the lattice goes from a pinned state to a sliding one. Both critical exponents and the scaling function
are found to exhibit universality with regard to the pinning strength and different disorder realizations. Fur-
thermore, the dynamics is shown to be chaotic in the whole critical region.
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I. INTRODUCTION

Due to the competition between interactions and random-
ness, the dynamics of coherent structures driven over a dis-
ordered medium exhibit a great variety of phases. In particu-
lar, the transition from a pinned state to a sliding one
occurring at a critical driving force Fc, known as the depin-
ning transition, is both a great theoretical challenge and rel-
evant for numerous systems: superconductor vortices, col-
loids, Wigner crystals, magnetic bubbles, charge-density
waves �CDWs�, magnetic domain walls, etc. It has been sug-
gested on phenomenological grounds by Fisher1 that the de-
pinning transition could be regarded as a critical phenom-
enon in which the velocity and the driving force would,
respectively, be the order parameter and the control param-
eter. Though it was originally intended to describe the depin-
ning of CDWs, this idea has proven very useful in many
other domains. In the elastic limit, it has been shown theo-
retically that for most manifolds and for CDW the depinning
does behave like a second-order transition with a power-law
response v��F−Fc�� at the onset of motion and ��1.2

When it comes to situations in which an elastic description is
no longer valid, however, the theoretical description of the
phenomenon is much more difficult. In particular, the nature
of the depinning transition �continuous or discontinuous� re-
mains an open problem. A continuous depinning transition
�second order� with ��1 is observed in experiments3–5 and
numerical simulations.6–10 On the other hand, experiments
on CDW �Ref. 11� and three-dimensional �3D� numerical
simulations of vortices12 suggest a discontinuous �first-order�
depinning transition where the velocity-force curve displays
hysteresis and jumps between pinned and unpinned states.
On the theoretical side, various models have been developed
to describe nonelastic dynamics. A coarse-grained model has
been proposed13 in which a viscoelastic coupling is used as
an effective description of topological defects or phase slips.
In the mean-field limit, it predicts two kinds of depinning: a
continuous one, belonging to the universality class of elastic
depinning, and an hysteretic one. The existence of an hyster-

etic depinning in a special case of this model has been con-
firmed using functional renormalization.14 Other phase-slip
models also predict hysteresis for CDW.15 Conversely, nu-
merical studies of a model focusing on the filamentary nature
of the flow in two dimensions �2D� show a continuous de-
pinning with ��1.5.16 Other phase-slip models based on the
XY model also suggest the absence of hysteresis at the ther-
modynamic limit17 �in 3D� and a continuous second-order
plastic depinning transition with an exponent ��1.7 �Ref.
18� �in one dimensions �1D��. Another approach is to intro-
duce inertia in the equation of motion.19 In this case a con-
tinuous depinning transition is found for small inertial pa-
rameter, otherwise a discontinuous transition with hysteresis
is found. In periodic systems with a displacement field of
dimension N=2 �e.g., superconductor vortices, colloids, and
Wigner crystals�, simulations have established that strong
disorder leads to dislocations and plasticity. At the depinning
threshold, regions of pinned particles �zero velocity� coexist
with particles flowing around the pinned regions.7,8,20–22 Be-
sides, the transition seems to be continuous and smooth ��
�1� in 2D �d=2 is here the dimension of the embedding
space�.7–10 Simulations on 2D colloids also indicate that the
relaxation time near depinning obeys a power law, as ex-
pected in a second-order transition.23 However, most studies
in which critical exponents are evaluated are carried out in
the case of a 1D displacement field �N=1, e.g., Josephson-
junction arrays, metallic dots, and CDW� while there are
very few such studies for N=2. In particular, there is to the
best of our knowledge no available study on superconductor
vortices giving the � exponent in the 2D plastic regime �it
should be noted though that � has been numerically evalu-
ated for superconductor vortices in 3D �Ref. 24��.

In this paper, we perform molecular dynamics simulations
of 2D vortex lattices with strong random pinning and study
the depinning transition induced by an external driving force.
Our system belongs to the category of 2D periodic systems
with a 2D displacement field and short-range interactions. It
could model 3D superconductors �either conventional or lay-
ered� in an effective 2D regime, i.e., when the vortex line
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tension is high enough for the lines to remain straight.
The behavior of the system near the depinning transition

is studied at both zero and nonzero temperature, which al-
lows an accurate measurement of the critical driving force.
At zero temperature, the depinning is continuous and highly
plastic. The static channels observed at the onset of motion
are identified with the so-called single-particle regime and
considered as a finite-size effect. In the intermediate range of
driving force, the motion is chaotic whereas at high driving
force, the lattice reorders and chaos disappears. In the thresh-
old vicinity, a study of the temperature dependence of the
velocity allows us to determine the true critical force despite
the single-particle regime. Moreover, it is shown that the
velocity scales as a power law of temperature vF=Fc

�T1/� at
F=Fc and the associated critical exponent � is determined.
At T=0, a second power law v��F−Fc�� is found with an
exponent ��1. Varying simultaneously the driving force
and the temperature, we then find evidence of the existence
of a scaling law, which confirms the values of � and � evalu-
ated, respectively, at T=0 and F=Fc. This analysis has been
performed for various system sizes, disorder realizations, and
pinning strengths, indicating that both �, �, and the scaling
function exhibit some degree of universality.

II. NUMERICAL MODEL

As in Ref. 10, we study Nv Abrikosov vortices interacting
with Np random pins in the �x ,y� plane. We consider the
London limit �L��, where �L is the penetration length and �
is the coherence length, i.e., we treat vortices as point par-
ticles. The overdamped equation of motion of a vortex i at
position ri reads

	
dri

dt
= − �

j�i

�iU
vv�rij� − �

p

�iU
vp�rip� + FL + Fi

th�t� , �1�

where rip is the distance between the vortex i and the pinning
site located at rp, rij is the distance between the vortices i and
j located at ri and r j, and �i is the 2D gradient operator
acting on ri. 	 is the viscosity coefficient. FL=Fx̂ is the
Lorentz driving force due to an applied current. Fi

th is the
thermal Gaussian white noise with zero mean and variance,

�Fi,

th �t�Fj,�

th �t��	 = 2	kBT�ij�
���t − t�� ,

where 
 ,�=x ,y and kB is the Boltzmann constant. The
vortex-vortex repulsive interaction is given by a modified
Bessel function,

Uvv�rij� = �vK0�rij/�L�

and the attractive pinning potential is given by

Uvp�rip� = − �pe−�rip/Rp�2
,

where Rp the radius of the pins, and �v and �p are tunable
parameters. Depending on the relative strengths of the
vortex-vortex and vortex-pin interactions, the dynamics can
be either dominated by elasticity or disorder. The strength of
the vortex-vortex interaction is fixed by setting �v=2.83

10−3�L�0, where �0 is an energy per unit length. The rela-

tive disorder strength �p /�v is then chosen high enough for
the depinning transition to exhibit plasticity �in our model,
plasticity is found above �p /�v�0.01�. Molecular dynamics
simulation is used for Nv=30n2 vortices in a rectangular ba-
sic cell �Lx ,Ly�= �5,6
3 /2�n�L with n from 3 to 8, i.e., Nv
from 270 to 1080. Periodic boundary conditions are used in
both directions. The vortex-vortex interaction is dealt with
using a neighbor list method with a cut-off radius rc=7.1�L.
The number of pins is set to Np=5Nv, and their radius is
Rp=0.22�L. The average vortex distance is a0=�L. We use a
unit system in which 	=1, �L=1, �0=1, and kB=1.

III. BEHAVIOR AT T=0

We start with a perfect lattice at high velocity and slowly
decrease the driving force until the system reaches a pinned
state. The force is then varied back and forth with various
force steps in order to check for hysteresis. The whole pro-
cess is done at T=0. In Fig. 1, we plot the typical shape of
the average velocity-force curve, showing four distinct re-
gions. These regions are better illustrated by the typical tra-
jectories of vortices7,21 displayed in Fig. 2.

Just above the depinning threshold �region I�, the flow
occurs along one or several noncrossing static channels
while the rest of the system remains pinned �see Fig. 2�. The
velocity-force curve exhibits jumps and hysteresis. This is
related to the existence of several sets of such channels for a
given driving force. Each set corresponds to an hysteresis
branch while jumps in velocity are in fact jumps from a
branch to another one, i.e., from a set of channels to another
one. Note that the branch chosen by the system depends on
the force ramping rate. Moreover, on a given channel, the
positions of vortices are fully determined by the position of
one of them. Indeed, it can be verified by choosing one vor-
tex at a given position on the channel, and plotting the posi-

0 I II III IV

v

FFc*

FIG. 1. �Color online� Schematic of the average velocity v ver-
sus driving force F. The vertical dashed lines separate the different
kinds of flow observed: pinned static lattice �region 0�, single-
particle regime �region I�, disordered chaos �region II�, smectic
chaos �region III�, and decoupled channels �region IV�. The dotted
line crossing the horizontal axis at F=Fc

� is the prolongation of the
curve from region II to region I �see text Sec. IV A�.
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tions of all the other vortices. Since the channel is one di-
mensional, this means that the dynamics can be modeled by
a single degree of freedom. Because of the periodic boundary
conditions, this single degree of freedom sees a periodic po-
tential, leading to the so-called single-particle regime: the
system experiences a saddle-node bifurcation at the critical
force ; above Fc, the velocity is a periodic function of time
and scales as v��F−Fc�1/2. We measure indeed this power
law on each branch corresponding to a given configuration of
the channels. Moreover, simulations of boxes shaped as long
strips in the longitudinal direction show that the range of
force in which region I is observed decreases when the lon-
gitudinal size is increased. At large sizes, the size of region I
seems to shrink to zero. As a result, we assume that region I
vanishes in the infinite size limit, and should not be taken
into consideration for the study of the critical behavior.

In regions II and III, vortices flow along changing inter-
connected channels �see Fig. 2�. The transition from region II
to region III is defined by the appearance of transverse smec-
tic order indicated by small peaks in the structure factor
along the ky axis while the sketch of the high velocity chan-
nels becomes visible. It occurs near the inflexion point in the
velocity-force curve, also known as the peak in differential
resistance in reference to the experimental tension-intensity
curves. In region IV, vortices stop switching channels �see
Fig. 2� and a linear behavior v�F−Fc is observed.

Following Ref. 22, we now show that the motion in re-
gions II and III is chaotic by evaluating the sign of the maxi-
mum Lyapunov exponent �. The existence of at least one
positive Lyapounov exponent illustrates the sensitive depen-
dence on initial conditions, which is a signature of chaos. In
Fig. 3, we plot the distance

d�t� =
�
i=1

Nv

�ri
1�t� − ri

2�t��2 �2�

in the phase space between two neighboring trajectories
�r1

1�t� , . . . ,rNv

1 �t�� and �r1
2�t� , . . . ,rNv

2 �t��. Two distinct behav-
iors are found. In regions II and III, d�t� grows exponentially
at first and then saturates. The exponential growth indicates
the existence of at least one positive Lyapunov exponent,
which proves the existence of chaos. A saturation effect ap-
pears when d�t� becomes on the order of the size of the
chaotic attractor. On the other hand, in regions I and IV d�t�
remains constant at large times �the largest Lyapunov expo-
nent is zero� indicating a closed orbit in phase space while
the decrease at short times is due to the transient regime
associated with the existence of negative Lyapunov expo-
nents.

IV. CRITICAL EXPONENTS AND SCALING

In the original approach of Fisher,1 it is argued that the
depinning transition is a critical phenomenon implying scal-
ing laws and critical exponents near threshold. It is therefore
expected that vF=Fc

�T1/� and vT=0,F�Fc
��F−Fc��, where �

and � are critical exponents. In the following, we show that
our data support the existence of such a critical phenomenon:
the critical exponents � and � are determined, and a scaling
relation is found between the velocity, temperature, and driv-
ing force. Note that the threshold behavior that we observe in
our simulations is effectively continuous since hysteresis and
jumps have only been observed in region I, which we believe
vanishes in the infinite size limit.

A. Critical force and exponent �

First of all, we want to determine the critical force Fc. The
main issue is that because of hysteresis in region I, there is

FIG. 2. �Color online� Typical trajectories of the vortices in the
four moving regions shown in Fig. 1: single-particle regime �region
I�, disordered chaos �region II�, smectic chaos �region III�, and de-
coupled channels �region IV�.

0 1×10
4

2×10
4

time

10
-8

10
-6

d
Region I

0 1×10
4

2×10
4

time

10
-10

10
-5

10
0

d
Region II

0 5×10
3

1×10
4

1×10
4

2×10
4

time

10
-10

10
-5

10
0

d
Region III

0 1×10
4

2×10
4

time

10
-5

10
-4

d
Region IV

FIG. 3. �Color online� Distance d between two neighboring tra-
jectories versus time in regions I, II, III, and IV.
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no unique depinning force Fc directly accessible to measure-
ments. Consequently, we have to evaluate an effective criti-
cal force Fc

� by prolongating the velocity-force curve from
region II to region I. The intersection with the v=0 axis
defines Fc

� �see Fig. 1�. This evaluation can be improved by
studying the temperature dependence of the velocity close to
the depinning threshold. As shown in Fig. 4, two different
behaviors are observed, depending on which side of the tran-
sition the force is. Above the critical force, v approaches a
nonzero limit as T goes to 0, leading to convex curves with
an horizontal asymptote on the left in logarithmic scale. Be-
low the critical force, v goes to 0 faster than a power law,
resulting in concave curves in logarithmic scale. The change
in convexity when the force is varied indicates that the ef-
fective critical force Fc

� has been crossed. The results ob-
tained by these two methods are consistent, and combining
both allows to improve the accuracy and precision of Fc

�.
Furthermore, in agreement with a second-order phase

transition, we can extrapolate at F=Fc
� a power-law

response1 �a linear response in logarithmic scale at the
change in convexity� from which we measure the critical
exponent �,

vF=Fc
� � T1/�. �3�

As we shall see in Sec. IV C, this is consistent with the
existence of a scaling relation, and the value of � obtained
here allows to collapse all data available on a single curve,

supporting the validity of extrapolating a power-law behav-
ior at F=Fc

�. This analysis has been performed on nine
samples with different pinning strengths ��p /�v=1.05 and
0.35�, different system sizes �Nv=270–1080�, and different
realizations of the random positions of the pinning centers.
The resulting values of �−1 are shown in the inset of Fig. 4,
leading to �−1=0.75�0.1.

B. Critical exponent �

We now go back to the T=0 case to study the velocity-
force curve using the values of Fc

� obtained in the previous
section. The mean velocity v versus effective reduced force
f = �F−Fc

�� /Fc
� is plotted in Fig. 5 for �p /�v=0.35, showing

the existence of a power-law regime in the critical region,
which lies from the lower boundary of region II �f �0.1� to
close to its upper boundary �f �1�,

vT=0,f�0 � f�. �4�

This power law results in a linear region in logarithmic scale,
whose slope � has been measured on the nine samples of
Sec. IV A. No significant differences between the samples
were measured, leading to a unique value �=1.3�0.1 �see
bottom right inset of Fig. 5�. The precision of � is limited by
the precision of Fc

�. Note that using only the T=0 results �see
Sec. IV A� to determine the critical force gives a similar
result, except that the uncertainty on � is greater.

C. Scaling law

The power-law dependence of v versus both f and T
strongly suggests to go on with the identification of the de-
pinning transition with a critical phenomenon and to look for
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FIG. 4. �Color online� Average velocity v versus temperature T
at low temperature for different forces around the critical force Fc

�

�from bottom to top: 103
F=11;12;12.5;13;14�, �p /�v=1.05
and Nv=270. The dashed black line is the extrapolation of v�T� at
the critical force from which we extract �−1. Inset: value of �−1 for
different samples: two different disorder strengths �p /�v=1.05 and
�p /�v=0.35, three different sizes �Nv=270 for �p /�v=1.05, Nv
=270, 480, and 1080 for �p /�v=0.35�, and different sets of posi-
tions of the pins �two sets for �p /�v=1.05 and Nv=270, five sets
for �p /�v=0.35 and Nv=270�. The error bars correspond to the
different lines one can draw to extrapolate a power-law behavior at
the change in convexity.
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=1.05, two samples ; right side: �p /�v=0.35, seven samples�.
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evidence of a scaling relation between the velocity, driving
force, and temperature. First of all, we want this relation to
be expressed in terms of dimensionless quantities, and to be
independent of the prefactors in the two power laws men-
tioned before. We thus define v0 and T0 such as

v f�0,T=0 = v0f�, v f=0 = v0� T

T0

1/�

. �5�

Considering dimensionless velocity ṽ=v /v0 and temperature

T̃=T /T0, we define the scaling function S as follows:

ṽ�f �−� = S��T̃�f �−��� , �6�

where the unknown branches S+ and S− of the scaling func-
tion correspond, respectively, to f �0 and f �0. Moreover,
the observed power-law dependences ṽ f�0,T=0= f� and ṽ f=0

= T̃1/� imply that S��x� satisfies

lim
x→0

S+�x� = 1, lim
x→�

x−1/�S��x� = 1. �7�

Graphically, it means �in logarithmic scale� that S+ is
asymptotic to the horizontal axis for T→0 �driving domi-
nated regime� while both S+ and S− have an oblique asymp-
tote with slope �−1 for f →0 �temperature dominated re-
gime�. The intersection of these two asymptotes occurs at
x=1, defining a force-dependent crossover temperature
T=T0�f ��� between the two regimes. Note that the change in

variables �v ,T�→ �ṽ , T̃� is equivalent to choosing the inter-
section of the asymptotes as the origin of coordinates.

We check for the existence of the scaling by plotting in

Fig. 6 ṽ�f �−� versus T̃�f �−��. We observe a collapsing of data
to a single curve �with two branches� for the same values of
Fc

�, �, and � obtained in Secs. IV A and IV B. To be more
specific, the data from all the samples are plotted using the
same couple of values for � and �, chosen equal to the av-

erage values obtained in previous sections ; Fc
� on the other

hand varies from sample to sample as shown in the inset of
Fig. 5. For a given disorder strength v0 and T0 are constant,
whatever the system size �Nv=270–1080� and the positions
of the pins. When the disorder strength is changed, v0 and T0
change �v0=3.3
10−3 and T0=8
10−4 for �p /�v=0.35;
v0=1.3
10−2 and T0=1.4
10−3 for �p /�v=1.05� but S�

remains unchanged.
The collapsing of all the available data indicates that: �i�

the size effects are not relevant, i.e., the system studied is
large enough for a true critical regime to be observed and �ii�
neither the critical exponents � and � nor the scaling func-

tion S̃� depend on the disorder �strength and positions of the
pins�. Our results therefore show some degree of universality
within our model. The question or larger universality classes
for plastic depinning of periodic objects with N=2 displace-
ment fields will be addressed in Sec. V.

V. DISCUSSION

A large variety for the values of the � exponent can be
found in the literature, and the question of the existence of
universality classes is still open for the plastic depinning
transition. In some cases no scaling fit can even been found
or hysteresis suggesting first-order depinning transition has
been reported. Our present results strongly suggest a second-
order depinning transition with well identified critical expo-
nents � and � and scaling relations exhibiting some univer-
sality with regard to the disorder strengths, and disorder
realizations are found. We therefore try to compare our re-
sults and, in particular, the depinning critical exponents to
those reported in similar studies.

In the case of a displacement field of dimension N=1
�e.g., Josephson-junction arrays, XY model, metallic dots,
and CDW� in an embedding space of dimension d=2, the
value �=5 /3 has been predicted theoretically.25 Moreover,
many studies are available, both experimental and numerical,
and a large variety of � values can be found �e.g., 1.4��
�2.25 for arrays of metallic dots,3 and 1.3���2.6 for Jo-
sephson junction and XY model6�.

In the case of a displacement field of dimension N=2
�e.g., superconductor vortices, colloids, and Wigner crystals�,
there are to the best of our knowledge only a few numerical
studies proposing critical exponents for the plastic depinning
transition �see Table I�. Reference 9 uses a N=2 model to
describe arrays of metallic dots, and the nature of the disor-
der’s randomness is different from the other studies �regular
array of pins with random strength vs identical pins with
random positions�. The same study also considers the case of
random positions by removing random sites on the array,
however no unique value of � is measurable in that case. In
Wigner crystals and colloids, � is found to be independent of
the pinning strength.7,8 In 3D superconductors �d=3� with
well-defined vortex lines, it is shown that one can measure
two critical exponents � and �, both independent of the dis-
order strength, and that a scaling relation involving these two
exponents exists.24 However, an hysteretic discontinuous
transition is found if the superconductor is layered and the
layers are allowed to decouple, i.e., when there are no more
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of Figs. 4 and 5 ��p /�v=1.05 and 0.35, Nv=270–1080, and differ-
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vortex lines.12 Finally in experiments on depinning in super-
conductors, ��1.2 or 1.4 is found above the peak effect,4

where the depinning is considered to be plastic.
In the present paper, we propose the determination of both

exponents � and �, along with evidence of a scaling relation,
for plastic depinning in the case N=2 and d=2 by studying
effective 2D vortex lines. First, we note that the value �
=1.3�0.1 is in agreement with vortex experiments above
the peak effect.4 Second, we find some degree of universality
with regard to the pinning strength and different realizations
of the disorder, in agreement with previous results.7,9 How-
ever, the variety of the values of the � exponent reported
above suggests that the type of particle-particle interaction as
well as the type of disorder plays an important role. In the
light of these results, it seems therefore difficult to define
large universality classes for the plastic depinning of periodic
objects in 2D.

VI. CONCLUSION

In this paper, we studied the plastic depinning of vortex
lattices in 2D with strong disorder. Above the pinned region,

we find four dynamical regimes: periodic, disordered cha-
otic, smectic chaotic, and decoupled channels. The first one
is controlled by the finite size of the simulation box, leading
to the so-called single-particle regime. A continuous
�second-order� phase transition is found at the depinning
threshold. The critical regime associated to the depinning
transition is found to be chaotic. A careful analysis at T=0
and finite temperature allows an accurate determination of
the critical force. Scaling laws for the force and temperature
dependence of the velocity are found and two critical expo-
nents are determined. Both critical exponents and the scaling
function are independent of the disorder �strength and posi-
tions of the pins� in the range of parameters we have studied,
indicating some degree of universality. However, the com-
parison with similar systems may suggest that large univer-
sality classes do not exist for the plastic depinning in 2D.
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