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We argue that Coulomb interaction can strongly influence nonlocal electron transport in normal-
superconducting-normal structures and emphasize direct relation between Coulomb effects and nonlocal shot
noise. In the tunneling limit nonlocal differential conductance is found to have an S-like shape and can turn
negative at nonzero bias. At high transmissions crossed Andreev reflection yields positive noise cross correla-
tions and Coulomb antiblockade of nonlocal electron transport.
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I. INTRODUCTION

Discreteness of electron charge has a number of funda-
mental physical consequences, such as, e.g., shot noise in
mesoscopic conductors1 and Coulomb blockade of charge
transfer in tunnel junctions.2 About 10 years ago it was
realized3,4 that these two seemingly different phenomena are
closely related to each other: Coulomb blockade turns out to
be stronger in conductors with bigger shot noise. This fun-
damental relation was subsequently confirmed in
experiments.5 A close link between shot noise and Coulomb
blockade exists not only in normal conductors but also in
hybrid normal-superconducting �NS� structures,6 where dou-
bling of elementary charge due to Andreev reflection be-
comes important.

Can the above relation be further extended to include non-
local effects? A nontrivial example is provided by normal-
superconducting-normal �NSN� systems where entanglement
between electrons in different normal terminals can be real-
ized. Nonlocal electron transport in such systems is deter-
mined by an interplay between elastic cotunneling �EC� and
crossed Andreev reflection �CAR� and was recently investi-
gated both experimentally7–11 and theoretically12–14 �see also
further references therein�. While noninteracting theory pre-
dicts that CAR never dominates over direct electron transfer
�hence, no sign change in nonlocal signal could occur�, both
positive and negative nonlocal signals have been
detected.7,8,10,11 It was argued that CAR could prevail over
EC in the presence of Coulomb interactions15 or an external
ac field.16 Negative nonlocal conductance was also predicted
in interacting single-level quantum dots in-between normal
and superconducting terminals.17

Despite these developments no general theory describing
the effect of electron-electron interactions on nonlocal trans-
port in NSN structures was available until now. Below we
will construct such a theory and demonstrate that interaction
effects in nonlocal transport and nonlocal shot noise in such
systems are intimately related. This relation, however, turns
out to be much more subtle than in the local case3,4,6 merely
because of �a� a variety of different processes contributing to
nonlocal shot noise and �b� positive cross correlations which
may occur in normal-superconducting hybrids1,18 �in contrast
to normal conductors where cross correlations of fluctuating

currents are negative1�. In tunnel NSN systems EC and CAR
provide, respectively, negative and positive contributions to
nonlocal shot noise.19,20 Here we will analyze nonlocal shot
noise beyond the tunneling limit and find that at higher trans-
missions also direct electron transfer can yield positive cross
correlations in addition to CAR. At full transmissions only
positive cross correlations due to CAR survive and yield
Coulomb antiblockade of nonlocal electron transport.

The paper is organized as follows. In Sec. II we describe
our model and derive an effective action for NSN system
under consideration. In Sec. III we formulate the Langevin
equations describing real-time dynamics of fluctuating volt-
ages and currents and derive the general expressions for both
local and nonlocal current-current correlators describing shot
noise in our system at arbitrary barrier transmissions and
arbitrary frequencies. Section IV is devoted to the effects of
Coulomb interaction on both local and nonlocal conduc-
tances of our NSN device. A brief summary of our key ob-
servations is presented in Sec. V. Some technical details are
outlined in the Appendix.

II. MODEL AND EFFECTIVE ACTION

We will consider a hybrid structure consisting of two nor-
mal electrodes coupled to a superconductor via NS barriers
with local subgap conductances G11 and G22 and capaci-
tances C1 and C2 �Fig. 1�. External voltages V1 and V2 are
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FIG. 1. Schematics of the system under consideration.
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applied to normal electrodes via Ohmic shunts with conduc-
tances G1

sh and G2
sh. Weak electromagnetic coupling between

two NS barriers �e.g., via modes propagating in the
superconductor15� will be disregarded. The Hamiltonian of
the system reads

H = H1 + H2 + HS + HT,1 + HT,2, �1�

where

Hr = �
�=↑,↓

� dx�̂r,�
† �−

�2

2m
− ���̂r,�, r = 1,2

are the Hamiltonians of the normal metals, m is the electron
mass, � is the chemical potential,

HS =� dx��
�

�̂�
†�−

�2

2m
− ���̂� + ��̂↑

†�̂↓
† + ���̂↓�̂↑�

is the Hamiltonian of the superconductor with order param-
eter �, and

HT,r = Ar �
�,�=↑,↓

	tre
i	r�̂�

† �̂r,� + tr
�e−i	r�̂r,�

† �̂�
 �2�

are tunneling Hamiltonians describing transfer of electrons
across the contacts with area Ar and tunneling amplitude tr.
For the sake of simplicity we will assume that both NS bar-
riers are uniform implying that all Nr=kF

2Ar /4
 conducting
channels in the rth barrier are characterized by equal trans-
mission values

Tr = 4
2�r�S�tr�2/�1 + 
2�r�S�tr�2�2, �3�

where � j�j=1,2 ,S� is the density of states in the correspond-
ing terminal. Accordingly, in the low-energy limit to be con-
sidered below local subgap conductances are defined as21

Grr= �2e2 /
�Nr�r, where �r=Tr
2 / �2−Tr�2 are effective An-

dreev transmissions of NS barriers. Finally, we note that
fluctuating phases 	r introduced in Eq. �2� are linked to the
voltage drops across the barriers vr by means of the standard
relation 	̇r=evr and are treated as quantum operators.

As usually, we eliminate fermionic variables and express
the kernel J of the Keldysh evolution operator via path inte-
gral over the phase fields2

J =� �
r=1,2

D	r
FD	r

B exp�iSenv		
 + iST		
� , �4�

where 	r
F and 	r

B are fluctuating phases defined, respectively,
on the forward and backward branches of the Keldysh con-
tour, Senv is the action of electromagnetic environment, and
the term iST accounts for electron transfer between the ter-
minals. In the case of linear Ohmic environment considered
here one has2

iSenv = �
r=1,2

�i� dt
�eVr − 	̇r��− Cr	̇r

− + Gr
sh	r

−�
e2

−
Gr

sh

2e2� dtdt�	r
−�t�M�t − t��	r

−�t��� , �5�

where 	r= �	r
F+	r

B� /2, 	r
−=	r

F−	r
B, and

M�t� =� d

2

eit coth



2T
= −


T2

sinh2�
Tt�
.

The term iST reads

iST = tr ln G−1, G−1 = Ǧ1
−1 ť1 0

ť1
† ǦS

−1 ť2

0 ť2
† Ǧ2

−1
� , �6�

where 4�4 matrices Ǧj
−1 represent the inverse Keldysh

Green functions of �isolated� normal �j=1,2� and supercon-
ducting �j=S� terminals and ťr is diagonal 4�4 matrix in the
Nambu-Keldysh space

ťr =
− tre

−i	r
F

0 0 0

0 tre
−i	r

B
0 0

0 0 tre
i	r

F
0

0 0 0 − tre
i	r

B
� . �7�

After some exact manipulations we obtain

iST = tr ln	1̌ − ť1
†Ǧ1ť1ǦS − ť2

†Ǧ2ť2ǦS
 . �8�

While expression �8� for the action remains formally exact it
is still too complicated to be directly employed in our calcu-
lations. In order to proceed we will make several additional
steps which yield necessary simplifications.

As a first step, we restrict ourselves to the limit of high
conductances

gr = 2
�Gr
sh + Grr�/e2 � 1 �9�

in which case phase fluctuations are weak and it suffices to
expand the action 	Eq. �8�
 to the second order in 	r

−, cf.,
e.g., Refs. 3, 6, and 22. Technically, we first expand the
matrices ťr to the second order in the quantum phases 	r

−, i.e.,
we make a replacement

ťr → ťr�	r��1̌ − i
	r

−

2
�̌ −

	r
−2

4
1̌� . �10�

Here ťr�	r� is defined by Eq. �7� with 	r
F,B being replaced by

the classical phase 	r, and �̌ is a diagonal matrix with non-
zero elements �11=1, �22=−1, �33=−1, and �44=1. Ac-

cordingly, we can write the product ťr
†Ǧrťr in the form

ťr
†Ǧrťr = �̌r + �̌r

�1� + �̌r
�2� + O�	r

−3� , �11�

where we defined the self-energies

�̌r = ťr
†�	r�Ǧrťr�	r� ,

�̌r
�1� =

i

2
		r

−�̌,�̌r
 ,
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�̌r
�2� = −

1

4
�	r

−21̌,�̌r� +
1

4
	r

−�̌�̌r	r
−�̌ . �12�

In order to evaluate �̌r we employ the Keldysh Green’s func-
tions of the normal leads

Ǧr = �Ĝr
R + Ĝr

A� � �̂z/2 + �Ĝr
R − Ĝr

A� � Q̂r�̂z/2. �13�

Here the 2�2 matrices Ĝr
R,A and Q̂r are defined as

Ĝr
R,A = �Gr

R,A 0

0 Gr
R,A+ �, Q̂r = �1 − 2nr 2nr

2 − 2nr 2nr − 1
� ,

where nr is the quasiparticle distribution function in the rth
normal lead. In equilibrium it coincides with the Fermi func-
tion nr=1 / 	1+exp�E /T�
. Neglecting the proximity effect in
the normal leads and performing the summation over the
corresponding electron states, we express the zeroth-order
self-energies 	Eq. �12�
 in the form

�̌r�	r,r� =
�r

2i
hr�r���̂ze

i	rQ̂re
−i	r 0

0 �̂ze
−i	rQ̂re

i	r
� �14�

with �r=2
�r�tr�2. The function hr�r� in this expression dif-
fers from zero only at the interface of the rth junction and it
obeys the following normalization condition:

� d3rhr�r� = Nr. �15�

For the sake of simplicity in what follows we will assume
that the barrier cross sections remain sufficiently small and
put hr�r�=Nr��r−rr�. This assumption just implies that each
of the barriers has Nr conducting channels with identical
transmissions Tr �3�, as we already indicated above. In this
case we can reduce the full coordinate dependence of the
Green’s functions to that on the two indices i and j which
label the barriers and, hence, can take only two values 1 and

2. Accordingly, e.g., the Green’s function ǦS�r ,r�� reduces to

the 2�2 matrix in the “junction space” ǦS
ij. In addition we

should bear in mind that ǦS
ij are the matrices in the space of

conducting channels.
We note that the above assumptions are not really restric-

tive since they do not affect the general structure of our
effective action to be derived below. At the same time they
allow to establish relatively simple expressions for the pa-
rameters entering in the action. Expanding the action 	Eq.
�8�
 in powers of 	r

− we arrive at the following expression:

iST = − tr	Ǩ��̌1
�1� + �̌2

�1��ǦS
 − tr	Ǩ��̌1
�2� + �̌2

�2��ǦS


−
1

2
tr�	Ǩ��̌1

�1� + �̌2
�1��ǦS
2� , �16�

where we define the operator

Ǩ = 	1 − �̌1ǦS − �̌2ǦS
−1. �17�

Our second step allows to establish an explicit expression
for the operator 	Eq. �17�
. Namely, in the interesting for us
low-energy limit

T,eVr � ��� , �18�

we can set the energy argument E in the superconductor

Green’s function ǦS�E� equal to zero. After that ǦS reduces
to the time/energy-independent matrix

ǦS�E = 0� = �GS
R + GS

A� � ��̂z/2� , �19�

where we introduced the retarded and advanced Green’s
functions of the superconductor GS

R and GS
A. In the limit E

→0 they are equal to each other both being 4�4 matrices in
the Nambu � “junction” space

GS
R = GS

A =
G11

R F11
R G12

R F12
R

F11
R − G11

R F12 − G12
R

G21
R F21

R G22
R F22

R

F21
R − G21

R F22
R − G22

R
� . �20�

In addition, each of the matrix elements in Eq. �20� is itself a
matrix in the channel space. For instance, G11

R and G12
R are,

respectively, N1�N1 and N1�N2 matrices while matrices
G21

R and G22
R have dimensions N2�N1 and N2�N2, respec-

tively.
As the Keldysh Green’s function 	Eq. �19�
 depends nei-

ther on time nor on the quasiparticle distribution function, it
commutes with the phase factors e�i	r�t� entering the self-
energies. This observation combined with the multiplication

rule for the Q matrices, Q̂1Q̂2= 1̂− Q̂1+ Q̂2, allows us to ex-

press the operator Ǩ 	Eq. �17�
 as a linear combination of
these matrices,

Ǩ�t,t�� = 	�KR + KA�/2
 � 1̂��t − t�� − i��1/2�KRX1KA

� ei	1�t��̂zQ̂1�t − t���̂ze
−i	1�t�� − i��1/2�KRX2KA

� e−i	1�t��̂zQ̂1�t − t���̂ze
i	1�t�� − i��2/2�KRX3KA

� ei	2�t��̂zQ̂2�t − t���̂ze
−i	2�t�� − i��2/2�KRX4KA

� ei	2�t��̂zQ̂2�t − t���̂ze
−i	2�t��. �21�

Here 4�4 matrices Xj are defined as follows:

X1 =
G11

R F11
R G12

R F12
R

0 0 0 0

0 0 0 0

0 0 0 0
� ,

X2 =
0 0 0 0

F11
R − G11

R F12
R − G12

R

0 0 0 0

0 0 0 0
� ,

X3 =
0 0 0 0

0 0 0 0

G21
R F21

R G22
R F22

R

0 0 0 0
� ,
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X4 =
0 0 0 0

0 0 0 0

0 0 0 0

F21
R − G21

R F22
R − G22

R
�

while 4�4 matrices KR,A read

KR = KA
� = �1 + i

�1

2
�X1 + X2� + i

�2

2
�X3 + X4��−1

. �22�

Having established the expression for the operator Ǩ we
can now substitute it into the action 	Eq. �16�
. Proceeding
along these lines and going trough a straightforward but
rather tedious calculation we arrive at the result which still
turns out to be too complicated for our present purposes.
Further simplification amounts to neglecting local interfer-
ence terms involving the products of the Green’s functions
G11

R , F11
R , G22

R , and F22
R . Technically this step is equivalent to

replacing these Green’s functions by their averaged-over-
disorder values, which read

�G11
R � = �G22

R � = 0, �F11
R � = �F22

R � = − 
�S. �23�

After this step we immediately arrive at the central result of
this section

iST = iS11 + iS22 + iS12, �24�

where

iS11 = − i
G11

e2 � dt	̇1	1
− −� dtdt�

	1
−�t�S̃11

tt�	1
−�t��

2e2 , �25�

iS12 = i
G12

e2 � dt�	̇1	2
− + 	̇2	1

−� −� dtdt�
	1

−�t�S̃12
tt�	2

−�t��
e2 ,

�26�

and the term iS22 is obtained by interchanging the indices

1↔2 in Eq. �25�. The functions S̃rl
tt� read

S̃11
tt� = G11M�t − t���1 − �1 + �1 cos	2	1

tt�
� + 2G12M�t − t��

���1 − �1 cos	2	1
tt�
� + �G12/2�M�t − t����1

+ cos		1
tt�

+ 	2
tt�
 + �1

− cos		1
tt� − 	2

tt�
� , �27�

S̃12
tt� = − G12M�t − t���1 − �1 + �1 cos	2	1

tt�
� − G12M�t − t���1

− �2 + �2 cos	2	2
tt�
� + �G12/2�M�t − t����+ cos		1

tt�

+ 	2
tt�
 − �− cos		1

tt� − 	2
tt�
� . �28�

Here we denoted 	r
tt�=	r�t�−	r�t�� and introduced Andreev

Fano factors �r=1−�r.
The zero-bias nonlocal subgap conductance G12 as well as

the parameters �r, �r, �r, and � are expressed as traces of
certain combinations of the matrices KR, KA, and Xj, as de-
scribed in the Appendix. In order to reduce them to a trac-
table form we further assume that normal-state resistance R�

of the superconducting wire segment of length equal to the

superconducting coherence length � remains much smaller
than normal resistances of the barriers,14 i.e.,

e2NrTrR�/
 � 1. �29�

This condition is usually well satisfied for generic systems.
Equation �29� enables one to treat the Green’s functions con-
necting the two junctions as small parameters and expand the
traces in Eqs. �A1�–�A3� in powers of G12

R , G21
R , F12

R , and F21
R .

Keeping the leading corrections �G12
R G21

R and �F12
R F21

R and
making use of the fact that G12

R G21
R becomes equal to F12

R F21
R

after averaging over disorder, we arrive at explicit expres-
sions for the parameters

�r = �r�1 − 2�r�/��1�2,

�r = 2�r�1 − �r�/��1�2,

�r
� = � �4�r − 3� + 1/��1�2r = 1,2,

�� = � 1 + �1 − 2�1 − 2�2 + 4�1�2�/��1�2 �30�

and for zero-bias nonlocal conductance

G12 =
2e2N1N2�1�2


3�S
2 G12

R G21
R . �31�

In the case of diffusive superconductors one has to further
average Eq. �31� over disorder. In a simple quasi-one-
dimensional geometry this averaging yields14 G12
=G11G22R�e

−d/� /2, where d is the distance between two NS
barriers.

It is important to emphasize that all order terms in tr are
fully accounted for in Eqs. �25�–�30�, i.e., our action applies
for arbitrary transmission values T1,2 �or �1,2� ranging from
zero to one and—similarly to NS systems6—entering in the
combination Tr

2 / �2−Tr�2 representing Andreev transmissions
�r.

III. LANGEVIN EQUATIONS AND SHOT NOISE

The quadratic in 	1,2
− action is equivalent to the Langevin

equations22–24

C1v̇1 + �G1
sh + G11�v1 − G12v2 = G1

shV1 + �1
sh + �1,

C2v̇2 + �G2
sh + G22�v2 − G12v1 = G2

shV2 + �2
sh + �2, �32�

which describe the current balance in our system. Here �r
sh

are stochastic variables with pair correlators

��r
sh�t��r

sh�t��� = Gr
shM�t − t�� , �33�

describing Gaussian current noise in the shunt resistors while
the variables �r with the correlators

��r�t��l�t��� = S̃rl
tt� �34�

describe shot noise in NS barriers. Note that we ignore the
electromagnetic coupling between the two junctions, i.e.,
mutual capacitance between the normal wires, propagating
modes in the superconducting wire15 and similar effects.
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Let us first “turn off” electron-electron interactions by
taking the limit 1 /G1,2

sh →0 and, hence, setting 	r=eVrt.
Defining the nonlocal noise spectrum as Srl��
=2�dtS̃rl

tt� exp	−i�t− t��
, from Eq. �28� we obtain

S12�� = − 2G12�2 − �1 − �2�W�,0� − 2G12�1W�,2V1�

− 2G12�2W�,2V2� + G12�+W�,V1 + V2�

− G12�−W�,V1 − V2� , �35�

where

W�,V� =
1

2�
�

� � eV�coth
 � eV

2T
. �36�

This is the first key result of the present paper. Equations
�35� and �36� fully determine nonlocal shot noise correla-
tions in NSN structures at subgap energies T , ,eVr� ���. In
the tunneling limit T1,2�1 we have ��=4 /T1T2��1,2�1
and Eq. �35� is dominated by the last two terms which fur-
ther reduce to the result19 in the limit →0. One of these
contributions ��− is due to EC and describes negative shot
noise correlations while the other one ��+ comes from CAR
and accounts for positive cross correlations of fluctuating
currents. Provided one of the voltages, say V1, equals to zero,
these EC and CAR terms exactly cancel each other for any
V2, i.e., S12�0� tends to zero in the tunneling limit.

At higher transmissions �1,2 the value �− becomes nega-
tive thus implying positive cross correlations produced by
direct electron transfer at such values of �1,2 in addition to
CAR. In the limit of fully transparent barriers �1,2=1 one has
�1,2=�−=0. Then Eq. �35� yields

S12�0� = − 8TG12 + 2eG12�V1 + V2�coth
e�V1 + V2�

2T
.

�37�

At T→0 only positive cross correlations due to CAR survive
whereas no direct electron transfer contribution to shot noise
occurs for fully open barriers. Accordingly, no nonlocal shot
noise is expected in this case at V1=−V2 and T→0. We also
note that noise correlations in clean NSN systems and in the
specific limit T1=T2, V1=V2, and T==0 have been recently
studied in Ref. 25. The result of this paper is consistent with
our Eq. �35� in the corresponding limit.

For completeness we also provide the expression for the
local noise S11��, which is given by the Fourier transform
of Eq. �27� and reads

S11�� = 2G11	�1 − �1�W�,0� + �1W�,2V1�


+ 4G12	�1W�,0� − �1W�,2V1�


+ G12�1
+W�,V1 + V2� + G12�1

−W�,V1 − V2� .

�38�

IV. INTERACTION CORRECTION TO THE CURRENT

Now we again “turn on” electron-electron interactions
and evaluate the current I1 across the first barrier. Solving

Eq. �32� perturbatively in 1 /gr�1, in the lowest nontrivial
order in this parameter we get

I1 = G11V1 − G12V2 − ��1� . �39�

Here the average ��1� does not vanish since according to Eqs.
�27� and �28� the noise �1 depends on the phases 	1,2, which,
in turn depend on �1,2 by virtue of Eq. �32�. Hence, we obtain

��1� = ��	1 � �1/�	1� + ��	2 � �1/�	2� , �40�

where the phase fluctuations �	r are found from Eq. �32� and
read

�	r�t� = e�
−�

t

dt�
1 − e−�t−t��/�RC

Gr
sh �r�t�� . �41�

Here we have assumed G12�Grr�Gr
sh and introduced the

RC—time �RC=Cr /Gr
sh. Substituting this expression into Eq.

�40� we find

��1�
e

= �
r=1,2

�
−�

t

dt�
1 − e−t−t�/�RC

Gr
sh � ���1�t��r�t���

�	r�t�
�

	r=eVrt

.

�42�

Making use of Eqs. �27� and �28� and performing the time
integral in Eq. �42� we get the current through the first junc-
tion in the form

I1 = G11V1 − G12V2 −
2G11�1 − 4G12�1

g1
F0�2V1�

+
2G12�2

g2
F0�2V2� − �G+F0�V1 + V2� − �G−F0�V1 − V2� ,

�43�

where �G�=G12��1
� /g1+�� /g2� and

F0�V� = Re�− V��1 + i
eV

2
T
� + �V −

i

e�RC
���1 +

1

2
T�RC

+ i
eV

2
T
�� . �44�

Accordingly the local and nonlocal differential conductances
read

�I1

�V1
= G11 −

4G11�1 − 8G12�1

g1
F�2V1� − �G+F�V1 + V2�

− �G−F�V1 − V2� �45�

and

�I1

�V2
= − G12�1 −

4�2

g2
F�2V2�� − �G+F�V1 + V2�

+ �G−F�V1 − V2� , �46�

where
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F�V� = Re���1 +
1

2
T�RC
+ i

eV

2
T
� + � 1

2
T�RC

+ i
eV

2
T
����1 +

1

2
T�RC
+ i

eV

2
T
� − ��1 + i

eV

2
T
�

− i
eV

2
T
���1 + i

eV

2
T
�� �47�

and ��x� is the digamma function. Equations �45� and �46�
together with Eq. �47� define the conductance matrix of our
NSN device and represent the second key result of our paper.

In the interaction correction to the local conductance in
Eq. �45� we recover the Coulomb blockade term6 ��1 and, in
addition, three nonlocal contributions. The first of them ��1
enhances the conductance while the second one ��G+ pro-
vides additional Coulomb suppression of �I1 /�V1. The last
term ��G− can be both positive �at �1,2�1� and negative �at
bigger �1,2� implying the tendency to Coulomb antiblockade
in the latter case. The first term ��2 in Eq. �46� has an
opposite sign as compared to G12 �thus implying Coulomb
blockade� while the second one ��G+ yields Coulomb anti-
blockade. Finally, the third ��G− tends to suppress or en-
hance the absolute value of the nonlocal conductance, re-
spectively, for �G−�0 and �G−�0.

The origin of each of the terms in both interaction correc-
tions can easily be identified from the corresponding shot
noise correlators 	Eqs. �27�, �28�, and �35�
 illustrating again
a fundamental relation between shot noise and Coulomb ef-
fects in electron transport. This relation turns out to be con-
siderably more complicated than in the local case. In the
tunneling limit T1,2�1 in Eq. �45� the nonlocal terms add up
to the local one and �I1 /�V1 evolves from a typical Coulomb
blockade V-like dependence at small V2 toward a new W-like
one �with extra minima at V1= �V2� at higher V2 	Fig. 2�a�
.
In Eq. �46�, in contrast, the last two terms exactly cancel
each other for V1→0 and any V2 since �G+=�G−. This can-

cellation has the same origin as that of EC and CAR contri-
butions to shot noise discussed above. For nonzero V1 and V2
the last two terms in Eq. �46� do not cancel anymore and the
curve �I1 /�V2 approaches the S-like shape with maximum at
V1=V2 and minimum at V1=−V2 	Fig. 2�b�
. In this case the
interaction term ��G��T1T2�1 /g1+1 /g2� can exceed G12
�T1

2T2
2 and, hence, �I1 /�V2 can change its sign. For fully

open contacts with T1,2=1 we get �1,2=0 and �G−=0, i.e.,
only CAR terms containing �G+=2G12�1 /g1+1 /g2� survive
in Eqs. �45� and �46� implying Coulomb blockade for local
conductance �I1 /�V1 and antiblockade for nonlocal conduc-
tance ��I1 /�V2� in this limit 	Figs. 2�c� and 2�d�
.

Finally, we would like to note that in some cases nonlin-
earities in both local and nonlocal differential conductances
caused by Coulomb interaction may be combined with the
zero-bias anomalies resulting from the proximity-enhanced
electron interference in diffusive normal leads.14,26–28 In this
paper we disregarded this effect for the sake of simplicity. In
practice it implies that here we considered the system with
weakly disordered or sufficiently thick normal leads and suf-
ficiently resistive barriers. If needed, zero-bias anomaly
effects14,26–28 can be included into our analysis in a straight-
forward manner.

V. SUMMARY

In this paper we developed a theory elucidating a non-
trivial physical relation between shot noise and Coulomb ef-
fects in nonlocal electron transport in NSN structures.

We evaluated nonlocal current-current correlators in such
systems at arbitrary transmissions of NS interfaces and arbi-
trary frequencies, Eqs. �35� and �36�. This result demon-
strates that positive cross correlations in shot noise increase
with increasing interface transmissions and dominate the re-
sult for fully open barriers in which case only CAR contri-
bution survives. Positive noise cross correlations in NSN
structures have been convincingly demonstrated in recent
experiments20 while no or weak negative cross correlations
have been observed. This picture would qualitatively corre-
spond to the case of highly transmitting interfaces, cf. Eq.
�37�. Note, however, that interface transmissions in
experiments20 are reported to be rather small in which case
one would expect EC-induced negative cross correlations to
dominate the result at V1=−V2.

Turning to the effect of electron-electron interactions on
nonlocal electron transport we would like to emphasize sev-
eral important new features demonstrated within our analy-
sis. One of them is that in the tunneling limit almost no effect
of Coulomb interaction on nonlocal conductance is expected
if one of the applied voltages, V1 or V2, equals to zero. This
effect is directly related to the cancellation between EC and
CAR contributions to shot noise in the corresponding limit.
For nonzero V1 and V2 no such cancellation exists anymore
and the nonlocal conductance �I1 /�V2 approaches the S-like
shape being enhanced at V1�V2 and partially suppressed at
V1�−V2, see Fig. 2�b�. Both these features have a clear
physical interpretation. Indeed, at V1�−V2 negative cross
correlations due to EC dominate nonlocal shot noise leading
to Coulomb blockade of nonlocal conductance while at V1
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FIG. 2. 	�a� and �c�
 Local and 	�b� and �d�
 nonlocal differential
conductances defined, respectively, in Eqs. �45� and �46�. The pa-
rameters of the system are T=20 mK, G11=1 mS, G12=10 �S,
and g1=g2=516. The dependencies �a� and �b� are plotted at small
transmissions T1=0.063 and T2=0.11 while the graphs �c� and �d�
correspond to fully open barriers T1=T2=1.

DMITRI S. GOLUBEV AND ANDREI D. ZAIKIN PHYSICAL REVIEW B 82, 134508 �2010�

134508-6



�V2 positive cross correlations due to CAR prevail and
Coulomb antiblockade of nonlocal transport is observed. At
higher interface transmissions only Coulomb antiblockade of
nonlocal conductance remains 	Fig. 2�d�
, which is again re-
lated to CAR-induced positive cross correlations in shot
noise.

It is interesting to point out that S-like shaped nonlocal
signal predicted here was indeed observed in
experiments.11,29 A good agreement between our theory and
the results29 argues in favor of electron-electron interactions
as a physical reason for the observed feature. Some of the
features similar to those predicted here have also been ob-
served in experiments.20 More experiments on both nonlocal
shot noise and nonlocal electron transport would be desirable
in order to quantitatively verify our predictions.
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APPENDIX: PARAMETERS OF THE ACTION

For the sake of completeness, let us present general ex-
pressions for nonlocal conductance G12 and the parameters

�r
� and �� entering in the effective action 	Eqs. �27� and

�28�
. We have

G12 =
e2

2

tr	�X3 − X4�KR�X1 − X2�KA
 , �A1�

�1
+ = �e2�1�2/
G12�tr	2KRX4KAX1 + 2�1

2KRX1KA�X1

− X2�KRX4KA�X1 − X2� − 2i�1�X1 − X2�KRX1KRX4KA

+ 2i�1X1KA�X1 − X2�KRX4KA
 , �A2�

�+ = �e2�1�2/
G12�tr	KRX4KRX1 + KAX4KAX1

− �1�2KRX1KA�X1 − X2�KRX4KA�X4 − X3�

− �1�2KRX1KA�X4 − X3�KRX4KA�X1 − X2� + i�2�X4

− X3�KRX1KRX4KA + i�1�X1 − X2�KRX4KRX1KA

− i�2X1KA�X4 − X3�KRX4KA − i�1X4KA�X1

− X2�KRX1KA
 . �A3�

The parameters �1
− and �− are defined by Eqs. �A2� and �A3�

with interchanged matrices X3↔X4. The remaining param-
eters �r and �r in Eqs. �27� and �28� are defined in a similar
manner. These parameters are less important for our consid-
eration and we omit the corresponding expressions for the
sake of brevity.
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