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We study metamagnetic phase transition of itinerant electrons controlled by the spin-injection mechanism.
The current flow between a ferromagnetic metal and a metamagnetic metal produces the nonequilibrium shift
of chemical potential for spin-up and spin-down electrons. This shift acts as an effective magnetic field driving
the metamagnetic transition between low and high magnetization states of the metamagnet in the vicinity to the
contact with the ferromagnet. We show that high magnetization state of the metamagnet self propels into the
bulk of the metamagnet and the length of this state has threshold dependence on the electrical current.
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I. INTRODUCTION AND MAIN RESULTS

The idea of the spin injection from ferromagneic metal to
paramagnetic �p� metal was first proposed by Aronov.1 In the
spin-injection process the charge-current flow between ferro-
magnetic and paramagnetic metals produces the nonequilib-
rium magnetization in the paramagnet. This magnetization is
proportional to the induced chemical potentials difference of
electrons with opposite spins1—the spin accumulation. Non-
equilibrium spin imbalance due to injection was observed by
Johnson and Silsbee.2 The theory of spin injection was de-
veloped in details in many works3–7 and well-studied experi-
mentally, see for a review Refs. 8 and 9. However, the degree
of electron spin polarization is relatively small at standard
spin injection from ferromagnetic to paramagnetic metal.10,11

In order to increase the nonequilibrium polarization it is in-
teresting to look for the possibility of spin-injection-based
magnetic transition in metamagnetic metals. Here we con-
sider the metamagnetic transition of itinerant electrons in-
duced by the spin-injection mechanism. Let us briefly de-
scribe the properties of the metamagnet.12,13 When the
energy splitting of electrons with opposite spins is smaller
than the characteristic energy scale of itinerant electrons,
then magnetic part of the free-energy density can be ex-
panded in powers of magnetization F�H ,M�=aM2+bM4

+cM6−MH, where coefficients a ,b ,c are determined by the
energy dependence of the density of states at the Fermi level,
H is the external magnetic field and M is the magnetization.

At b�0 magnetic part of free energy F�H=0,M� might
have extremum at nonzero �M� as it is shown in Fig. 1, which
schematically illustrates evolution of free energy with in-
creasing magnetic field due to contribution of the term −MH.
At small magnetic field the state with low magnetization
�LM� has lower energy while at magnetic field larger than
so-called metamagnetic field Hm the metamagnetic state
acquires lower energy and system undergoes to state with
high magnetization �HM�. Metamagnetic state is induced
by external magnetic field through the first-order phase
transition.12,13

Metamagnetic transition of itinerant electrons might
appear12,13 in strongly enhanced Pauli paramagnets when the
Fermi level is close to peak in electron density of states. In
this case Zeeman splitting increases the density of states and
drives the metamagnetic transition.

The chemical potentials difference of electrons with op-
posite spins is the analog of external magnetic field in the
nonequilibrium case. Characteristic feature of this effective
magnetic field Heff�x� is the spatial nonuniformity which re-
sults in the finite length of HM state of the metamagnet. In
the ferromagnetic metal—metamagnetic metal contact spin
accumulation and therefore effective magnetic field is gener-
ated in the region on the order of spin relaxation length at the
vicinity of contact with ferromagnet and at the domain wall
between HM and LM states of the metamagnet. We assume
that the domain wall thickness is much smaller than the spin-
relaxation length. Schematically, the contact of ferromag-
netic metal—metamagnetic metal with HM state is shown in
Fig. 2. HM state is located at 0�x�d. HM state emerges at
electric currents such that the effective magnetic field is
Heff�x=0��Hm. If d is of the order or larger than the spin-
relaxation length then effective magnetic field Heff�x� can be
estimated as a sum Heff�x�=HF-m

eff �x�+Hm-p
eff �x� of the fields

due to spin accumulation at boundary x=0

HF-m
eff �x� =

eJ

g�B

2RFRm

RF + Rm
��F − �m�e−x/�m �1�

and effective field due to spin accumulation at domain wall
x=d

FIG. 1. Free energy F�H ,M� dependence on the magnetization
M of the metamagnet shown schematically for different magnetic
fields H2�H1. The state with high magnetization has lower energy
at higher magnetic fields. Inset: dependence of the magnetization on
magnetic field.
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Hm-p
eff �x� =

eJ

g�B

2RmRp

Rm + Rp
�me−�d−x�/�m. �2�

This case is shown by the solid line in Fig. 3. In expressions
�1� and �2� J is the current density, e is the electron charge,
�B= �e�� /2mc is the Bohr magneton and g=2 for electrons

�F,m =
�↑F,m − �↓F,m

�↑F,m + �↓F,m
�3�

is proportional to the current polarizations, where ��

=e2D�	� are the corresponding conductivities in the ferro-
magnetic, HM and LM states of the metamagnet for elec-
trons with spin �, D� is the diffusion coefficient, 	� is the
density of states at the Fermi level

RF,m = �F,m
�↑F,m + �↓F,m

4�↑F,m�↓F,m
, Rp =

�p

�p
�4�

are the effective resistances and the spin-relaxation lengths

are defined as �=�D̄ts, where in each state D̄= �D↑�↓
+D↑�↓� / ��↑+�↓� and ts is the spin-relaxation time.

In the case of small thickness of domain wall compared to
the spin-relaxation length, the transition between HM and
LM states of the metamagnet takes place at x=d when

Heff�d� = Hm �5�

as shown in Fig. 3. Taking the sum of expressions �1� and �2�
we estimate the corresponding length of the HM state region
at d��m as

d � �m ln� RF��F − �m�/�Rm + RF�
g�BHm/eJ2Rm − Rp�m/�Rm + Rp�

� . �6�

At large electrical current when g�BHm /eJ2Rm
→Rp�m / �Rm+Rp�, according to expression �6� the length of
HM state region increases d→
. Threshold current density
dependence of d occurs because of spin accumulation gen-
eration at the domain wall between HM and LM states of the
metamagnet. HM state self propels into the bulk of the meta-
magnet and the length d might be larger than the spin relax-
ation length in the metamagnet �m. However, since the effec-
tive field in most part of the region is below Hm, the energy
of stationary HM state at large d becomes smaller than the
energy of LM state. We propose that the system must un-
dergo to LM state at large values of the current density. More
detailed discussion of the transition is given below.

In Sec. II we derive the expression for the distribution
function in the ferromagnet-metamagnet �F-m� system. In
Sec. III we examine the contact between ferromagnet and
metamagnet in the LM state. In the linear response on ap-
plied voltage the spin-dependent part of the distribution
function enters self-consistency equation for the magnetiza-
tion in the system as magnetic field. Effective magnetic fields
are calculated. In Sec. IV the contact between ferromagnet
and metamagnet in the HM state is considered. We derive the
equation for the transition between HM and LM states and
self-consistently determine the length of the HM state region.
We discuss different realizations of spin accumulation in
metamagnet. We show that with increasing current density
the system undergoes LM to HM transition while at some
maximum value of the current density HM state becomes
energetically unfavorable and LM state is realized in the
metamagnet. The corresponding values of the current density
are calculated. We discuss the HM state in ferromagnet-
metamagnet-ferromagnet structure. Finally, we briefly sum-
marize our findings in Sec. V and discuss experimental ap-
plicability.

II. ELECTRICAL SPIN INJECTION

Consider the spin-injection process from the ferromag-
netic metal to metamagnetic metal. We focus on the spin and
charge transports in the presence of the spin-orbit coupling
and the short-range exchange electron-electron interactions.

FIG. 2. Ferromagnetic metal x� �−L /2,0�—metamagnetic
metal x� �0,L /2� contact. �p� defines the low magnetization state
of the metamagnet and �m� stands for the high magnetization state
induced by the spin injection from the ferromagnet �f�. �F ,�m,�p

are the spin diffusion lengths in ferromagnet and metamagnet in
high and low magnetization states.

FIG. 3. Up: dependence of the effective magnetic field on coor-
dinate for two values of the current density �J2�� �J1�. Effective
magnetic field decreases in the metamagnet and the phase transition
undergoes at x=d�J� when Heff=Hm. Down: magnetization profile,
where MF ,Mm,Mp are the corresponding magnetizations of the fer-
romagnet, high and low magnetization states of the metamagnet.
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We assume the vector of the nonequilibrium magnetization
in the metamagnetic metal to be parallel to the vector of the
magnetization in the ferromagnet. The Green’s function in
Keldysh technique in the matrix form

Ĝ� = 	ĜR ĜK

0 ĜA



is given by retarded ĜR�x ,x��, advanced ĜA�x ,x�� and

Keldysh function ĜK�x ,x��, where x= �r , t� denote position
and time arguments, hat �� stands for the matrix in spin
space. Further we will consider the stationary regime in

which function Ĝ� satisfies the equation

��� +
1

2m
�r

2 + � − U�r� − e��r�
1̂ − Ûso�r� + �̂�r��Ĝ� �r,r�,��

= 1̂��r − r�� ,

where ��r� is the electrostatic potential, U�r� is the random
potential of impurities assumed to be Gaussian distributed
with �U�r��=0, �U�r�U�r���=2�	���r−r��, � is the mean-
free time and 	= �	↑+	↓� /2 is the density of states. Spin-
orbit interactions of electrons with impurities is described by

the potential Ûso�r�= i��̂��U�r���, where � is the spin-
orbit coupling constant and �̂ is the Pauli matrix. The con-
tribution of the short-range electron-electron exchange inter-
actions to the spin splitting14 is described by the term �̂�r�

���r� =
− i�

2
� dpd�

�2��4 G−�
K �r,p,�� ,

where � is the electron coupling constant. It is convenient to
apply the Fourier transformation with respect to the relative
coordinates r1=r−r� as

Ĝ� �R,p,�� =� d3r1Ĝ� �R + r1/2,R − r1/2�e−ipr1

in which R= �r+r�� /2. The retarded and advanced Green’s

functions ĜR and ĜA averaged over disorder in the ���1
approximation are diagonal in spin and are given by

ĜR,A�R,p,�� =
1

� − �p + �̂�R� � i�̂
, �7�

where �p is the electron dispersion, 2��=��
−1+ �t�

−1− t−�
−1� /2

and ��
−1=�0�

−1 +�s�
−1 is the inverse scattering times due to dis-

order and spin-orbit interactions for the spin state �, ts�
−1

=4 /3�s�.15 We assume that the momentum-relaxation time
�0� is smaller than the time ts� corresponding to the spin-flip
process. Let us note, that we are considering the metamagnet
when the exchange energy is the coordinate-dependent func-

tion. In deriving the equation for the function ĜK we assume
the limit when the exchange energy is small compared to the
Fermi energy ��↓−�↑� /��1. In this limit the equation for the

function ĜK yields

v��R + ��R�� + eE���p
�G�

K

= − 	 1

��

−
1

t�s
+

1

t−�s

G�

K + 	F�

��

−
F� − F−�

2t�s

�G�

R − G�
A�

here E=−���r� is the electric field and we denote the coor-
dinate and frequency-dependent function

F��R,�� =
i

2�	�
� dp

�2��3G�
K�R,p,�� .

In the diffusion approximation for the function F��R ,�� one
obtains the equation

��� � F��R,�� =
	�	−�

2	

F��R,�� − F−��R,��
ts

, �8�

where ��=e2	�D� is the conductivity, D�=v�
2�� /3 is the dif-

fusion coefficient and the density of states nu� are the space-
dependent functions.

Let us consider the system when functions in Eq. �8� de-
pend on one spatial coordinate �x� only. Consider the inter-
face between a ferromagnetic metal that occupies the region
�x�0� and a metamagnetic metal �x�0�. We assume that
the lengths of the ferromagnetic and metamagnetic regions
L /2 are much larger than the corresponding spin-diffusion
lengths. We also assume the external reservoirs of the sample
at x= �L /2 to be in the spin equilibrium state. The electric
field in the system is treated through the boundary conditions

F��− L/2,�� = f�� − eV/2� ,

F��L/2,�� = f�� + eV/2� , �9�

where f���=tanh�� /2T� and V=E /L is the potential differ-
ence across the structure. The solution of Eq. �8� is the con-
tinuous function at the interface between ferromagnet and
metamagnet and between HM and LM states of the meta-
magnet

F��0 − ,�� = F��0 + ,�� ,

F��d − ,�� = F��d + ,�� �10�

under the assumption that the thickness of the domain wall
between HM and LM states are smaller than the spin-
relaxation length. The derivatives satisfy the following con-
dition:

���

�F��x,��
�x

�
x=0−

=���

�F��x,��
�x

�
x=0+

,

���

�F��x,��
�x

�
x=d−

=���

�F��x,��
�x

�
x=d+

�11�

describing the continuity of the current density at the inter-
face. The current density carried by spin-up and spin-down
electrons is given as
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J��x� =
1

2e
� ��

�F��x,��
�x

d� .

We solve Eq. �8� for the case of the ferromagnet—LM state
of the metamagnet contact and for the case of the
ferromagnet-HM-LM contact. The solution of Eq. �8� can be
considered independently in the vicinity of the boundary be-
tween the ferromagnet and HM state of the metamagnet, and
at the domain wall between LM and HM states in the limit
when the length of the HM state d��m. Taking into account
the length of the system to be larger than the corresponding
spin-diffusion lengths we solve the diffusion equation in the
region x�0 with boundary in Eq. �9� and continuity in Eqs.
�10� and �11� conditions in the vicinity to the boundary with
the ferromagnet

F↑,↓�p,m�x,�� = f�� + eV/2� + Ap,m��x − L/2� � 2�↓,↑�p,m

��F − �p,m�
RFRp,m

�RF + Rp,m�
e−x/�p,m , �12�

where p,m denotes LM and HM states of the metamagnet
and F stands for the ferromagnet, coefficient

Ap,m =
2��↑F + �↓F��f�� + eV/2� − f�� − eV/2��

���↑F + �↓F� + ��↑�p,m + �↓�p,m��L

is connected with the current density as

J = J↑�x� + J↓�x� =
1

2e
� ��↑�p,m + �↓�p,m�Ap,md� .

The values �F,m are proportional to the current polarization
and resistivities RF,m,p in the ferromagnet and metamagnet
are defined by expressions �3� and �4�. Note, that in the LM
state of the metamagnet conductivities �↑p=�↓p=�p /2 and
diffusion coefficients D↑p=D↓p=Dp. Solution �12� has to be
supplemented by the local neutrality condition which self-
consistently determines the electric potential in the sample.
The spin-injection process does not change concentration of
electrons

N =
1

2
� �	↑F↑�x,�� + 	↓F↓�x,���d� . �13�

III. LOW MAGNETIZATION STATE

The self-consistency equation for the magnetization den-
sity M�x� in the sample is defined as

M�x� = g�B��↓�x� − �↑�x��/�

= −
g�B

2
� �	↑F↑�x,�� − 	↓F↓�x,���d� . �14�

In the case of equilibrium metamagnetic metal, Eq. �14� has
two solutions even without the external magnetic field, cor-
responding to two minima of free energy, see inset in Fig. 1.
Transition between these solutions takes place when mag-
netic field is equal to Hm. One could verify that in the linear

on V response the spin-dependent part of expression �12�
enters expressions �13� and �14� as magnetic field.

First, consider the case of the contact at x=0 between the
ferromagnet and LM sate of the metamagnet which is similar
to the case of spin injection to paramagnetic metal. In the
linear response, using Eqs. �12� and �14�, the effective field
in the LM state due to spin accumulation is

Hp
eff�x� =

eJ

g�B

2RFRp

RF + Rp
�Fe−x/�p

and magnetization at x�0 is

Mp�x� =
�g�B�2	p

1 − �	p
Hp

eff�x� . �15�

Effective magnetic field in the LM state as well as the mag-
netization is proportional to the current density and decreases
into the bulk of the metamagnet on the spin-relaxation
length.

Effective magnetic field produced by the spin accumula-
tion in the ferromagnetic metal at x�0 is

Hp-F
eff �x� =

eJ

g�B

2RFRp

RF + Rp
�Fex/�F �16�

here expressions for resistances RF and Rp are given by Eq.
�4�.

IV. METAMAGNETIC TRANSITION

Now let us consider the contact between the ferromagnet
and the metamagnet being in the HM state. The procedure of
finding solutions is following. We assume that there is HM
state of the metamagnet in the system at 0�x�d. Then we
solve Eq. �8� for the spin accumulation at two boundaries at
x=0, x=d, and self consistently determine the value of d
from Eq. �5�.

To obtain Eq. �5� we need to consider the metamagnetic
transition in more detail. Near the transition between HM
and LM states we need to include the spatial derivatives of
magnetization into consideration so

− K
d2

dx2 M +
�F�Hm

eff�x�,M�
�M

= 0

here K is positive constant. Let us have solution Mw�x−d�,
describing the transition between HM and LM states at point
x=d in uniform magnetic field. It is the solution of equation

− K
d2

dx2 Mw +
�F�Hm,Mw�

�Mw
= 0.

Assuming small difference Hm
eff�x�−Hm at x�d and substi-

tuting M =Mw�x−d�+�M, we obtain

− K
d2

dx2�M +�1

2

�2F�Hm,M�
�M2 �

M=Mw

�M = Hm
eff�x� − Hm.

Solution of this equation exists if
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� dx�0�x��Hm
eff�x� − Hm� = 0, �17�

where �0�x� is the eigenfunction, corresponding to zero E0
=0 mode of equation

− K
d2

dx2�k +�1

2

�2F�Hm,M�
�M2 �

M=Mw

�k = Ek�k

�0�x� has no zeros and is localized near x=d in region on the
order of domain wall thickness. This mode describes small
translation of M so in the uniform field one has E0=0. In the
case when �m,p are much larger than the domain wall thick-
ness from condition �17� one obtains Eq. �5�.

A. High magnetization state

In HM state region the magnetization is

Mm�x� = Mm
0 +

�g�B�2	m

1 − �	m
Hm

eff�x� .

Here 	m=2	↑m	↓m / �	↑m+	↓m�, Mm
0 is the magnetization of

HM state of the metamagnet, calculated at zero effective
magnetic field, Hm

eff is the effective magnetic field in the HM
state given as a sum of effective fields in Eqs. �1� and �2� due
to spin injection at boundary x=0 and domain wall x=d. Let
us discuss different realizations of spin accumulation. �1�
Consider the case when �F−�m and �m given by expression
�3� have the same sign. Effective fields in Eqs. �1� and �2� of
contacts at x=0 and x=d have same sign too. The estimation
for the length of HM state region d in the limit d��m is
given by expression �6�. d diverges at some threshold value
of electrical current density. �2� Let �F−�m and �m have
opposite signs. Thus, effective fields of both contacts have
different signs too. Analysis shows that solution of Eq. �5�
with finite d exist at �HF-m

eff �0��� �Hm-p
eff �d��. In this case d stays

finite with the increase in the electrical current density.
Spin accumulation appears also in the ferromagnetic

metal at x�0 as

Hm-F
eff �x� =

eJ

g�B

2RFRm

RF + Rm
��F − �m�ex/�F �18�

here expressions for RF and Rm are given by Eq. �4�.

B. Free energy criterion

We propose that the realization of HM state must be en-
ergetically favorable over the realization of the paramagnetic
state. In the linear on the applied current regime the magnetic
part of the free energy in the case of LM state realization is

�FFp = − MF�
−L/2

0

Hp-F
eff �x�dx ,

where MF is the magnetization of ferromagnetic contact and
Hp-F

eff �x� is given by expression �16�. In the case of HM state
realization it is

�FFmp = − MF�
−L/2

0

Hm-F
eff �x�dx

− Mm
0 �

0

d

�Hm
eff�x� − Hm�dx + FS.

Effective magnetic fields in ferromagnetic region are given
by expressions �16� for the case of the ferromagnet-LM state
realization and by Eq. �18� for the case of ferromagnet-
HM-LM regime. FS is the energy, associated with domain
wall and boundary between ferromagnet and HM state �F-
m�. While the domain wall energy is positive, the sign of
F-m boundary energy depends on relative directions of mag-
netizations in the ferromagnet and metamagnet. Estimation
of FS depends on details that are beyond the scope of the
paper.

From criterion �FFp−�FFmp�0 for the realization of
metamagnetic transition one can estimate the maximum
value of the current density. To make the expression more
transparent one suggests the case RF�Rm�Rp, which as-
sumes the contribution of the boundary m-p and F-p to the
free energy is smaller than the corresponding contribution
from the F-m interface, one can estimate as

Jmax �
g�B

e

Hm/2Rm

��F − �m��1 + �FMF/�mMm
0 �

d�Jmax�
�m

,

where the length of the HM state of the metamagnet d�Jmax�
is given by expression �6�. To summarize, the HM state is
realized at current densities such that J0�J�Jmax. The value
of current density J0 can be estimated from expression �1�,
where HF-m

eff �0�=Hm, as

J0 �
g�B

e

Hm/2Rm

��F − �m�
.

If the current density is increased further J�Jmax then the
LM state is realized in the metamagnet.

C. Ferromagnet-metamagnet-ferromagnet structure

Let us briefly discuss the spin injected HM state in the
system with metamagnetic metal of length � placed between
two ferromagnetic metals having opposite directions of mag-
netizations. In this case �FFp=0, because of the cancellation
of contributions in ferromagnets with opposite magnetiza-
tions. In the HM state of the metamagnet

�FFmF = − Mm
0 �

0

�

�Hm
eff�x� − Hm�dx .

Both ferromagnets contribute equally to the effective field.
At ���m using expression �1� we obtain the maximum
value of electrical current density at which �FFmF�0 as

Jmax =
g�B

e
Hm

RF + Rm

4RFRm��F − �m�
�

�m
.

Note, that the expression for Jmax for the F-m contact in the
limit discussed in the previous section is similar to the F-m-F
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contact. Also note, that the transition to LM state of the
metamagnet with increasing current is absent.

V. CONCLUSIONS

The system for experimental study of spin-injected meta-
magnetic transition must have low metamagnetic field, large
spin relaxation length, and sustain high electrical current
density. Typical values of the spin accumulation in paramag-
netic metals are in the microelectron volt range,16,17 which
corresponds to the effective magnetic fields in tenth mil-
litesla range at reasonably high current density. On the other
hand, in the magnetic multilayered systems, in which current
is injected through the point contact, the estimated values of
effective magnetic fields might be on the order of Tesla.18

Metallic metamagnets with metamagnetic field in Tesla’s
range are well known,19 however applying external magnetic
field one can easily bring such system close to the transition.
Well studied YCo2 in crystal form undergoes the metamag-
netic transition at magnetic field,13 which is much higher
than effective fields achievable in the spin injection mecha-
nism, while it is a weak ferromagnet in the nanoscale struc-
tured form,20 suggesting the possibility of metamagnetic field
reducing at proper technology.

Other possibility is to study the system with temperature-
induced metamagnetic transition21 or near first-order ferro-
magnetic transition.22 Typical value of spin-relaxation length
in d-electron ferromagnets is on the order of tenth nano-
meter. Unfortunately, spin relaxation length, the main param-
eter that governs the magnitude as well as the spatial distri-
bution of effective field, was not studied in metamagnetic
systems.

To conclude, we have studied the metamagnetic transition
of itinerant electrons in the metamagnetic metal under the
spin injection from the ferromagnetic metal. Spin injection
produces the nonequilibrium effective magnetic field in
metamagnet which drives the transition. We have calculated
the effective magnetic fields and electrical currents required
for the metamagnetic transition. We have shown that the
length of HM state of the metamagnet has threshold depen-
dence on electrical current due to the effective magnetic field
self generated at domain wall between HM and LM states.
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