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We report microwave transmission measurements of superconducting Fabry-Perot resonators, having a su-
perconducting nanowire placed at a supercurrent antinode. As the plasma oscillation is excited, the supercur-
rent is forced to flow through the nanowire. The microwave transmission of the resonator-nanowire device
shows a nonlinear resonance behavior, significantly dependent on the amplitude of the supercurrent oscillation.
We show that such amplitude-dependent response is due to the nonlinearity of the current-phase relationship of
the nanowire. The results are explained within a nonlinear oscillator model of the Duffing oscillator, in which
the nanowire acts as a purely inductive element, in the limit of low temperatures and low amplitudes. The
low-quality factor sample exhibits a “crater” at the resonance peak at higher driving power, which is due to
dissipation. We observe a hysteretic bifurcation behavior of the transmission response to frequency sweep in a
sample with a higher quality factor. The Duffing model is used to explain the Duffing bistability diagram. We
also propose a concept of a nanowire-based qubit that relies on the current dependence of the kinetic induc-
tance of a superconducting nanowire.
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I. INTRODUCTION

Macroscopic quantum mechanics is one of the most ex-
citing branches of modern physics, which, among other
things, holds a promise for quantum computation applica-
tions. The program of studying macroscopic quantum phe-
nomena, such as laboratory versions of “Schrödinger’s Cat,”
was initiated by Leggett1–5 in 1970s and 1980s. Perhaps the
most important step in the confirmation of macroscopic
quantum mechanics was the experimental observation of
quantum behavior in superconducting micron-scale device
reported by Martinis et al.6 These experiments employed mi-
crowave probing of the discrete energy spectrum and macro-
scopic quantum tunneling in a superconducting device.
These developments led to the concept of a quantum
computation,7–11 in which electronic devices, carrying bits of
information, can exist in a quantum superposition of macro-
scopically distinct states and therefore can act as quantum
bits �qubits�.

One promising approach for constructing a superconduct-
ing qubit is to use an inductive element whose kinetic induc-
tance �L� depends on the magnitude of the supercurrent. If
such an element is included into a superconducting LC cir-
cuit, the current dependence of the inductance makes the
resonator anharmonic. The superconducting resonators, as
any resonator in general, possesses a discrete energy spec-
trum. If the inductance shows a sufficient current depen-
dence, one can make a nonlinear superconducting resonator.
The goal is to make a resonator such that the energy differ-
ence between the ground and the first excited states is sig-
nificantly different �i.e., larger than the width of the levels�
than the difference between the first and the second excited
states. Such resonator can be used as a qubit, since it can be
manipulated between two bottom energy levels only, without
ever exciting the third level.

We propose and test the possibility of using superconduct-
ing nanowires �NWs� �Ref. 12� as nonlinear inductive ele-

ments. In the future they can be expected to replace the usual
superconductor-insulator-superconductor �SIS� Josephson
junction13 in qubits. The reason for moving away from SIS
junctions is that they possess an insulating barrier controlling
the critical current. A small number of impurities in the junc-
tion barrier can profoundly affect its physical properties14

and cause decoherence.15 On the other hand, the nanowires
do not have an insulating barrier since their critical current is
controlled by the wire diameter. Fine tuning of the critical
current can be achieved by connecting two nanowires in par-
allel and applying a weak magnetic field perpendicular to the
formed loop.16 Moreover, the superconducting Dayem bridge
with thick electrodes was shown theoretically to provide suf-
ficient anharmonicity for quantum bits.17

The current-phase relationship �CPR� I��� of an SIS junc-
tion is I= I0 sin��� while that of a short superconducting
nanowire is I=2I0 cos�� /2�arctan�sin�� /2��,18 where � is the
gauge invariant phase difference across the wire. The kinetic
inductance of a superconducting weak link, in general, is
Lef f = �h /4�e��dI /d��−1. It depends on � �Ref. 18� and, in
turn, on the supercurrent flowing through the wire, hence
explaining the term “nonlinear inductance” �here h is the
Planck’s constant and e is the electronic charge�. Such de-
pendence is due to the fact that as the supercurrent ap-
proaches the critical depairing current, the superfluid density
is suppressed and the response to a phase difference is
changed. At kBT�� and in the absence of out-of-
equilibrium Bogoliubov quasiparticles �BQs�, this induc-
tance is expected to be dissipationless, which is exactly what
is required for coherent qubit operation. Yet, it is not clear a
priori whether the suppression of the superfluid density in
the wire by a high supercurrent would produce quasiparticles
or not �such suppression is required exactly for the purpose
of changing the kinetic inductance of the wire�. Our experi-
ments show that, for MoGe superconducting nanowires,
there is a range of bias currents in which there is no addi-
tional dissipation while nonlinearity of the kinetic inductance
is significant.
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The nonlinear inductance of nanowires was probed by
placing a nanowire under investigation into a superconduct-
ing coplanar waveguide �CPW� resonator �i.e., a type of
Fabry-Perot �FP� resonator, to be described in detail below�,
at a location where the microwave field imposes a sinusoidal
time-dependent supercurrent and, correspondingly, a time-
dependent phase difference �.19 Two devices are reported �S1
and S2�. In such devices the oscillating supercurrent with full
amplitude is forced, due to geometry of the device, to flow
through the nanowire. Thus the resonance frequency and the
quality factor of the device depend on the kinetic inductance
of the nanowire and the dissipation occurring in the nano-
wire. The transmission amplitude of the resonator was mea-
sured and a sequence of resonance peaks was observed. One
important result was the observation of the current-
dependent kinetic inductance of the nanowire: as the driving
amplitude was increased, the resonance peak shifted to lower
frequencies. With the sample studied the shift was signifi-
cant, i.e., on the order of the peak width. As this shift hap-
pens the quality factor does not change significantly. This
fact indicates that BQs are not generated when the nonlin-
earity is present. Thus the nanowires could be potentially
useful for the implementation of qubits, provided that the
current remains sufficiently lower than the critical depairing
current. Further increase in the driving power leads to a hys-
teric bifurcation of the transmission amplitude �on samples
with higher quality factors�, which can be explained by a
Duffing model.20 Thus we were able to construct and com-
pare to the theory the Duffing bistability diagram. It is also
found that regimes of stronger dissipation �such a “crater”
shape of the resonance peak or a flattening of the resonance
peak� can also be achieved if the amplitude of the supercur-
rent approaches closely the depairing current. Thus, for po-
tential qubit applications, one would need to stay in the in-
termediate amplitude regime in which the nonlinearity is
present but the dissipation due to the wire is still negligible.
We demonstrate that such regime does exist.

In order to argue that a thin wire would be sensitive
enough to provide nonlinearity to the resonator even in the
quantum regime, i.e., when the number of photons in the
system is of order unity, we stress the following fact: even a
single photon can induce a supercurrent that exceeds the
critical current of a typical nanowire. To demonstrate this we
analyze zero-point fluctuations and the average energy stored
in the resonator. We model our resonator with a nanowire as
a quantum harmonic oscillator, namely, an LC circuit. We
apply the principle of equipartition of kinetic and potential
energies in a harmonic oscillator, i.e., use the condition
�LI2 /2�=��0 /4, where L is the effective total inductance of
the resonator, typically on the order of 1 nH, I is the super-
current at the antinode of the resonator, and �0 is the funda-
mental resonance frequency. It shows, for example, that in a
�0 /2�=10 GHz resonator made of a coplanar waveguide
with characteristic impedance Z0=50 �, even zero-point
fluctuations generate a root-mean-square �rms� current of
Irms=���0 /2L��0

�� /2Z0	60 nA, where the usual ex-
pressions Z0��L /C and �0=1 /�LC have been assumed
�here C is the effective total capacitance�. This value is com-
parable to the observed values of the critical currents of some
MoGe nanowires. For example, a critical current of


200 nA was previously reported.21 Note that a precise in
situ tuning of the critical current of a nanowire is possible by
voltage pulsing.22 If, on the other hand, a single photon is
introduced into the resonator, the supercurrent rms value
should be �3 time larger than that of the zero-point fluctua-
tions. Thus it appears quite practical to achieve a situation
where by placing just a few photons in the resonator the
supercurrent would approach the critical current. Thus the
inductance of the wire should be significantly different in the
situations where there is one photon in the resonator and two
photons in the resonator, simply because its kinetic induc-
tance changes with the supercurrent, due to the suppression
of the superfluid density. Thus the desired level of nonlinear-
ity and quantum single-photon manipulations of the device
appears plausible.

II. FABRICATION AND MEASUREMENTS

The devices under investigation are based on a CPW reso-
nator, which includes the central conductor �blue, two rect-
angles connected by the nanowire �NW�� and the ground
planes �black, labeled as “ground”� �Fig. 1�. For S1 sample,
following Boaknin et al.,23 they were patterned by optical
lithography in superconducting 25-nm-thick MoGe film de-
posited in a dc magnetron sputtering system �ATC 2000 from
AJA International, Inc., and a single compressed
Mo0.76Ge0.24 target purchased from Super Conductor Materi-
als, Inc.�. Thus all the regions colored in blue, black, and red
represent the MoGe film while the white space in Fig. 1
represents SiN deposited on an oxidized Si wafer.12 The
width of the center conductor is 20 	m and the gap between

FIG. 1. �Color online� �a� Schematic drawing of the measured
sample. On the schematic, a Fabry-Perot resonator rendered nonlin-
ear by inserting a thin superconducting wire at the antinode. The
center conductor of the resonator �blue, two rectangles connected
by the nanowire �NW�� is capacitively coupled to the “input” elec-
trode, to which the microwave signal is applied. It is also coupled to
the output electrode, which is used to measure the amplitude of the
oscillating field. The nonlinear element, the NW �red�, is character-
ized by a kinetic inductance that depends on the supercurrent. The
resonator is patterned from a superconducting film of MoGe and the
wire is produced by molecular templating �Ref. 12�. The black color
as well as the blue color both represent the MoGe film, but the
regions shown in black are grounded, while blue regions are not. �b�
Scanning electron microscope images of the suspended nanowires
in S1 �top� and S2 �bottom�. The nanowire of the S1 sample is
about 30 nm wide and 100 nm long with 25 nm of nominal thick-
ness while the nanowire of the S2 sample is about 20 nm wide and
60 nm long with 10 nm of nominal thickness. The scale bar is 100
nm.
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the center conductor and ground plane is 10 	m. A Fabry-
Perot resonator is formed as two semitransparent mirrors
�marked “m1” and “m2” in Fig. 1�, about 45 fF each, are
introduced into the central conductor of the CPW. These mir-
rors are simply a few micron wide gaps in the central con-
ductor. The mirrors act as electric capacitors imposing a rigid
boundary condition, meaning that the supercurrent through
these gaps is exactly zero.24 The length of the center conduc-
tor between the two coupling gaps is 10 mm and the ex-
pected resonant frequency is 
6 GHz. The fundamental fre-
quency �i.e., the 
 /2 mode frequency� of the resonator was

3.5 GHz and the loaded quality factor Q
500. The mea-
sured resonant frequency is much lower than expected due to
the kinetic inductance contribution from the thin MoGe film.
This sample is overcoupled and thus the loaded quality factor
is dominated by the external dissipation due to the energy
leakage through the capacitive coupling to the environment
�i.e., capacitors m1 and m2�. The nanowire was produced by
molecular templating technique, bridging two center conduc-
tors seamlessly. The width and length of the wire is about 30
and 100 nm as can be seen in scanning electron microscopy
pictures in Fig. 1�b� while the nominal thickness was 25 nm.

For the S2 sample, we used two layers of MoGe �a thick
one first and then a thin one, after the nanotubes supporting
the wire were deposited�. The reason to use such double-
layer technique is to create a high-Q �i.e., thick� resonator
and a thin nanowire on top of it. To fabricate the sample,
about 80-nm-thick MoGe film was first deposited on the SiN/
SiO2/Si substrate and similarly, the molecular templating
technique12 was applied to a 10 nm MoGe film, creating a
nanowire about 20 nm wide and 60 nm long. The nominal
thickness of the wire was 10 nm. As for the resonator, the
width of the center conductor was 10 	m and the gap was
5 	m. The coupling gaps �m1 and m2� were 4 	m in size,
giving an estimated capacitance of about 1 fF. The funda-
mental frequency of the resonator was 
4 GHz and the
loaded quality factor Q
5000. Unlike the S1, this sample is
undercoupled and thus the loaded quality factor is dominated
by the internal dissipations.

The resonator is excited by applying a microwave signal
to the input, which is coupled to the resonator through the
coupling capacitor m1 �Fig. 1�a��. The strength of the oscil-
lations is detected by measuring the power of the transmitted
waves at the output, which escape from the resonator
through the coupling capacitor m2. The desired anharmonic-
ity of the resonator is achieved by placing a superconducting
nanowire �shown as a red line in Fig. 1�a�� at the supercur-
rent antinode, i.e., in the middle of the resonator. Since the
kinetic inductance should depend on the amplitude of the
supercurrent, the resonance frequency is expected to be a
function of the number of photons present in the resonator
and therefore on the power of the driving microwave signal.
The dashed green curves in Fig. 1�a� schematically show the
supercurrent amplitudes, associated with the fundamental
and the first harmonic mode of the resonator, referred to as
“
 /2” and “
,” respectively. These notations reflect the fact
that the first resonance peak occurs when the wavelength of
the plasma wave is such that 
 /2=L and the second peak
takes place at 
=L, where L is the length of the resonator,
i.e., the distance between the capacitors m1 and m2 in Fig.

1�a�. In the first resonance �
 /2�, the current is the maximum
at the position of the nanowire while the current through the
nanowire is zero at the second resonance. Thus, one expects
that the nanowire should not affect the second transmission
resonant peak but only the first one.25–28

The resonator measurement is based on ultralow noise
microwave techniques which have been successfully used for
the readout of superconducting qubits.29 In particular, these
techniques allow one to control very precisely the environ-
mental impedance and the noise seen by the nano-object un-
der study. The input is powered by the source of a vector
network analyzer �Agilent 8722D�. The driving power is de-
livered through a stainless-steel semirigid cable, reduced by
a 20 dB attenuator �XMA� thermalized at 800 mK and then
another 10 dB attenuator held at the base temperature of 30
mK, at which the sample was held. The resonator output is
immediately connected to a circulator at 30 mK, then to an-
other circulator maintained at 800 mK. The second circulator
leads to a high-electron-mobility transistor cryogenic ul-
tralow noise amplifier. This amplifier has a noise temperature
of less than 4.2 K. The output of the amplifier leads to an-
other room-temperature amplifier �MITEQ� at the top of the
cryostat. There the output signal is measured by the same
vector network analyzer. The network analyzer is able to
sweep the power in steps of 0.1 dBm, thus allowing a de-
tailed investigation of the dependence of the kinetic induc-
tance of the wire on the supercurrent amplitude, as is ex-
plained in what follows.

The sample S2 was measured in He3 cryostat system,
where similar microwave experimental setup was used. At
the input microwave line, 20, 3, and 12 dB attenuators �In-
met� are mounted at each temperature stage of 4 K, 1 K, and
0.3 K, respectively. At the output microwave line, two isola-
tors are thermally anchored to 1 and 0.3 K temperature
stages for each. Then a cryogenic low noise amplifier �Low
Noise Factory� is held at 4 K and two room-temperature
amplifiers follow. To perform the microwave transmission
measurement of the resonators, a vector network analyzer
�Agilent PNA5230A� was used.

III. RESULTS

A general view of the measured transmission function of a
superconducting Fabry-Perot resonator with a nanowire is
shown in Fig. 2. Consider first the black curve, correspond-
ing to the lowest driving power. Two prominent peaks are
visible: the fundamental resonance at 
3.5 GHz, marked

 /2, and the first harmonic of the resonator at 
7 GHz,
marked 
. The blue curve corresponds to a larger driving
power and it shows a noticeable reduction in the transmis-
sion in the first peak while the second peak remains un-
changed. Finally, the red curve corresponds to even higher
power, at which the first peak is strongly suppressed, while
the second is unchanged. So it appears that at high driving
power and correspondingly at a large supercurrent oscillation
amplitude the first peak �
 /2 resonance� acquires a volcano
shape �i.e., exhibits a crater� while the second, 
 peak, re-
mains unchanged. To explain this one needs to compare the
supercurrent patterns corresponding to the 
 /2 and 
 reso-
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nance modes. In the 
 /2 mode the supercurrent has the an-
tinode in the middle of the resonator, exactly at the spot
where the wire is located. Thus, if the 
 /2 mode is excited,
the oscillating supercurrent is forced to flow through the
nanowire. As the amplitude is increased above the critical
current of the wire, a dissipative process occurs and the reso-
nance peak gets modified and eventually suppressed, as is
evident from Fig. 2. On the contrary, the 
 mode has a cur-
rent node �zero� in the middle of the resonator. Thus the
current through the wire is zero for this mode and the corre-
sponding resonance peak shows no sensitivity to the activa-
tion amplitude, unless the amplitude is so large that the con-
densation amplitude becomes suppressed even in the
superconducting film forming the main body of the resona-
tor.

Thus in order to probe the current dependence of the ki-
netic inductance of the wire, we need to focus on the first
resonance peak. The transformations occurring in the first
peak as the power is increased are shown in detail in Fig.
3�a�. Here the curve 1 corresponds to a low driving power
�−48 dBm�. At this low power a significant increase in the
driving power by 4 dBm �up to −44 dBm� does not change
the curve significantly �compare curves 1 and 2�. As the
power is increased further, the peak shifts �curve 3� to lower
frequencies, and the shape of the resonance peak changes
�curve 4�. At the highest power, before the crater appears, the
observed shift is about 3 MHz as is clear from the compari-
son of the curves 1 and 5. The shift is due to the fact that the
kinetic inductance of the wire becomes more and more cur-
rent dependent, as the supercurrent increases. The width of
the peak itself is 
7 MHz. Thus, the shift is of the same
order of magnitude as the peak width. The peak width can be
further reduced, if necessary, by increasing the quality factor
of the resonator. Here we emphasize that these resonance
peak shifts were observed only in the fundamental mode
�
 /2�, not in the first harmonic mode �
�, clearly showing
that the nonlinear effect observed in 
 /2 mode is purely due
to the nanowire.

As the power is increased further, a crater appears on top
of the resonance peak, as is clear in curve 6 �and the curves
with larger numbers� of Fig. 3�a�. We suggest that the ob-
served reduction in the transmission at the peak is due to the
fact that the supercurrent amplitude inside the resonator ex-
ceeds the nanowire’s critical current. As it happens, the nano-
wire goes to the normal state, introducing strong losses to the
resonator. In what follows we will use the following nota-
tion: Pin

NA will denote the power at the input of the network
analyzer. Pout

NA denotes the power at the output of the network
analyzer, also called the driving power. This power goes,
through the set of cables and attenuators, to the input of the
resonator. The power transmitted through the entire circuit
including the attenuators, the resonator, the circulators, and

FIG. 3. �Color online� �a� �sample S1� Transmission amplitude S21 as a function of frequency for different values of the driving power.
This resonance peak represents the fundamental mode of the resonator with a nanowire. The curves correspond to different driving powers,
as follows: 1: Pout

NA =−48 dBm �black�; 2: −44 dBm �blue�; 3: −40 dBm �red�; 4: −36 dBm �orange�; 5: −35 dBm �green�; 6: −34.2 dBm
�blue�; 7: −33 dBm �black�; 8: −32 dBm �black�; and 9: −30 dBm �black�. �b� �sample S1� Replotting of the data from �a� as the resonator
output power, measured at the network analyzer input Pin

NA versus frequency. Note that the square root of the output power is proportional
to the amplitude of the supercurrent in the resonator. The dashed line indicates the driving power of −12.5 dBm level.

FIG. 2. �Color online� �sample S1� Transmission S21 of the su-
perconducting Fabry-Perot resonator with a nanowire placed in the
middle of the resonator, as in Fig. 1. The graph illustrates the sen-
sitivity of the first resonance peak to the driving power P��Pout

NA�
while the second resonance is unaffected. The blue curve is shifted
downward by 20 dB and the red one by 40 dB for clarity.
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the amplifiers, Pin
NA is proportional to the power at the output

of the resonator, which in its turn, is proportional to the
square of the current amplitude in the resonator. Pin

NA is plot-
ted in Fig. 3�b�. To plot it we use the relation Pin

NA �dBm�
= �S21� �dB�+ Pout

NA �dBm�. As the driving power is increased,
the overall transmitted power curves move up until the maxi-
mum reaches near −12.5 dBm line. Figure 3�b� shows that
the current amplitude at the peak cannot exceed this level,
most probably the level corresponding to the critical current
of the wire. This level appears slightly dependent on the
value of the driving power, probably due to the fact that in
this experiment the voltage, not the current, is measured, and
the relation of the voltage oscillation amplitude to the current
oscillation amplitude may deviated from being exactly pro-
portional since the inductance of the wire shows some de-
pendence on the supercurrent flowing through it. Another
possible explanation might be that at higher driving powers
the critical current is reached faster, thus making the occur-
rence of the normal state in the wire more frequent. We as-
sume that the appearance of the crater indicates the occur-
rence of a significant Joule heating of the wire, as the current
exceeds the critical depairing current. This, in turn, might
increase the average temperature of the NW leading to the
observed small deviations from the maximum peak level of
−12.5 dBm. Further increase in the power leads to an in-
crease in the crater size �curves 7, 8, and 9� and the corre-
sponding increase in average Joule power dissipated in the
wire. At low-enough driving power the crater shape appears
continuous and smooth. As the power is increased, then ini-
tially the right side of the crater and then also the left side
develops a discontinuity jump and a hysteresis, associated
with the jump. The exact position of the jump fluctuates
slightly from one sweep to the next one.

We have also succeeded in making a sample with a ten
times larger quality factor, i.e., sample S2. Now we examine
the first resonance peak of the S2 as shown in Fig. 4�a�. The
transmission amplitude was measured in both forward and

backward sweep of the driving frequency. At low driving
power �curve 1�, the resonator response was Lorentzian cen-
tered at the resonance frequency of 4.036 GHz, and the qual-
ity factor was 5025. As the driving power increases, the reso-
nance peak becomes asymmetric due to the nonlinear
inductance of the nanowire �curves 1–4�. The resonant peak
shifts by 
0.5 MHz �which is also on the order of the peak
width�. As the driving power reaches a critical power Pout

NA

= Pc �curve 4�, an abrupt transition in the transmission am-
plitude, “bifurcation,” was observed in both frequency sweep
directions. In addition, this transition is hysteretic. As shown
in curve 8 of Fig. 4�a�, the transition occurs at higher fre-
quency in forward sweep than in backward sweep. �The ar-
rows indicate the direction of sweep.� These transitive and
hysteretic behaviors are well-known features in a nonlinear
system. The amplitude dependence of the resonance fre-
quency in nonlinear system leads to the development of the
hysteretic abrupt transitions in the Duffing model. As the
amplitude increases, the nonlinear system becomes bistable
at a certain frequency range, and thus the response of the
cavity bifurcates. However, the downward transition in back-
ward sweep does not occur at the same frequency where the
upward transition appears since the oscillation amplitudes
are different when the transitions occur. The resonance fre-
quencies differ at the upper and lower transmission ampli-
tudes.

As in Fig. 3�b�, Fig. 4�b� shows the transmitted power
versus frequency at different driving powers. As the driving
power increases, the top part of the curves becomes flattened
and also approach a certain limit of the output power, about
−27.5 dBm. The shape of those curves �near the limit output
power� is quite different from that of the Duffing model as
will be discussed below. This behavior indicates the maxi-
mum supercurrent amplitude inside the cavity continues to
increase as the driving power become strong but to converge
to a certain value, which is probably the critical depairing
current. The qualitative difference between S1 and S2 is that

FIG. 4. �Color online� �a� �sample S2� Transmission amplitude S21�dB� in forward and backward frequency sweep for various driving
powers. The graph shows Duffing bifurcation occurring at higher driving powers. The curves correspond to different driving powers: 1:
Pout

NA =−29 dBm �black�; 2: −21 dBm �blue�; 3:−14 dBm �red�; 4: −11 dBm �orange�; 5: −10 dBm �green�; 6: −8 dBm �black�; 7: −6 dBm
�violet�; and 8: −3 dBm �black�. �b� �sample S2� Replotting of the data from �a� as the transmitted power Pin

NA measured at the network
analyzer input versus frequency.
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S1 is strongly overcoupled and has a relatively low-quality
factor while S2 is undercoupled and has an about ten times
higher quality factor.

IV. MODEL

The results in Figs. 3 and 4 make it clear that the shape of
the resonance peak depends on the driving power consider-
ably. In order to examine the nonlinear aspect of the nano-
wire, we consider only the transmitted output power Pin

NA vs
frequency for the driving powers that do not create the cra-
ters but give asymmetric peaks as shown in Fig. 5�a�. The
driving power ranges from −48 to −34.4 dBm, where the
latter was the highest driving power that does not create the
crater. �The power of −34.3 dBm was sufficient to produce a
crater.� To understand our nanowire-resonator system, we
model it as a Duffing nonlinear system with a cubic
nonlinearity.20 It is well known that in the weak nonlinear
limit, the frequency-response curves, i.e., stationary solu-
tions, can be obtained analytically by solving the nonlinear
equation of motion approximately. We can describe the nano-
wire resonator as an equivalent lumped series effective LRC
circuit near the resonant peak, and solve the equation of mo-
tion as in Ref. 30 to reproduce the transmitted output power
versus frequency curves with the driving power given by the
settings of the network analyzer. In this approximate model
�see Appendices A and B for details�, a nanowire is consid-
ered a nonlinear nondissipative inductive element, and is as-
sumed to hold a sinusoidal CPR I���= I0 sin���. This is jus-
tified by the fact that in the approximate solution given in
Ref. 30 only the linear and the cubic terms of the CPR are
retained anyway, and for a thin superconducting wire one
expects that the CPR holds only a linear and a cubic term.18

The model has five adjustable fitting parameters: I0 �critical
current�, �0 �resonant frequency�, QL �loaded quality factor,
the same one for all values of the driving power�, and K1 and

K2 �scaling factors representing the attenuation of attenuators
and the semirigid coaxial cables connected to the input of the
resonator, and the combined effect of the cables, circulators
and amplifiers connected to the output of the resonator, re-
spectively�. With the model we could fit the whole family of
the output power curves as a function of frequency at each
driving power. The equations used for making the fitting are
given in Appendices A and B below. The fitted curves are in
a quantitative agreement with the data as shown in Fig. 4�a�.
In the fitting procedure, we note that the three parameters �I0,
K1, and K2� are not determined uniquely. One of them can be
arbitrarily chosen to find two others. The best fits could be
achieved with any choice of K1 if other fitting parameters are
adjusted appropriately. From the theoretical fitted curves, we
can obtain directly the current amplitudes at each given fre-
quency and drive power. In the experiment we see that at
some critical driving power �which actually was
−34.4 dBm� a crater develops. We denote the corresponding
supercurrent amplitude as ICM. Our interpretation is that this
is the “measured” critical current. Thus we use the condition
I0= ICM. The best fit, for the entire set of curves in Fig. 5�a�,
was achieved with I0= ICM =4.1 	A, QL=515, �0 /2�
=3.4156 GHz, K1=2.37�10−5, and K2=44 400. The �0 and
QL are consistent, within less than 1% deviation, with those
of the curve corresponding to the lowest driving power,
where the nonlinear effect is negligible. Thus it is concluded
that a nonlinear regime does exist, in which the superfluid
density is suppressed in the wire, but the dissipation is not
increased. In other words, the nanowire can act as dissipa-
tionless nonlinear inductor. The fitting parameter K1=2.37
�10−5 corresponds to 46.3 dB attenuation on the circuit con-
nected to the input of the resonator, which is close to the
expected value based on our approximate knowledge of the
cable attenuations and the attenuators placed in the resonator
input line �
40 dB�. The value of the wire’s critical current
I0 is roughly consistent with the expectations based on the
nominal sputtered film thickness. However, the value I0 can-

FIG. 5. �Color online� Transmitted power Pin
NA versus frequency is plotted for samples for S1 �left� and S2 �right�, for the corresponding

fundamental modes. The parameter for the presented family of curves is the nominal driving power. The solid curves represent data, and the
dashed lines are fits to the data. �a� The driving power ranges from −48 to −34.4 dBm, starting from the bottom curve. The driving powers
used are Pout

NA =−48, −47, −46, −45, −44, −42, −40, −38, −36, −35, −34.5, and −34.4 dBm. �b� The driving powers used are Pout
NA =−24, −22,

−20, −18, −16, −14, −12, −11, −9, −7, and −4 dBm.
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not be determined exactly from the known thickness of the
sputtered MoGe since the critical current depends on the ac-
tual size of the nanotube or a nanotube rope templating the
wire.20 Since the size of the tubes/ropes is not fixed and it is
known only very roughly, we cannot make a precise predic-
tion of the wires critical current independently of the data
and the fitting procedure of Fig. 5�a�.

We observe that the agreement between the model given
by Eq. �A3� and the data is very good, except for the two
topmost curves corresponding to the highest excitation pow-
ers, and the deviations are observed only very close to the
resonance maximum. The deviations might be due to the fact
that the wire CPR deviates from the sinusoidal one as the
current approaches the critical current.

Here we should stress the fact that the fitting procedure,
which provides good agreement with the date, uses a nonlin-
ear model with the quality factor independent of the driving
power. Otherwise, there would be a broadening of the reso-
nance peak and the suppression of the maximum peak
height. If Bogoliubov quasiparticles31 and/or Little phase
slips32 were creating a significant dissipation, we would ob-
serve a dependence of the quality factor on the driving
power. Yet the quality factor appears independent of the driv-
ing power. Thus a low level of dissipation in the nanowire is
strongly suggested by these measurements and the modeling
results, even in the regime when the kinetic inductance
changes significantly due to strong supercurrent amplitude.
This nondissipative nature is a key requirement for imple-
menting a qubit. Therefore, the results provide evidence that
the nanowire as a nonlinear and nondissipative element can
be used for making qubits.

For the S2, we performed a similar analysis on the data as
shown in Fig. 5�b�. At the low and intermediate driving pow-
ers, at which the bifurcation does not occur, the fits are in
reasonable agreement with the data. However, beyond the
critical power where the bifurcation starts to develop, the fits
deviate from the data. The first noticeable discrepancy is the
shape of the curves: the top part of the experimental curves
become flattened out. As the driving power is increased, the
flattened part raises only slightly. The second difference is
the size of the hysteresis of the bifurcation. The size of the
hysteresis of the data is much smaller than that of the fit.
This correspond to the fact that the jump from the high trans-
mission branch to the low transmission branch, as the fre-
quency is scanned downward, happens earlier than the model
predicts. We suspect that the observed deviations are due to
the fact that the depairing current of the wire is reached at
powers slightly higher than the power at which the dissipa-
tion occurs.

Those two differences are not well explained by the Duf-
fing model. In order to investigate this discrepancy, we per-
formed numerical analysis of the lumped series effective
LRC circuit with the nanowire. The nonlinear second-order
differential equation was solved for � �phase across the
nanowire� iteratively in time domain using the fourth-order
Runge-Kutta method and then the transmission output power
of the cavity vs frequency curves were obtained �see Appen-
dix B�. To represent the dynamics of the bifurcation in the
system more effectively, we focus on the frequency locations
�D where the maximum derivative and the maximum ampli-

tude occur in each frequency-response curve. Now we can
plot the frequency-response data �Fig. 5�b�� in the plane of
normalized driving power �P / Pc� and normalized frequency
���, where P is the driving power, Pc the critical power
where the bifurcation of transmission amplitude appears, �

= ��
 =

��0−�D�
�0/2QL

, �0 the resonant frequency, �D the frequencies
at the maximum �minimum� derivative of the transmission
curve versus the driving frequency and/or the frequency of
the maximum of the transmission amplitude, and QL the
loaded quality factor. Then the so-called bistability diagram
is drawn in the plane of �� , P / Pc�. The region where
P / Pc �dB��0 is called bifurcation region, and the region
where P / Pc �dB��0 is called sub-bifurcation region.

Now we first show the bistability diagram of the Duffing
oscillator. From the stationary solution of the Duffing model,
the upper/lower bifurcation branches in the bifurcation re-
gion, the maximum derivative and the maximum amplitude
branches in sub-bifurcation region are given in Ref. 22. This
bistability diagram of the Duffing system is plotted in Fig.
6�a� as solid lines. There are two branches, upper �blue� and
lower �red� branches in the bifurcation region. The upper
�lower� branch corresponds to the jump-up �jump-down� of
the transmission amplitude in the forward �backward� fre-
quency sweep. In the sub-bifurcation region, the lower �red�
curve corresponds to the maximum derivative of the re-
sponse curve, and the upper �black� curve corresponds to the
maximum amplitude. Those are universal such that when the
transmission amplitude vs frequency data are properly res-
caled, they all fall on the universal curves. The measurement
data are also plotted in Fig. 6�a� as discrete symbols. The
data fall on the theoretical curves very well, except for the
lower bifurcation branch �which represents the jump from
the high oscillation amplitude of the nonlinear oscillator to
the lower amplitude and which could be influenced by the
close proximity of the depairing current of the wire�. The
lower bifurcation branch of the data lies above the theoretical
lower bifurcation branch, indicating the size of hysteresis is
smaller compared with that of the Duffing system. This dis-
crepancy in lower bifurcation points can be explained, for

FIG. 6. �Color online� Bistability diagrams of the Duffing
model, the data for S2, and the simulation results. The curves in
blue/red and black correspond to maximum derivative and maxi-
mum amplitude in frequency-response curve, respectively. �a� Bi-
stability diagrams of the approximate analytic solution �solid lines�
of the Duffing model explained in Appendix A �Ref. 19� and the
data �crosses and dots� are depicted. �b� Bistability diagrams of our
numerical simulation results explained in Appendix B �solid lines�
and the data �crosses and dots� are shown.
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example, by power-dependent dissipation at high current, ap-
proaching the depairing current. This is because the down-
ward transition �corresponding to the lower bifurcation
branch� occurs from a higher supercurrent to a lower super-
current. This regime of very high currents should be avoided
if the wire is to be used in a qubit setting.

Now for our numerical results, we first numerically
solved the Duffing equation to obtain transmission output
power vs frequency plots �Eq. �A3� in Appendix A�. The
bistability diagram of those numerical solutions exactly
matched that of analytic solutions of the Duffing model.
Next, we numerically solved the LRC circuit with a Joseph-
son junction without taking only the lowest order of nonlin-
earity. The diagram of the Josephson junction case is almost
identical to the theoretical one, but the lower branch slightly
deviates, which is not surprising since the theoretical dia-
grams are derived from the Duffing system that takes ap-
proximation up to the first order of �Is / I0�2. Next, we re-
placed the Josephson junction with the nanowire as a
nonlinear inductance, where the current-phase relationship of
a long nanowire Is=3�3I0 /2� / �L /��− �� / �L /���3� is used.18

�I0 is the critical current, � the phase across the wire, L the
length of the wire, and � the coherent length. We used I0
=2	A and L /�=7.� We tested different degree of nonlinear-
ity of the nanowire and, however, all of them were close to
the theoretical Duffing bistability curves, although some de-
viations we observed in the lower branch of the data. Then
we added power-dependent dissipation term R=R0�1
+��Is / I0�2� to the model, where R0=0.0099, I0=2	A, and Is
is the time-dependent supercurrent through the nanowire. We
should note that, in our model, the Fourier component of the
supercurrent through the wire only at the driving frequency
is extracted and the square of that component is assumed to
be proportional to the transmitted power of the cavity. The
best fit was obtained with �=60 showing a reasonable agree-
ment with the data. The final simulation results are plotted in
Fig. 6�b� as solid lines. This result indicates that at very high
ac amplitude the internal dissipation in the nanowire is not
negligible. It is assumed that the dissipation mainly takes
place in the nanowire rather than in the resonator since the
current density is much higher in the nanowire as the width
of the nanowire is about 200 times smaller than that of the
center conductor of the resonator. Lastly, we should mention
that the simulated transmission output power vs frequency
curves �not shown� were not able to reproduce the observed
flattening of the peak of the transmission curve at high driv-
ing powers �Fig. 5�b��.

V. QUBIT DESIGN PROPOSAL

We establish that by placing a nanowire into a FP resona-
tor it is possible to make the system nonlinear while the
dissipation remains unchanged in a certain range of super-
current amplitudes. In the future work, such resonators with
inserted nanowires will be tested for the pursuit of a qubit,
namely, the proposed nanowire-FP qubit. To our knowledge,
this new qubit type has not been demonstrated yet. For this
nanowire-resonator system to work as a qubit, it should be
unharmonic enough to satisfy the condition �� /N�, where

��, N, and  are the maximum resonance shift in the 
 /2
mode, the number of photons in the cavity corresponding to
the shift, and the bandwidth of the resonance peak at −3 dB
of the maximum of the transmission. In our experiments so
far, we estimated that ��=3 MHz, N
104, 
6 MHz for
S1, and ��=0.6 MHz, N
103, 
0.8 MHz for S2 and
these have not met the criteria above yet.33 Therefore, the
task to increase the nonlinearity of a nanowire should be
performed by reducing the thickness of the nanowire or mak-
ing a constriction in the nanowire. Making constrictions is
possible using a highly focused high-energy electron beam of
a transmission electron microscope.34,35 Also, the critical cur-
rent can be decreased by pulsing.21 The quality factor Q
should be increased up to 105–106, which has been achieved
in superconducting coplanar waveguide resonators.36,37

The schematic of the proposed qubit is presented in Fig.
7. Two resonators are used. The main resonator is horizontal
in the drawing. It will be used for the qubit readout. The
qubit resonator is placed vertically in the drawing. It has two
nanowires in the middle, i.e., at the antinode of the supercur-
rent of the fundamental mode of the resonator. By applying a
magnetic field perpendicular to the plane of the device, it
should be possible to control the frequency of the qubit reso-
nator due to the critical current of the wires modulated.16 If
the qubit is operational, one expects to observe a splitting of
the resonance peak of the main resonator and the dependence
of the splitting on the number of photons in the qubit reso-
nator. The equivalent scheme, valid near the resonance, is
shown in Fig. 5�b�. The first step to characterize the qubit
would be to observe the two well-defined quantum states
using a well-established experimental technique, namely, the
frequency-domain approach as was used in c-QED experi-
ments by Wallraff.38

FIG. 7. �Color online� �a� Schematic of a nanowire-FP qubit
�vertical� coupled to the main resonator �horizontal�. The qubit is a
FP-type coplanar waveguide resonator having two parallel nano-
wires �red� in the center. The nanowires make the resonator anhar-
monic. Thus two levels can be addressed by a proper choice of
frequencies. The critical current of the pair of nanowires can be
controlled by the perpendicular magnetic field �Ref. 16�. Thus the
qubit resonator can be tuned in resonance with the main resonator,
if desired. The ground planes �gray� are indicated by “GND.” Al-
though the bottom end of the qubit resonator is shown ungrounded,
it can be link to the ground plane if desired. Note that both the gray
color and the blue color represent the MoGe film, but the regions
shown in gray are grounded, while blue regions are not. �b� Sim-
plified equivalent circuit of the sample. The inductor in the qubit
can be tuned with the magnetic field, and it is current dependent,
thus termed “nonlinear.” The arrow crossing the inductor symbol-
izes the current dependence of the inductor.
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It should be noted that the qubit design outlined here is
qualitatively different from the design proposed by Mooij
and Harmans �MH�, which is also based on nanowires.39,40

The MH design relies essentially on the presence of quantum
phase slips QPS in the nanowire. Yet the existence and prop-
erties of QPS are not yet firmly established and represent a
subject of intensive research.41–51 The qubit design proposed
here does not require QPS at all. On the contrary, it relies
only on the dependence of the kinetic inductance of the in-
serted nanowire on the value of the supercurrent oscillation
and should show the best performance if QPS is absent. Thus
a comparative study of the MH and our qubits can provide,
among other things, definitive evidence in favor or against
the existence of coherent QPS in superconducting nanowires.

In conclusion, we have demonstrated the nonlinear induc-
tance of the nanowire in the Fabry-Perot resonator by mea-
suring the transmission signal at a range of driving powers.
The nanowire resonator was modeled using lumped series
effective LRC elements, and the transmission behavior near
the fundamental resonance peak was well explained by a
Duffing oscillator model. We also proposed a qubit design
for the nanowire-FP qubit.
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APPENDIX A: EQUATION OF MOTION OF THE LUMPED
SERIES EFFECTIVE LRC CIRCUIT WITH A

JOSEPHSON JUNCTION

Following the thesis of Metcalfe,30 we model the resona-
tor as a lumped series effective LRC circuit. The model is
only good near the resonance peak. The model allows us to
calculate oscillating charge amplitude 2�A� and the supercur-
rent amplitude 2�A�� as functions of the frequency of the
driving signal � and the voltage amplitude of the driving
signal Vd=�R1Pin

Res �W�. The oscillator with the junction
nonlinear inductor is described by the following nonlinear
equation:

�Lef f +
LJ

�1 − q̇2/I0
2�q̈ + Ref fq̇ +

q

Cef f
= Vef f cos��t� ,

�A1�

where the effective charge on the effective capacitor depends
on time as q�t�=A�t�ei�t+A�t�ei�t. By expanding the nonlin-
earity term to the lowest order 1 /�1− q̇2 / I0

2	1+ �q̇2 /2I0
2�, we

acquire

�LT +
q̇2

2I0
2�q̈ + Ref fq̇ +

q

Cef f
= Vef f cos��t� . �A2�

The frequency response curve30 can be approximately writ-
ten as

� 1

�2 + ��B�2 − 1�2��B�2 = � , �A3�

where B= A�
I0

� 1
2��2 , �=

Vef f
2

�0
2�2 � 1

2��2 �3, �= ��
 , =

�0

2QL
, �

=� LT

LJQL
, LT=Lef f +LJ, Lef f =

Z0

4�0/2� , Lef f =
Z0

4�0/2� , LJ=�0 / I0,
�0=� /2e, Vef f =Z0�0CinVd, Vd=�R1Pin

Res �W�, Pin
Res �W�

=K1
�Pout

NA �W�, Pin
NA �W�=K2Z0�2�A�2, Pout

NA �W�=0.001

�10Pout
NA �dBm�/10, Pout

NA �dBm�=10 log10�Pout
NA�W� /0.001�, and

QL�Qext=
�

2Z0RL�0
2�Cin

2 +Cout
2 � .

Other notations

h—the Planck constant, e—the electronic charges.
q—the electric charge in the series LRC circuit.
Z0—the characteristic impedance of the coplanar wave-

guide used to make the FP resonator. It is estimated to be
82.5 �.

�0 /2�—the resonant frequency.
��=�−�0.
I0—the critical current of a nanowire or Josephson junc-

tion.
Cin and Cout correspond to the input and output coupling

capacitors of the resonator, i.e., the values of the capacitors
m1 and m2 in Fig. 1, respectively. In our sample, Cin=Cout

45 fF.

Vd—the voltage amplitude of the microwave source driv-
ing the resonator.

Vef f—the effective voltage amplitude of the driving
source in the series LRC circuit.

Lef f, Ref f, and Cef f—the inductance, resistance, and ca-
pacitance in the series LRC circuit effectively representing
the resonator�without the nanowire�, respectively.

Pin
NA �dBm /W�—the transmitted output power of the

resonator at the input of the network analyzer in dBm or
watt.

Pin
Res �dBm /W�—the power at the resonator input in dBm

or watt.
Pout

NA �dBm /W�—the network analyzer output power �we
call it “driving power”� in dBm or watt.

R1=50 � is the source impedance �i.e., the impedance of
the circuit connected to the input of the resonator�.

RL=50 � is the load impedance �i.e., the impedance of
the circuit connected to the output of the resonator�.

Qef f and QL—the external and loaded quality factors.
K1—the unitless scaling factor between Pin

Res �W� and
Pout

NA �W�, i.e., Pin
Res �W�=K

1
*Pout

NA �W�.
K2—the unitless scaling factor that relates the energy

store in the resonator and the energy reaching the input of the
network analyzer, as K2= Pin

NA �W� /Z0�2�A�2.
Fitting parameters: I0, �0, QL, K1, and K2.
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APPENDIX B: EQUATION OF MOTION OF THE LUMPED
SERIES EFFECTIVE LRC CIRCUIT WITH A

NANOWIRE

The lumped series effective LRC circuit with a nanowire
is described by the following equation:

Lef fq̈ + Ref fq̇ +
q

Cef f
+ VNW = Vef f cos��t� . �B1�

Here and everywhere VNW is the voltage between the ends of
the nanowire and q is the charge on the capacitor. In order to
solve for the phase difference between the ends of the nano-

wire, ��t�, we take time derivative of Eq. �B1�, and substitute

for VNW, q�, q̈, and q̇, using the following relations V̇NW

= �� /2e��̈, q̇= I���, q̈= �dI /d���̇, and q�= �d2I /d�2��̇2

+ �dI /d���̈. Here and everywhere I��� is the supercurrent
through the nanowire. Then we obtain the ordinary second-
order differential equation and solve for ��t� using the
fourth-order Runge-Kutta method,

�̈�Lef f� dI

d�
� +

�

2e
� + Lef f� d2I

d�2��̇2 + Ref f� dI

d�
��̇ +

I���
Cef f

=

− Vef f� sin��t� . �B2�
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