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We calculate the ac linear response of a superconductor in a nonequilibrium electronic state. The nonequi-
librium state is produced by injecting quasiparticles into the superconductor from normal leads through asym-
metric tunnel contacts. The dissipative part of the response is proportional to the total density of the injected
quasiparticles regardless of the imbalance between the numbers of electronlike and holelike excitations. At
fixed quasiparticle density, the lower their effective temperature, the stronger is the dissipation.
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I. INTRODUCTION

Over the years, measurement of the impedance was used
extensively in the studies of spectra of elementary charge
carriers in normal metals and superconductors. In the case of
normal-metal single crystals, measurements of surface im-
pedance in conditions of cyclotron resonance were instru-
mental in the reconstruction of the Fermi surface geometry.1

In superconductors, the temperature dependence of the im-
pedance allowed one to investigate the appearance of the
BCS gap in the spectrum of quasiparticles.2 Recent interest
to the ac response of superconductors is driven by its appli-
cation for studying new materials3,4 and by the use of well-
studied superconductors as material for high-quality resona-
tors. Depending on the problem, it is important to realize the
lowest possible dissipation rate of a resonator or its well-
defined response to a perturbation. The former goal is central
for superconducting qubit physics5,6 and quantum optics,7,8

where one is interested in achieving the longest possible co-
herence times. The latter one is important, e.g., for the use of
superconductors in microwave kinetic inductance detectors.9

To interpret the measured impedance, one has to compare
it with theoretical predictions. However up to now, no mi-
croscopic calculations of impedance of superconductors un-
der nonequilibrium conditions were available. The frequency
and temperature dependence of the complex conductivity of
a superconductor within the BCS theory was first evaluated
in the seminal paper of Mattis and Bardeen,10 where the limit
of short electron mean-free path �the “dirty superconductor”
limit� was considered. The nonlocal conductivity of a clean
superconductor was derived by Abrikosov, Gorkov, and
Khalatnikov.11 Later works of Nam12 were aimed at bridging
the two limiting cases. The theory developed in Refs. 10–12
addresses superconductors at thermal equilibrium. If desired,
this condition is fairly easy to achieve at not-too-low tem-
peratures. Indeed, even the early measurements have demon-
strated the hallmarks of the BCS behavior of the dissipative
part of the impedance, including its thermal-activation be-
havior at subgap frequencies.13 At the same time, experi-
ments involving impedance measurements in nonequilibrium
conditions relied on heuristic extension of Mattis-Bardeen
formula, amounting to the replacement of the equilibrium
quasiparticle distribution function in the formula by a non-
equilibrium one.9,14

The goal of this paper is to microscopically evaluate the
linear ac conductivity of a superconductor in a concrete setup
allowing a controlled perturbation of the quasiparticle distri-
bution function. To this end, we analyze the steady state
and linear ac conductivity of a mesoscopic superconductor
brought out of equilibrium by electron tunneling through two
junctions connecting the superconductor to normal leads �N-
I-S-I-N structure—see Fig. 1�; the structure is biased by a
constant voltage V. The advantage of the mesoscopic setting
is in the simplicity of the nonequilibrium quasiparticle dis-
tribution: it may be fully controlled by the electron tunneling
in the superconductor while for bulk samples it inevitably
depends on the relaxation mechanisms.15–17 Particle-hole im-
balance in the bulk may be achieved by electron injection18

while symmetric particle-hole excitation was widely investi-
gated in connection with the idea of microwave stimulation
of superconductivity.19 In a mesoscopic N-I-S-I-N structure,
the imbalance is simply related to the ratio of the conduc-
tances of the two tunnel junctions. One may neglect the re-
laxation of quasiparticles inside the mesoscopic supercon-
ductor if the corresponding rate is small compared with the
tunneling rates. This sets, of course some limitation on the
size of the superconductor and conductances of the junctions.

We find the steady-state electron distribution at arbitrary
asymmetry between the conductances of tunnel junctions,
and at finite temperature T and voltage V, assuming these

FIG. 1. N-I-S-I-N structure: the superconductor is connected to
two normal leads—maintained at different voltages �bias V=VR

−VL�—via tunnel junctions characterized by tunneling rates �R, �L.
The superconductor is also subject to a weak electromagnetic field
oscillating with frequency �.
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two scales small compared to the quasiparticle energy gap �.
In the case of unequal conductances of the two tunnel junc-
tions, charge imbalance is created along with a perturbation
of the energy distribution of quasiparticles. We evaluate the
complex ac conductivity of the superconductor in this non-
equilibrium state and show that only the energy mode of the
quasiparticle distribution enters in the proper generalization
of the Mattis-Bardeen formula. At eV ,kBT�� we cast the
result for conductivity in terms of T and quasiparticle density
nqp. That form extrapolates between the equilibrium result
�where nqp is a function of T only� and the nonequilibrium
one, where nqp is a function of V and T, with arbitrary ratio
eV /kBT.

In the next section, we formulate the problem in terms of
matrix Green’s functions. The steady state of the electrons in
the superconductor formed in the presence of finite bias ap-
plied to the N-I-S-I-N structure is found in Sec. III, where we
also establish the correspondence between the descriptions in

terms of the matrix distribution function F̂��� and the scalar
distribution function of quasiparticles f� �the latter was used
in the original Mattis-Bardeen theory for the ac conductivity
at equilibrium�. Using the description in terms of f�, we con-
sider the effect of electron-phonon collisions on the quasi-
particle kinetics. It allows us to determine the conditions
under which the intrinsic quasiparticle relaxation is negli-
gible compared with the effect of tunneling. The ac conduc-
tivity at low temperature and bias �but at arbitrary eV /kBT� is
analyzed in Sec. IV. Throughout the paper, we use units
�=kB=1.

II. ELECTRON DYNAMICS IN A SUPERCONDUCTOR
SUBJECT TO dc BIAS AND WEAK ac FIELD

We consider a diffusive superconductor connected to two
normal leads, left �L� and right �R�, via tunnel barriers and
exposed to an external, time-dependent electric field. The
system properties can be described in terms of disorder-
averaged matrix Green’s functions for the superconductor,

ǦS�k , t , t��, and for the electrodes, Ǧi�pi , t , t��, i=L ,R. Each

of the matrices Ǧ has the form, in Keldysh space20

Ĝ = �ĜR ĜK

0 ĜA
� . �1�

The elements of this matrix are 2	2 matrices in Nambu
particle-hole space. The superconductor Green’s function
obeys the Dyson equation

�i
̂z
�

�t
− � �k − eA�t�
̂z�2

2m
− EF	 + i
̂y�
ǦS�k,t,t��

−� dt�
1

2�
�S
�
k�

ǦS�k�,t,t��ǦS�k,t�,t��

= 1̂�t − t�� +� dt��
i,pi

Ti
2Ǧi�pi,t,t��ǦS�k,t�,t�� . �2�

Here A�t� is the vector potential, which is related to the
electric field via E=−�A /�t. The coefficient 1 /
 is the im-

purity scattering rate and �S is the density of states at the
Fermi level in the superconductor. The matrix element Ti for
tunneling into lead i determines the dimensionless conduc-
tance gi=8�2�S�iTi

2 of junction i, where �i is the density of
states in the lead. The assumption

gL + gR � gS, �3�

where gS is the normal-state conductance of the supercon-
ductor, justifies the use of the tunneling Hamiltonian from
which the last term in Eq. �2� is derived. The same assump-
tion enables us to neglect small spatial variations in the order
parameter, which we take to be uniform, real, and time inde-
pendent. The last two conditions amount to a choice of
gauge.

Since we are interested in the linear response to the ex-
ternal field, we first consider the system in the absence of
field but with the leads at different potentials. This is the
focus of the next section.

III. NONEQUILIBRIUM STEADY STATE

When there is no external field �A=0�, the Green’s func-
tions are isotropic in momentum space and depend on the
difference t− t�. Then the semiclassical Green’s functions

Ǧ�t − t�,n� =
i

�
� d�pǦ�p,t − t��, n =

p

p
, �4�

where �p= p2 /2m−EF, depend only on the time difference,
and not on the momentum direction n. Therefore, we omit
the argument n for the rest of this section. In the normal

leads, the elements of Ǧi are �in the frequency domain�

Ĝi
R = 
̂z, Ĝi

A = − 
̂z, �5�

Ĝi
K = Ĝi

Rn̂i − n̂iĜi
A �6�

with

n̂i��� = �n�� − eVi� 0

0 n�� + eVi�
�, n��� = tanh� �

2T
� .

�7�

The potentials Vi in the leads are measured from the super-
conductor chemical potential. Using Eq. �5�, Eq. �6� can be
rewritten as

Ĝi
K = 2ni

0
̂z + 2ni
11̂, �8�

where

ni
0 =

1

2
�n�� − eVi� + n�� + eVi�� ,

ni
1 =

1

2
�n�� − eVi� − n�� + eVi�� . �9�

The superconductor Green’s function Ǧs is determined by
Eq. �2�; taking the difference between Eq. �2� and its conju-
gate, and using Eqs. �4�, we find
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��
̂z + i�
̂y,ǦS� = − i��LǦL + �RǦR,ǦS� , �10�

where �i=��iTi
2 are the tunneling rates and �i are the densi-

ties of states in the leads i=L ,R. This equation must be
supplemented by the normalization condition,21 which in the
frequency domain takes the form

ǦS���ǦS��� = 1̂. �11�

Isolating the R�A� component of Eq. �10� gives

ĤR�A�ĜS
R�A� − ĜS

R�A�ĤR�A� = 0, �12�

where

ĤR�A� = �� � i�L � i�R�
̂z + i�
̂y . �13�

In view of the R�A� component of the normalization condi-

tion in Eq. �11�, �ĜS
R�A��2= 1̂, the solution to Eq. �12� can be

written as

ĜS
R�A� = ĤR�A�/�̃R�A�, �14�

where

�̃R�A� = � ��� � i�L � i�R�2 − �2�1/2. �15�

In the limit �i→0, Eq. �14� reduces to the well-known semi-
classical BCS expression.21 When �i�0 the excitations in
the superconductor have finite lifetime due to tunneling into
the normal leads and this causes broadening of the density of
states.22,23 In what follows we assume that the broadening is
much smaller than the gap, �L+�R��. Equivalently, we can
express this condition as

gL + gR � �/ �16�

since the dimensionless conductance, defined in the text be-
fore Eq. �3�, equals gi=8��i /, where =1 / ��SV� is the
level spacing in the superconductor of volume V.

We now consider the Keldysh component of Eq. �10�. It
may be written in the form

ĤRĜS
K − ĜS

KĤA = − i�L�ĜL
KĜS

A − ĜS
RĜL

K� − i�R�ĜR
KĜS

A − ĜS
RĜR

K� .

�17�

Its left-hand side can be simplified as follows: first, we use

Eq. �14� to rewrite ĤR�A� in terms of ĜS
R�A�; then we replace

the advanced Green’s function with the retarded one employ-
ing the orthogonality condition �the Keldysh component of
Eq. �11��

ĜS
RĜS

K + ĜS
KĜS

A = 0.

Multiplying the resulting equation by ĜS
R from the left and

using again �ĜS
R�2= 1̂, we arrive at

��̃R + �̃A�ĜS
K = i�L�ĜL

K − ĜS
RĜL

KĜS
A� + i�R�ĜR

K − ĜS
RĜR

KĜS
A� .

�18�

If ���, the sum �̃R+ �̃A is of the order of �, i.e., much
larger than �L and �R. However, if ��� this quantity is
proportional to these small parameters and can be approxi-
mated as

�̃R + �̃A � i��R + �L��� 1

�R −
1

�A� , �19�

where

�R�A� = � ��� � i0+� − �2�1/2. �20�

Consistently with this approximation, the Green’s functions
GS

R/A in the right-hand side of Eq. �17� should be taken at
zero order in �i’s. Using Eqs. �8� and �14�, after some alge-
bra we obtain

ĜS
K = � 1

�R −
1

�A��n0��
̂z + i�
̂y� + n1�2 − �2

�

 , �21�

where �a=0,1�

na =
�LnL

a + �RnR
a

�L + �R
�22�

with nL,R
a of Eq. �9�. We stress that Eqs. �19�–�22� are valid

for arbitrary ratio �L /�R, and are not restricted to junctions
with conductances smaller than the conductance quantum,
the conditions of applicability being given by Eqs. �3� and
�16�. Equation �21� is the finite-temperature, small-
broadening �Eq. �16�� counterpart of the zero-temperature,
finite-broadening expression for the Keldysh Green’s func-
tion of a mesoscopic N-I-S-I-N structure derived in Ref. 24.

The matrix ĜS
K depends on the voltages VL, VR via Eqs.

�9� and �22�. However, under steady-state conditions these
two quantities are not independent and, as we discuss in the
next section, the state of the superconductor is fully deter-
mined by their difference V=VR−VL.

A. Current and potentials

The results of the previous sections rest on the steady-
state assumption. It means that the total current flowing out
of the superconductor must vanish. This requirement, as we
show below, defines the division of the applied bias between
the two tunnel junctions connecting the superconductor to
the normal leads.

The current leaving through the left tunnel contact is
given by

IL =
1

4
e�S�L� d� Tr�
̂z�ĜL

RĜS
K + ĜL

KĜS
A − ĜS

RĜL
K − ĜS

KĜL
A�� .

�23�

The current IR into the right contact is found by replacing
L→R. Therefore the total outgoing current is

IL + IR = e�S� d�� 1

�R −
1

�A��2

�
��Ln1L + �Rn1R� �24�

and must be zero under steady-state conditions, as discussed
above. �We used Eqs. �8�, �14�, and �21� in derivation of Eq.
�24�.� In other words, the requirement

IL + IR = 0 �25�

determines the relationship between the voltages VL, VR, that
enter as parameters in Eq. �22�.
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Let us consider explicitly the regime of low temperatures
and voltages so that max�eVL ,eVR ,T���. Then the follow-
ing approximate expression for the functions nL�R�

1 are valid
at energies ���:

ni
1��� � − 2 sinh�eVi/T�exp�− �/T� . �26�

Substituting into Eqs. �24� and �25� we obtain the condition

�L sinh�eVL/T� + �R sinh�eVR/T� = 0. �27�

Introducing the bias V=VR−VL, we find from this equation
that

sinh�eVL/T� = −
�R sinh�eV/T�

��L
2 + �R

2 + 2�L�R cosh�eV/T�
. �28�

Thanks to this relation, we can re-express voltages VL, VR in
terms of the bias V, and the nonequilibrium steady state in
the limit eV ,T�� is fully determined by these quantities.

B. Quasiparticle distribution function

In the preceding sections we have found an explicit ex-
pression for the nonequilibrium Keldysh Green’s function for
the biased superconductor, Eq. �21�. In this section we derive
the relationship between the Keldysh Green’s function and
the distribution function f for the Bogoliubov quasiparticles.

Our starting point is the definition of ĜS
K �in the time

domain� in terms of creation and annihilation operators

ĜS
K�t,t�� =


̂z

��S
�
m
���cm↑�t�,cm↑

† �t���� ��cm↑�t�,cm↓�t����
��cm↓

† �t�,cm↑
† �t���� ��cm↓

† �t�,cm↓�t����
� .

�29�

The sum over single-particle states 1
�S

�m with energy �m is
equivalent to the integration over their energy �p in Eq. �4�.
Next, we perform the Bogoliubov transformation from elec-
tron operators cm↑, cm↓ to quasiparticle operators �m, �m

cm↑ = um�m + vm�m
† , cm↓ = um�m − vm�m

† �30�

with amplitudes um, vm given by

um2 = 1 − vm2 =
1

2
�1 +

�m

�m
� ,

umvm = −
1

2

�

�m
�31�

and �m=��m
2 +�2 being the quasiparticle energy. Introducing

the distribution function �we assume equal population of the
two spins�

f��m� = ��m
† �m� = ��m

† �m� �32�

using Eq. �31�, and taking the Fourier transform with respect
to t− t� we obtain

ĜS
K��� = 2 Re

1
��2 − �2

���
̂z + i�
̂y��1 − 2fE����

− 2��2 − �2fQ���� �33�

with the energy and charge modes of the distribution func-
tion f��m� defined as

fE��� =
1

2
�f���2 − �2� + f�− ��2 − �2�� ,

fQ��� =
1

2
�f���2 − �2� − f�− ��2 − �2�� . �34�

Hence the Keldysh Green’s function can be presented in the
form

ĜS
K = ĜS

RF̂ − F̂ĜS
A, �35�

where

F̂ = sgn ��1 − 2fE����1̂ −
�

��2 − �2�
̂z + i
�

�

̂y�2fQ��� .

�36�

We note that the matrix distribution function F̂ is not diago-
nal. This is in contrast with the usual assumption25,26 that in
nonequilibrium situations this matrix can be expressed as a
linear combination of the identity matrix and 
̂z only. Never-
theless, there are only two independent degrees of freedom
since the off-diagonal 
̂y term is proportional to the 
̂z term.

In fact, Eq. �36� shows that the trace of F̂ is directly related
to the energy mode fE while the traceless part possesses an
additional density of states factor compared to the charge
mode fQ of the quasiparticle distribution function.

Comparison of Eq. �36� with the solution of the kinetic

equation for ĜS
K, Eq. �21�, enables us to find the explicit

expressions for the distribution function modes

fE��� =
1

2
�1 − sgn �n0���� ,

fQ��� = −
1

2�
��2 − �2n1��� �37�

and the voltages VL, VR are related by Eq. �25�. At low tem-
perature and bias T ,eV��, at leading order in e−�/T we ob-
tain, using Eq. �28�

fE��� � ��eV/T�e−�/T �38�

with

��eV/T� =
1

�L + �R

��L
2 + �R

2 + 2�L�R cosh�eV/T� �39�

while at this order fQ vanishes due to Eq. �27�.
One may also obtain the distribution function f� by solv-

ing the kinetic equation for quasiparticles. The latter method
is convenient to assess the effects of relaxation. The relax-
ation rate of quasiparticles is an intrinsic property of a super-
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conductor. On the other hand, the tunneling rate �i
=gi / �8��=gi / �8��sV� scales inversely with the volume of
the superconductor at fixed conductance of the junction.
Clearly, one may neglect the intrinsic relaxation only if the
conductances gi are sufficiently large and volume V is suffi-
ciently small. The aim of the next section is to quantify these
conditions. For intrinsic relaxation, we will concentrate on
the dominant at low temperatures mechanism2,17 of phonon-
assisted relaxation.

C. Kinetic equation for quasiparticles

In the kinetic equation approach, the effects of interaction
are described by adding to the rate of change in the occupa-
tion numbers due to tunneling an appropriate collision inte-
gral I. In the case of electron-phonon interaction, one can
derive a set of coupled kinetic equations for the two modes
of the quasiparticle distribution function, fE and fQ

d

dt
fE = �Lf0L + �Rf0R − �fE + Ir

E�fE, fQ,N� + Is
E�fE, fQ,N� ,

�40�

d

dt
fQ = −

��2 − �2

�
��Lf1L + �Rf1R� − �fQ + Ir

Q�fE, fQ,N�

+ Is
Q�fE, fQ,N� , �41�

where �=�L+�R, f0i= �1−ni
0� /2, and f1i=ni

1 /2. Neglecting
the collision integrals, in the steady-state df /dt=0 we re-
cover immediately the result Eq. �37�. The subscripts r and s
are used to distinguish, in the electron-phonon collision in-
tegrals, quasiparticle recombination and scattering processes,
respectively, and we take the phonon distribution function N
to be the thermal equilibrium one

N� =
1

e�/T − 1
. �42�

We characterize the electron-phonon collision rate by the
scattering rate, 1 /
ph, for normal electrons off phonons at the
critical temperature Tc.

27 We consider the limit of low tem-
perature and bias, in which case the electron-phonon interac-
tion has a small effect on the quasiparticle distribution as
long as tunneling is the main scattering process. Considering
relaxation rate for an arbitrary small perturbation17 of the
quasiparticle distribution function, one might conclude that
the corresponding condition for that is �1 /
ph��T /��7/2��.
�The small factor �T /��7/2 here suppresses the low tempera-
ture scattering rate for quasiparticles compared to that of
normal electrons at Tc.� However, for the specific case of
out-of-equilibrium distribution created by tunneling the con-
dition for the rate 1 /
ph is even softer, see Eq. �50� below.

Evaluating the correction to the charge mode fQ due to the
weak electron-phonon relaxation at low temperatures, we
find that such correction to Eq. �37� vanishes at leading order
in e−�/T due to the relation Eq. �27�. We now consider the
energy mode. The collision integrals Ir,s

E contain terms qua-
dratic in fQ, which we can neglect since fQ vanishes at lead-
ing order, as discussed above. The nonvanishing terms are15

Ir
E =

1


ph�3�
�

�

d��
��

���2 − �2
�� + ���2�1 +

�2

���
�

	��1 − f�
E��1 − f��

E �N�+�� − f�
Ef��

E �N�+�� + 1�� �43�

for recombination processes and

Is
E =

1


ph�3��
�

�

d��
��

���2 − �2
�� − ���2�1 −

�2

���
�

	��1 − f�
E�f��

E N�−�� − f�
E�1 − f��

E ��N�−�� + 1��

+ �
�

�

d��
��

���2 − �2
�� − ���2�1 −

�2

���
�

	��1 − f�
E�f��

E �N��−� + 1� − f�
E�1 − f��

E �N��−��	 �44�

for scattering processes.
We solve the kinetic Eq. �40� by iterations, writing fE in

the form

fE � fE�0� +
1


ph�
fE�1� �45�

with fE�0� given in Eq. �38�. At leading order in e−�/T, only
the scattering collision integral Is

E is present. It is satisfied by
any Boltzmann distribution function, such as the one in Eq.
�38�. Indeed, let us consider the terms in square brackets in
the second line of Eq. �44�; in the low temperature and bias
regime they are approximately

�e−��/TN�−�� − �e−�/T�N�−�� + 1� = 0 �46�

in agreement with the detailed balance in the absence of
recombination. Similarly, the terms in square brackets in the
last line of Eq. �44� add up to zero. Therefore, at order e−�/T

there are no corrections to the distribution function.
To calculate the correction due to recombination, we note

that �+���2�, so that in the last term in square brackets in
Eq. �43� we can neglect N�+�� in comparison to unity. The
square brackets then becomes approximately

e−��+���/T�1 − �2� , �47�

i.e., they are of order e−2�/T. For the correction we find

fE�1� = e−�/T�1 − �2�
1

�3�
�

�

d��
��

���2 − �2

	 �� + ���2�1 +
�2

���
�e−��/T. �48�

After the substitution ��=�+Tx, the integral can be evalu-
ated to give, at leading order

fE�1� � e−�/T�1 − �2�e−�/T��T

2�
� �

�
�2�1 +

�

�
�3

. �49�

�Note that at zero bias ��0�=1 and the correction vanishes.�
From this equation we can estimate the ratio between the
leading term and the correction in Eq. �45� and find that the
iterative solution is applicable if
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1


ph�
���

T
e�/T. �50�

Under this condition, the electron-phonon relaxation leads
only to a small modification of the distribution function
given by Eqs. �45� and �49�. Albeit the correction Eq. �49� at
low energies ����� scales with temperature predominantly
as e−2�/T, it may exceed the corresponding term of expansion
of Eq. �37� in e−�/T. That happens at large values of 1 /
ph�,
which still may satisfy Eq. �50�. Note that according to Eq.
�50� the lower the temperature, the weaker is the constraint
on �.

This concludes our analysis of the nonequilibrium steady
state of a superconductor for the specific problem of a finite-
bias tunnel injection of quasiparticles. In the next section we
consider the linear response of an out-of-equilibrium super-
conductor to an external ac field.

IV. ac CONDUCTIVITY OF N-I-S-I-N STRUCTURE

In this section we study the linear response of the super-
conductor to an external ac electric field oscillating at fre-

quency �. Within linear response, the Green’s function ǦS is

the sum of the zero-approximation isotropic part Ǧ0 and a

small correction Ǧ1, linear in A, which is anisotropic in mo-
mentum space

ǦS�n� = Ǧ0 + Ǧ1�n�, n = p/p . �51�

The correction Ǧ1�n� determines the current density via

j� = −
1

4
e�S�

−�

�

d� Tr�v
̂zĜ1
K� , �52�

where v=vFn, vF is the Fermi velocity, and angular brackets
denote averaging over the momentum direction. We empha-
size that the calculation of the ac response that we present
here is not restricted to the particular nonequilibrium state
considered in the previous section; rather, it is valid for a

generic matrix distribution function F̂, which determines the

Keldysh part of the zero-approximation Green’s function Ǧ0
via Eq. �35�.

The two terms in the sum in Eq. �51� obey the orthogo-
nality condition

Ǧ+Ǧ1��,�� + Ǧ1��,��Ǧ− = 0, �53�

where

Ǧ� = Ǧ0�� � �/2� . �54�

An equation for Ǧ1 can obtained as before by considering the
difference between Eq. �2� and its conjugate and using Eqs.
�4�. Assuming A�t�=A�e−i�t we find, at zeroth order in the
tunneling rates �i

− iĤ+Ǧ1 + iǦ1Ĥ− +
1

2

Ǧ+Ǧ1 −

1

2

Ǧ1Ǧ−

= ievA��
̂zǦ− − Ǧ+
̂z� , �55�

where

Ĥ� = �� � �/2�
̂z + i�
̂y . �56�

The zero order in �i approximation is valid when �L+�R
�min�1 /
 ,� ,��. In particular, the condition �L+�R�1 /

implies that the tunneling has a negligible influence on the
quasiparticle states; in fact, the only role of the leads is to
generate a nonequilibrium quasiparticle population, and the
calculation of the ac response does not depend on the spe-
cific way in which a nonequilibrium population is estab-
lished �as long as it does not substantially alter the quasipar-
ticle states�.

Equation �55� can be solved for a generic relation be-
tween 1 /
 and �—see Appendix. Here we consider the dirty
limit 
��1. To calculate the current, we only need the fol-
lowing expression for the Keldysh component:

Ĝ1
K = ievA�
 �Ĝ+

R
̂z�Ĝ−
R − Ĝ−

A�F̂− + F̂+�Ĝ+
R − Ĝ+

A�
̂zĜ−
A�

�57�

with F̂�= F̂���� /2�. The retarded and advanced Green’s
functions in this equation are given by Eqs. �13� and �14�.
Substituting Eq. �57� into Eq. �52�, we arrive at

j� = ����E�, �58�

where ���� is the complex conductivity. It is convenient to
isolate its equilibrium zero-temperature kinetic part

�0��� = −
��N�

i�
, �59�

which represents the purely inductive response of the super-
conducting condensate to the external field in the absence of
quasiparticles and where �N=2e2�SD is the normal-state
conductivity of the superconductor with D=vF

2
 /3 the diffu-
sion constant. Using the relationship Eq. �36� between matrix
and quasiparticle distribution functions, assuming 0��
�2�, and performing simple rearrangements, we find

���� = �0��� +
2�N

� ��
�

�

d�
��� + �� + �2

���2 − �2���� + ��2 − �2�
f�

E

− i�
�

�+�

d�
��� − �� + �2

���2 − �2���2 − �� − ��2�
f�

E

− �
�+�

�

d�
��� − �� + �2

���2 − �2���� − ��2 − �2�
f�

E
 . �60�

Equation �60� may be viewed as a generalization of the
Mattis-Bardeen formula to an arbitrary quasiparticle distribu-
tion function f�. Note that Eq. �60� contains only the sym-
metric in � part of the quasiparticle distribution function.

We now use Eq. �60� to find the ac conductivity for the
biased N-I-S-I-N structure considered in Sec. III, concen-
trating on the limit of low temperatures and voltages,
max�eVL ,eVR ,T���. In this limit, f�

E is exponentially small
and approximately given by Eq. �38�. If in addition to the
assumptions of low temperature and voltages made above,
the frequency is also much smaller than the gap, ���, we
find at leading order in �
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���� =
�N�

i�
�− � + 2e−�/T��eV/T�

	 �� exp�− �/2T�I0��/2T�

+ 2i sinh��/2T�K0��/2T��� , �61�

where I0 and K0 denote the modified Bessel functions of
zeroth order.

The effect of the finite bias on the ac response of the
superconductor described by Eq. �61� is contained in full in
the function �, Eq. �39�. In fact, as we now show, this func-
tion accounts for the nonequilibrium density of quasiparti-
cles. The quasiparticle density is given by �cf. Eq. �32��

nqp = 2�S� d�f��� = 4�S�
�

�

d�
�

��2 − �2
f�

E �62�

with fE defined in Eq. �34� and the factor 2 accounting for
spin. At low temperature and voltages, we can approximate
fE as �see Eq. �38��

f�
E � ��eV/T�e−�/T �63�

and evaluating the integral at leading order in � we arrive at

nqp = 4�S��eV/T����T

2
e−�/T. �64�

Using this equation, Eq. �61� can be written as

���� = ����� + i����� ,

����� = �N
2�

�
sinh

�

2T
K0� �

2T
�� �

2�T

nqp

�S�
,

����� = �N
��

�
�1 − e−�/2TI0� �

2T
�� �

2�T

nqp

�S�

 . �65�

At low temperature, even a small bias, V��, may cause an
exponential increase in the quasiparticle density nqp, see Eq.
�64�. That, in turn, enhances exponentially the dissipative
response �����. We note that the above result for the ac
conductivity in terms of the quasiparticle density preserves
its form even if we include the correction to the distribution
function due to the electron-phonon interaction �assuming
the condition Eq. �50� is satisfied�. Of course, the quasipar-
ticle density Eq. �64� should be corrected to account for
Eq. �49�.

Equation �65� agrees with the results of Ref. 9, even
though in that work a different mechanism was considered to
be the source of the nonequilibrium distribution—a flux of
photons which break Cooper pairs. In Ref. 9, the ac response
of a nonequilibrium superconductor was calculated by re-
placing the Fermi distribution function in the expressions of
Mattis and Bardeen10 by a phenomenological one with an
effective chemical potential ��. In the resulting formulas, ��

was eliminated in favor of the density of quasiparticles by
means of Eq. �62�. The pair breaking does not create imbal-
ance and the resulting quasiparticle distribution function con-
tains only the energy mode. Thus our Eq. �60� supports the
validity of the approach employed in Ref. 9.

V. SUMMARY AND DISCUSSION

In this work we have derived an extension of the Mattis-
Bardeen formula for the ac conductivity of a dirty super-
conductor to include a nonequilibrium occupation of the qua-
siparticle states. Equation �60� shows that the charge imbal-
ance does not affect the linear response to external radiation.

As an explicit example, we considered properties of a
superconductor connected via tunnel junctions to two normal
leads. Application of a constant bias to the leads creates a
steady nonequilibrium state in the superconductor, see Sec.
III. We have evaluated bulk ac conductivity ���� of such
N-I-S-I-N setup for low frequency ��� of a weak external
field and low temperature �T��� while keeping fixed the dc
bias V. The role of the finite bias is to create a nonequilib-
rium quasiparticle density nqp. Remarkably, it is possible to
express the conductivity ���� as a function of temperature
and nqp only, see Eq. �65�. The dependence of ���� on bias
V enters only through the V dependence of nqp. That simpli-
fication works even if electron-phonon relaxation is taken
into account �if the condition Eq. �50� is satisfied�. At zero
bias �V=0� the distribution nqp becomes the equilibrium dis-
tribution function, and Eq. �65� reduces to the conventional
Mattis-Bardeen formula.

As a further extension one may include the electron-
electron interaction. If sufficiently strong, it would lead to
the replacement of temperature T in the quasiparticle distri-
bution function with an effective temperature Tef f. Interest-
ingly, for a fixed nonequilibrium quasiparticle density, an
increase in temperature �or effective temperature� leads to a
lower dissipation.

ACKNOWLEDGMENTS

We are grateful to M. Devoret, L. Frunzio, S. M. Girvin,
D. S. Prober, and R. J. Schoelkopf for stimulating discus-
sions. K.E.N. thanks Yale University for the hospitality. His
visit was made possible by the gift of Victor and Marina
Vekselberg to Yale University. This work was supported
by IARPA under ARO Contract No. W911NF-09-1-0369
�L.I.G.� and Yale University �G.C.�.

APPENDIX: SOLUTION TO EQ. (55)

In this Appendix we give some details on how to solve

Eq. �55�. We begin with the equation for Ĝ1
R

− iĤ+Ĝ1
R + iĜ1

RĤ− +
1

2

Ĝ+

RĜ1
R −

1

2

Ĝ1

RĜ−
R

= − ievA��Ĝ+
R
̂z − 
̂zĜ−

R� . �A1�

Expressing Ĥ� in Eq. �A1� in terms of Ĝ�
R by means of Eq.

�14� and making use of the retarded component of the or-
thogonality condition in Eq. �53�

Ĝ+
RĜ1

R + Ĝ1
RĜ−

R = 0 �A2�

we bring Eq. �A1� to the form
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�− i�+
R − i�−

R + 1/
�Ĝ+
RĜ1

R = − ievA��Ĝ+
R
̂z − 
̂zĜ−

R� �A3�

with the obvious notation �cf. Eq. �20��

��
R = ��� � �/2 + i0+�2 − �2�1/2. �A4�

Multiplying both sides of Eq. �A3� by Ĝ+
R and making use of

the normalization condition �G0
R�2=1, we arrive at

Ĝ1
R =

evA�

�+
R + �−

R + i/

�
̂z − Ĝ+

R
̂zĜ−
R� . �A5�

Consider now the equation for Ĝ1
K

− iĤ+Ĝ1
K + iĜ1

KĤ− +
1

2

�Ĝ+

RĜ1
K − Ĝ1

KĜ−
A�

= − ievA��Ĝ+
K
̂z − 
̂zĜ−

K� −
1

2

�Ĝ+

KĜ1
A − Ĝ1

RĜ−
K� �A6�

and the corresponding orthogonality condition

Ĝ+
RĜ1

K + Ĝ+
KĜ1

A + Ĝ1
RĜ−

K + Ĝ1
KĜ−

A = 0. �A7�

It is convenient to separate Ĝ1
K into a “regular” part, similar

in form to Eq. �35�, and an “anomalous” one as follows:

Ĝ1
K = Ĝ1

r + Ĝ1
a, Ĝ1

r = Ĝ1
RF̂− − F̂+Ĝ1

A, �A8�

where F̂�= F̂���� /2�. A substitution of this definition into
the orthogonality condition in Eq. �A7� yields the much sim-
pler equation

Ĝ+
RĜ1

a + Ĝ1
aĜ−

A = 0. �A9�

Substituting Eq. �A8� into Eq. �A6� and using Eq. �A1� we

find the equation for Ĝ1
a

− iĤ+Ĝ1
a + iĜ1

aĤ− +
1

2

�Ĝ+

RĜ1
a − Ĝ1

aĜ−
A�

= − ievA��Ĝ+
R�F̂+
̂z − 
̂zF̂−� − �F̂+
̂z − 
̂zF̂−�Ĝ−

A� .

�A10�

The solution to this equation can be found by following the
procedure similar to that used above to solve for Ĝ1

R. First,
we express Ĥ+ and Ĥ− in terms of Ĝ+

R and Ĝ−
A, respectively,

�− i�+
R +

1

2

�Ĝ+

RĜ1
a − �− i�−

A +
1

2

�Ĝ1

aĜ−
A

= − ievA��Ĝ+
R�F̂+
̂z − 
̂zF̂−� − �F̂+
̂z − 
̂zF̂−�Ĝ−

A� .

�A11�

Then, using the orthogonality condition Eq. �A9�, we elimi-
nate Ĝ−

A in favor of Ĝ+
R

�− i�+
R − i�−

A + 1/
�Ĝ+
RĜ1

a

= − ievA��Ĝ+
R�F̂+
̂z − 
̂zF̂−� − �F̂+
̂z − 
̂zF̂−�Ĝ−

A� .

�A12�

The solution of this equation is obtained by multiplying both
sides by Ĝ+

R and employing the normalization condition
�Ĝ0

R�2=1

Ĝ1
a =

evA�

�+
R + �−

A + i/

�F̂+
̂z − 
̂zF̂− − Ĝ+

R�F̂+
̂z − 
̂zF̂−�Ĝ−
A� .

�A13�

Equations �A5� and �A13� are valid for �i�� ,1 /
 and arbi-
trary relation between � and 1 /
. In the dirty limit �
�1,
Eqs. �A5� and �A13� can be, respectively, approximated as

Ĝ1
R = − ievA�
�
̂z − Ĝ+

R
̂zĜ−
R� , �A14�

Ĝ1
a = − ievA�
�F̂+
̂z − 
̂zF̂− − Ĝ+

R�F̂+
̂z − 
̂zF̂−�Ĝ−
A� .

�A15�

Substituting these equations into Eq. �A8� we find Eq. �57�.

1 J. M. Ziman, Principles of the Theory of Solids �Cambridge Uni-
versity Press, Cambridge, 1979�.

2 M. Tinkham, Introduction to Superconductivity �McGraw-Hill,
New York, 1996�.

3 D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 �2005�.
4 O. V. Dolgov, A. A. Golubov, and D. Parker, New J. Phys. 11,

075012 �2009�.
5 A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J.

Schoelkopf, Phys. Rev. A 69, 062320 �2004�.
6 A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J.

Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
�London� 431, 162 �2004�.

7 S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deleglise, U. B.
Hoff, M. Brune, J.-M. Raimond, and S. Haroche, Nature �Lon-

don� 446, 297 �2007�.
8 S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deleg-

lise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E.
Jacques, P. Bosland, and B. Visentin, Appl. Phys. Lett. 90,
164101 �2007�.

9 J. Gao, J. Zmuidzinas, A. Vayonakis, P. Day, B. Mazin, and H.
Leduc, J. Low Temp. Phys. 151, 557 �2008�.

10 D. C. Mattis and J. Bardeen, Phys. Rev. 111, 412 �1958�.
11 A. A. Abrikosov, L. P. Gorkov, and I. M. Khalatnikov, Zh. Eksp.

Teor. Fiz. 35, 265 �1958� �Sov. Phys. JETP 8, 182 �1959��.
12 S. B. Nam, Phys. Rev. 156, 470 �1967�; 156, 487 �1967�.
13 See, e.g., J. P. Turneaure and I. Weissman, J. Appl. Phys. 39,

4417 �1968�, and references therein.
14 R. Barends, J. J. A. Baselmans, S. J. C. Yates, J. R. Gao, J. N.

CATELANI, GLAZMAN, AND NAGAEV PHYSICAL REVIEW B 82, 134502 �2010�

134502-8

http://dx.doi.org/10.1103/RevModPhys.77.721
http://dx.doi.org/10.1088/1367-2630/11/7/075012
http://dx.doi.org/10.1088/1367-2630/11/7/075012
http://dx.doi.org/10.1103/PhysRevA.69.062320
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature02851
http://dx.doi.org/10.1038/nature05589
http://dx.doi.org/10.1038/nature05589
http://dx.doi.org/10.1063/1.2724816
http://dx.doi.org/10.1063/1.2724816
http://dx.doi.org/10.1007/s10909-007-9688-z
http://dx.doi.org/10.1103/PhysRev.111.412
http://dx.doi.org/10.1103/PhysRev.156.470
http://dx.doi.org/10.1063/1.1656986
http://dx.doi.org/10.1063/1.1656986


Hovenier, and T. M. Klapwijk, Phys. Rev. Lett. 100, 257002
�2008�.

15 V. M. Galitskii, V. F. Elesin, and Yu. V. Kopaev, in Nonequilib-
rium Superconductivity, edited by D. N. Langenberg and A. I.
Larkin �North-Holland, Amsterdam, 1986�, Chap. 9.

16 V. F. Elesin and Yu. V. Kopaev, Sov. Phys. Usp. 24, 116 �1981�.
17 S. B. Kaplan, C. C. Chi, D. N. Langenberg, J. J. Chang, S.

Jafarey, and D. J. Scalapino, Phys. Rev. B 14, 4854 �1976�.
18 M. Tinkham, Phys. Rev. B 6, 1747 �1972�.
19 See, e.g., G. M. Eliashberg and B. I. Ivlev, in Nonequilibrium

Superconductivity, edited by D. N. Langenberg and A. I. Larkin
�North-Holland, Amsterdam, 1986�, Chap. 6 and references
therein.

20 For a review of the Keldysh approach see, e.g., Ref. 21.

21 J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 �1986�.
22 W. L. McMillan, Phys. Rev. 175, 537 �1968�.
23 A. V. Zaitsev, A. F. Volkov, S. W. D. Bailey, and C. J. Lambert,

Phys. Rev. B 60, 3559 �1999�.
24 I. Snyman and Yu. V. Nazarov, Phys. Rev. B 79, 014510 �2009�.
25 A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 68,

1915 �1975� �Sov. Phys. JETP 41, 960 �1976��.
26 N. Kopnin, Theory of Nonequilibrium Superconductivity �Clar-

endon, Oxford, 2001�.
27 More precisely, in Eqs. �43� and �44� we use for 1 /
ph the defi-

nition of Ref. 15, which differs from the standard one �Ref. 17�
by the numerical factor �Tc /�0�3. Since we are interested in the
low-temperature, low-bias regime, we neglect the difference be-
tween the gap � and its zero-temperature, equilibrium value �0.

EFFECT OF QUASIPARTICLES INJECTION ON THE ac… PHYSICAL REVIEW B 82, 134502 �2010�

134502-9

http://dx.doi.org/10.1103/PhysRevLett.100.257002
http://dx.doi.org/10.1103/PhysRevLett.100.257002
http://dx.doi.org/10.1070/PU1981v024n02ABEH004631
http://dx.doi.org/10.1103/PhysRevB.14.4854
http://dx.doi.org/10.1103/PhysRevB.6.1747
http://dx.doi.org/10.1103/RevModPhys.58.323
http://dx.doi.org/10.1103/PhysRev.175.537
http://dx.doi.org/10.1103/PhysRevB.60.3559
http://dx.doi.org/10.1103/PhysRevB.79.014510

