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Ordered phases of itinerant Dzyaloshinsky-Moriya magnets and their electronic properties
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A field theory appropriate for magnets that display helical order due to the Dzyaloshinsky-Moriya mecha-
nism, a class that includes MnSi and FeGe, is used to derive the phase diagram in a mean-field approximation.
The helical phase, the conical phase in an external magnetic field, and recent proposals for the structure of the
A phase and the non-Fermi-liquid region in the paramagnetic phase are discussed. It is shown that the orien-
tation of the helical pitch vector along an external magnetic field within the conical phase occurs via two
distinct phase transitions. The Goldstone modes that result from the long-range order in the various phases are
determined, and their consequences for electronic properties, in particular, the specific heat, the single-particle
relaxation time, and the electrical and thermal conductivities, are derived. Various aspects of the ferromagnetic
limit, and qualitative differences between the transport properties of helimagnets and ferromagnets, are also

discussed.
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I. INTRODUCTION

A. Dzyaloshinsky-Moriya magnets

Helical magnets are systems in which long-range mag-
netic order takes the form of a helix or spiral, such that in
any given plane perpendicular to a preferred direction there
is ferromagnetic order, but the direction of the magnetization
rotates as one goes along the preferred axis. The pitch vector
¢q of the helix points in the preferred direction, and its modu-
lus g=|q| is the pitch wave number, with 27/ ¢ equal to the
helical wavelength. One mechanism for stabilizing this type
of order over the homogeneous ferromagnet was pointed out
by Dzyaloshinksky' and Moriya.? It relies on the spin-orbit
interaction, which can lead, for certain lattice structures, to a
term of the form M-(V X M) in the Hamiltonian or action,
with M the magnetic order parameter (OP). The presence of
such a chiral term implies that a homogeneously magnetized
state can always gain energy by means of a nonzero curl of
the magnetization, which leads to a helical ground state. In a
rotationally invariant system the direction of the pitch vector
would be arbitrary (analogous to the arbitrary direction of the
magnetization in an isotropic ferromagnet). However, the un-
derlying lattice leads, via crystal-field effects, to a pinning of
the helix in certain directions determined by the lattice. The
crystal-field effects are due to the spin-orbit interaction, as is
the Dzyaloshinsky-Moriya (DM) mechanism for helical or-
der itself. Since the spin-orbit interaction is weak on an
atomic or microscopic scale, with a dimensionless coupling
constant g, << 1, this leads to a hierarchy of energy or length
scales that can be classified according to their dependence on
powers of g,. Finally, an external magnetic field provides an
additional energy scale, and couples to the helix via an in-
duced homogeneous component of the magnetization. This
leads to a rich phase diagram that is the topic of the present

paper.
1. Phase diagram of MnSi

A very well-studied helimagnet of DM-type is the metal-
lic system MnSi, which we will concentrate on; a very simi-
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lar, but less extensively studied material is FeGe.? In zero
magnetic field, and at ambient pressure, MnSi displays long-
ranged helical order with 277/g~180 A below a tempera-
ture 7,~30 K.* MnSi crystallizes in the cubic B20 struc-
ture, and the helix is observed to be pinned in the (1,1,1)
directions.>® The corresponding space group is P2,3.” In a
magnetic field H, the helix is superimposed by a homoge-
neous component of the magnetization, which leads to the
so-called conical phase.® A magnetic field in the [0,0,1] di-
rection tilts the helix away from (1,1,1) until the ¢ vector
aligns with the magnetic field at a critical field strength H_,.
With increasing H, the amplitude of the helix decreases, and
finally vanishes at a critical field H_,, where the system en-
ters a field-polarized ferromagnetic phase. Inside the conical
phase at intermediate fields near 7 there is a region known
as the A phase.® This was thought to represent a helix whose
pitch vector is perpendicular to the magnetic field”!° but
recently has been interpreted as a topological phase where
three helices with coplanar ¢ vectors form a skyrmionlike
structure.!! The schematic phase diagram in the H-T plane as
observed experimentally is shown in Fig. 1. In addition to
the phases shown, a possible second transition and spin-
liquid phase at H=0 just above 7. has been reported
recently.!?

Another interesting aspect of MnSi is its sensitivity to
hydrostatic pressure. With increasing pressure p, the mag-
netic transition temperature 7, decreases until it vanishes at
p=p.~15 kbar.!> The transition is second order or very
weakly first order above a temperature of approximately 10
K, and strongly first order at lower temperatures, with a tri-
critical point (TCP) separating the two regimes. These fea-
tures have been explained as universal properties of quantum
ferromagnets in an approximation that neglects the helical
order at longer length scales.'* In the paramagnetic region at
pressures up to approximately 2p. and at temperatures T
=10 K, strong non-Fermi-liquid transport properties are ob-
served, with the electrical resistivity p, displaying a tem-
perature dependence p, = T*? over almost three decades in
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FIG. 1. Schematic phase diagram of MnSi in the H-T plane
showing the helical, conical, and A phases, as well as the field-
polarized ferromagnetic (FM) and paramagnetic (PM) states. See
the text for a description of these phases.

temperature.'> The origin of this behavior has recently been
proposed to be a combination of columnar spin textures and
very weak quenched disorder.'® In a smaller region, above p,
and below a pressure-dependent temperature 7|, short-range
(spin-liquid) helical order has been observed'”!8 and various
explanations in terms of analogs of blue phases in liquid
crystals have been proposed.'®??> Recently, an anomalous
Hall effect has been observed at intermediate pressures and
below T, in the helically ordered phase, and it has been sug-
gested that this feature is related to the short-ranged order
observed above p..>* The phase diagram in the T-p plane is
shown in Fig. 2. If a magnetic field is applied in the vicinity
of p, tricritical wings, i.e., surfaces of first-order transitions,
emerge from the tricritical point that are believed to end in a
pair of quantum critical points in the 7=0 plane.'> This fea-
ture, which is depicted in Fig. 3, has been explained theoreti-
cally in Ref. 24.

T
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FIG. 2. Schematic phase diagram of MnSi in the 7-p plane. The
tricritical point (TCP) separates a line of second-order transitions
(solid line) from a line of first-order transitions (dashed line). The
inset shows the resistivity data from Ref. 15 in the non-Fermi-liquid
(NFL) region. The boundary of the NFL region (dotted line) is not
sharp. SL1, SL2, and SL3 refer to the possible spin-liquid phases or
regions reported in Refs. 17, 18, 23, and 12, respectively.
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FIG. 3. (Color online) Schematic phase diagram of MnSi in the
space spanned by 7, p, and H showing the tricritical wings and
quantum critical points (QCPs).

2. Properties of the helical phase

If one ignores crystal-field effects, i.e., in an isotropic
model, the long-range helical order in the helical phase (H
=0, T<T., p<p,.) breaks the translational symmetry. This
spontaneous breaking of a continuous symmetry leads to a
Goldstone mode, the helimagnon,25 which has recently been
observed experimentally.?® The dispersion relation is aniso-
tropic, and given by

(1.1)

wHM(k) = \Cukﬁ + CLki .

Here the wave vector k=(kj,k ) has been decomposed into
components parallel and perpendicular, respectively, to the
helical pitch vector ¢, and ¢ and ¢, are elastic constants.
The absence of a term proportional to k2l under the square
root in Eq. (1.1) reflects rotational symmetry and is analo-
gous to the nature of the Goldstone mode in either smectic or
cholesteric liquid crystals.?” Crystal-field effects that couple
the electrons to the underlying lattice break the rotational
invariance and lead to a k% term with a small prefactor, i.e.,
the dispersion relation becomes phononlike. Both the single-
particle relaxation rate 1/ that results from the scattering of
electronic quasiparticles by helimagnons and the thermal re-
sistivity py, have a non-Fermi-liquid temperature dependence
1/ 7% py T32. In contrast, the transport relaxation rate that
determines the electrical conductivity p, in a Boltzmann ap-
proximation has a temperature dependence 1/ 7% pg oc T%/2.28
The properties of the helical phase in the presence of weak
quenched disorder have also been investigated.?*-*

In the present paper, we will discuss the derivation of the
phase diagram sketched above, as well as some refinements,
within the context of a mean-field theory and with an em-
phasis on the H-T plane. We will also determine the nature of
the Goldstone modes, and their consequences for electronic
properties, in various observed or proposed phases with
long-range order. In addition to the specific heat, the single-
particle relaxation rate, and the electrical conductivity we
will consider the thermal resistivity py,, whose temperature
dependence is the same as that of the single-particle relax-
ation rate.
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B. Model and energy scales
1. LGW functional

We will consider a Landau-Ginzburg-Wilson (LGW)
functional for a three-dimensional OP field M
=(M,,M,,M;) whose expectation value is proportional to
the magnetization. We will consider an action that is appro-
priate for the helical magnets MnSi and FeGe, which crys-
tallize in the cubic B20 structure with space group P2,3. We
will organize the action according to the dependence of its
various constituents on powers of the spin-orbit interaction
g« Within this scheme, we write

A=AH+ADM+ACf7 (12)

where

Ay = f dx{iMz(x) VM@ T + v M T
L2 2 2

+ %[Mz(x)]z + %[VMz(x)]z “H. M(x)} (1.3)

is the action for an isotropic classical Heisenberg ferromag-
net in a homogeneous external magnetic field H. [ydx de-
notes a real-space integral over the system volume. (VM)?
stands for 2?4': \0iM ;@ MY, with ;= d/ ox; the components of
the gradient operator V=(d;,d,,d;) =(d,,d,.d.). t, a, d, u,
and w are the parameters of the Landau theory and are re-
lated to the microscopic energy and length scales (see Sec.
I B 2 below); they are of zeroth order in the spin-orbit cou-
pling g,. Equation (1.3) contains all analytic terms invariant
under corotations of real space and OP space up to quartic
order in M and biquadratic order in M and V.3! We have
added one higher-order term, with coupling constant w, as an
example of a class of terms that can stabilize unusual phases
in helimagnets, although they are not of qualitative impor-
tance in ferromagnets. We will consider this term only in
Appendix A,

Apy = g f ) dxM(x) - [V X M(x)] (1.42)

is the chiral Dzyaloshinksy-Moriya term that favors a non-
vanishing curl of the magnetization. The existence of this
term hinges on the spin-orbit coupling, as well as on the
system not being invariant with respect to spatial inversion
(due to the linear dependence on the gradient operator). The
coupling constant ¢ is linear in gy, and on dimensional
grounds we have

¢ = akggg, (1.4b)

with kg the Fermi wave number which serves as the micro-
scopic inverse length scale. In this context, this can be con-
sidered the definition of g,.

The preceding contributions to the action are all invariant
under either separate rotations, or corotations, in spin (or
magnetization) space and real space. The spin-orbit interac-
tion couples the electron spin, and hence the magnetization,
to the underlying lattice. Therefore, in addition to the rota-
tionally invariant terms, any term that is invariant under el-

PHYSICAL REVIEW B 82, 134427 (2010)

ements of the space group connected with the crystal lattice
is allowed. For the B20 structure of MnSi and FeGe, the
appropriate space group is P2,3. To quartic order in M, and
biquadratic order in V and M, the allowed terms in the action
are the crystal-field terms,

3
Ag= J xS {’—’[aiMxx)]z D oM+ 9M?<x>},
v o= L2 2 4

(1.5a)

where M,= M. The last term is the usual cubic anisotropy
that is always present in a magnet on a cubic lattice, and

U=u,g§0 (15b)

with |u’| = u. Of the gradient-squared terms, the first one also
has cubic symmetry; the second one does not but is invariant
under elements of P2,3. On dimensional grounds, we have

1.2
b=a'gy,

by=alg’ (1.5¢)

with |a’|=|aj|=a.

2. Length and energy scales

The various contributions to the action A, and their de-
pendencies on g, imply a hierarchy of energy scales and
corresponding wave number or length scales. At zeroth order
in g, we have the microscopic scale, which is represented
by the Fermi energy g and the Fermi wave number kg. Fluc-
tuations renormalize this to the critical scale, which is repre-
sented by the magnetic ordering temperature 7, and the cor-
responding length scale. The physics at these scales is
described by Ay, Eq. (1.3).

The chiral DM term is balanced by the rotationally invari-
ant gradient squared term in Eq. (1.3) that makes magnetiza-
tion gradients energetically costly. As a result, the relevant
gradient or momentum scale is of O(g,,), and hence the chi-
ral wave number scale is given by the microscopic scale
times g . This determines the parameters of the helix, in
particular, the helical pitch wave number g>*g.. In MnSi
and FeGe, this wave-number scale is on the order of 100
times smaller than the microscopic scale. Apy; contains one
explicit factor of g,, and one gradient, and hence its contri-
bution to the free energy is of O(g2). The physics at this
scale is described by Apy; in conjunction with Ay.

At fourth order in g, crystal-field effects come into play.
They pin the helix, are small compared to the chiral energy
scale by another factor of gf,o, and are described by A, Eq.
(1.5). Since gradients are effectively of O(g,,), see above, the
contributions of all three terms in A to the free energy are
of O(g?)). Finally, the external magnetic field sets a scale that
is continuously tunable.

C. Organization of the paper and summary of distinct results

In this paper, we give a comprehensive discussion of all
of the known, and some of the proposed, phases of itinerant
Dzyaloshinsky-Moriya magnets. In Sec. II, we review the
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known phases and their mean-field descriptions. We also
present a distinct result, namely, an explicit realization of a
second phase transition close to H; that had been predicted
on symmetry grounds earlier.’> Section III is devoted to the
Goldstone modes in the various phases. After a review of the
ferromagnetic case and the known Goldstone modes in the
helical phase we deduce the functional forms of the Gold-
stone modes in the conical and A phases, and we discuss the
effects of pinning on the modes. In Sec. IV, we discuss the
manifestations of the Goldstone modes in the temperature
dependence of the specific heat, the single-particle relaxation
rate, and the electrical and thermal conductivities. For the
helical phase, with the exception of the thermal conductivity,
this is a review of previous results; the other results are dis-
tinct. In Sec. V, we summarize our results and give a master
table of Goldstone modes and their effects on observables.
Appendix A discusses a proposed perpendicular conical
phase that has not been convincingly observed so far, and
Appendices B and C give technical details related to the
derivation of some of the Goldstone modes. Finally, Appen-
dix D discusses some qualitative differences between relax-
ation rates in ferromagnets and helimagnets, respectively,
and the physical reasons for them.

II. PHASE DIAGRAM

We now derive the mean-field phase diagram for systems
described by the action given in Egs. (1.2) and (1.3). We will
use the hierarchy of energy scales explained in Sec. IB to
show how a more and more sophisticated phase diagram
emerges as one keeps effects of higher and higher order in
gSO'

To do so, we consider field configurations of the follow-
ing form:

M(x) =my+mjé, cos(q -x) + myé_sin(q -x). (2.1a)

Here m is a homogeneous component of the magnetization,
m; are amplitudes of Fourier components with wave vector
q, and é. are two unit vectors that form a right-handed
dreibein together with ¢,

é,Xé_=q, gxeé . =é_, é_Xg=é,, (2.1b)
where §=q/q. The sinusoidal terms in Eq. (2.1a) describe a
helix with pitch vector ¢g. The helix is in general elliptically

polarized, and it is useful to define a polarization parameter

T =mj/mj. (2.2)

Special cases are circular polarization, =1, and linear po-
larization, =0 or =%. The motivation for the ansatz Eq.
(2.1) is provided by the fact that it gives the functional form
of the global minimum of the action A, Egs. (1.2) and (1.3),
if one neglects the crystal-field terms A that is, for the
action up to O(g2), see Ref. 11 and Sec. Il B below.

A. O(ggo): Ferromagnet

To zeroth order in g, the system is approximated by a
ferromagnet. According to the action Ay, Eq. (1.3), for H
=0 there is a second-order phase transition which in mean-
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field approximation occurs at t=0. For H#0, there is a
crossover at t=0 from a field-polarized paramagnetic state,
where the magnetization extrapolates to zero for H—0, to a
field-polarized ferromagnetic state where the magnetization

extrapolates to my=—t/ uH. The free energy density in
mean-field approximation, f=.4/V, in a zero field is

f=—-1/4u. (2.3)
In a nonzero field, one has
r o, ou oy,
f= 2o + 2o~ Hmy, (2.4a)

where my is the solution of the mean-field equation of state

tmg + umg =H. (2.4b)

This is just a classical Heisenberg model so it cannot explain
the tricritical point and the associated tricritical wings. The
latter emerge within a renormalized mean-field theory that
takes into account the coupling of the magnetization to other
electronic degrees of freedom.'* This leads to a fluctuation-
induced first-order transition in analogy to the case of the
nematic-to-smectic-A transition in liquid crystals,>® as well
as to the tricritical wings and the quantum-critical points in
an external magnetic field.?* The ferromagnetic approxima-
tion suffices for understanding the gross features of the phase
diagram in the 7-p plane.

B. O(ggo): Helimagnet, conical phase

To second order in g , we need to add the DM term, Eq.
(1.4a), to the action. It is obvious that this term favors a
nonzero curl of the magnetization, with the direction of the
curl depending on the sign of c. However, the spatial varia-
tion in M will be limited by the other gradient terms in the
action, the (VM)? term, in particular. We thus expect a spatial
modulation of M on a length scale on the order of a/c. It is
easy to check that the ansatz, Eq. (2.1), with w=1, i.e., my
=m{=m,, and

q= CIH, (2521)
my=moH, (2.5b)
mo = H/(cq - aq?), (2.5¢)
1 H?
m%:—(—t+ cq - aq®) - — 5. (2.54d)
u (cq—aq”)

solves the saddle-point equations for the action Ay +.Apy. In
order to determine g, we extremize the resulting free energy
with respect to g. g=c/2a is a solution for all values of H.
Finally, we need to ascertain that the solution is a minimum,
which turns out to be the case for t<ag®> and H
2. 2 :
<aq*\—-(t—aq*)/u. We thus find that the field configuration

M(x) = moﬁ +m[é, cos(qfl “x)+é_ sin(qﬁ %]
(2.6a)

134427-4



ORDERED PHASES OF ITINERANT DZYALOSHINSKY-...

with &€, é,, H forming a dreibein, and

g=cl2a, (2.6b)
my=Hlag*, (2.6¢)
m; =\-rfu\1 - (H/H,)%, (2.6d)
where
r=t—aq’, (2.7a)
H, = aq*\-rlu (2.70b)

minimizes the free energy in the parameter range r<<0, H
< H_,. We will refer to this state as the aligned conical state
(ACS), to distinguish it from the perpendicular conical state
discussed in Appendix A. The ACS is actually a global mini-
mum, as can be seen by writing the action as a sum of posi-
tive semidefinite terms that are individually minimized by
this state.!" The mean-field free-energy density in that range

is
-1 ( P H? )
/= 2 \2u i aq®)’
Equations (2.6) describe the helical phase for H=0 and the
conical phase for 0<H<H,. Comparing Egs. (2.3) and
(2.8), we see that the helical transition preempts the ferro-
magnetic one.

For H—H_, from below the helical component of the
magnetization vanishes, and the free energy, Eq. (2.8), ap-
proaches that of the ferromagnet, Egs. (2.4). For H>H,, the
equation of state and the free energy for the DM action Ay
+Apu are the same as for a ferromagnet with action Ay.
These considerations account for the structure of the phase
diagram shown in Fig. 1 except for the field H.; and the A
phase.

(2.8)

C. Oﬁg:D): Helimagnet, A phase

Recent neutron-scattering experiments by Miihlbauer et
al.'' are consistent with the notion that the A phase is char-
acterized by spin textures that form line defects in the direc-
tion of the magnetic field, with the lines forming a hexagonal
lattice, the A crystal, in the plane perpendicular to the field.
This experimental observation led the authors of Ref. 11 to
suggest a skyrmion state consisting of three coplanar helices
as underlying the A phase,

3
M(x) = m0ﬁ+ m12 [éf) cos(q? - x) + 69 sin(qg"” - x)],
i=1

(2.9)

where the pitch vectors g” all have the same modulus ¢, are
perpendicular to H, the angle between adjacent pitch vectors
is 27r/3, and éf), é(_i), and q(i) form a right-handed dreibein
for each value of i. The values of ¢, m,, and m, are obtained
by minimizing the action.

The free-energy difference between this state and the
conical one has a minimum at H=0.4H, but it is still posi-
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FIG. 4. (Color online) Spin configuration as given by Eq. (2.9)
with the ¢ vectors in the x-y plane, ¢=0.0133 AL my=0.0146, and
m;=0.0323. The arrows represent projections of the spins into the
plane. The dark and light regions denote spin directions antiparallel
and parallel to Z, respectively.

tive even at the minimum. However, Ref. 11 found that tak-
ing into account Gaussian fluctuations stabilizes the state
with respect to the conical one. It should be noted that Eq.
(2.9) is not a solution of the saddle-point equations for the
action given by Egs. (1.2) and (1.3), and therefore cannot be
a true local minimum of the free energy.’* Also, the relation
between this ansatz and what are commonly called skyrmi-
onic spin configurations, which are solutions of the saddle-
point equations (see Ref. 21 and references therein), is not
clear. Most likely it represents a single-Fourier-component
approximation to a saddle point and is a Bloch-type descrip-
tion of skyrmions as opposed to a Wannier-type description
of isolated skyrmions in Ref. 21. In any case, it describes a
hexagonal array of line defects with the spin antiparallel to
the magnetic field at the defect centers, and parallel at points
on the cell boundaries, see Fig. 4, in qualitative agreement
with the neutron-scattering data.

Earlier, Grigoriev et al.'” had proposed a single-helix state
with the pitch vector oriented perpendicular to the external
field. Although current experimental evidence favors a skyr-
mion state as a candidate for the A phase, it is still of interest
to discuss such a perpendicular conical state (PCS), since it
might be a viable candidate for the ground state in some
other part of the phase diagram of helimagnets. We therefore
briefly discuss the PCS and its properties in Appendix A.

D. O(ggo): Helimagnet, NFL region

The skyrmion lattice approximately described by Eg.
(2.9) can melt, which will lead to a skyrmion liquid. In such
a state, the line defects shown in Fig. 4 still exist but they no
longer form a lattice. Rather, their fluctuations in the plane
perpendicular to the line, which are illustrated in Fig. 5, have
become so large that the long-range order is destroyed. Such
a state has recently been proposed to represent the NFL re-
gion shown in Fig. 2.'® Although it is not an ordered phase,
such a state has much in common with the A phase and we
will discuss it in the context of the ordered phases.
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FIG. 5. (Color online) Schematic rendering of the hexagonal
lattice of skyrmion lines shown in Fig. 4 and of fluctuations about
this state. a is the lattice constant, and u(x) is a displacement vector.

E. O(g:O): Crystal-field effects

To fourth order in g,,, we need to take into account the
crystal-field terms shown in Eq. (1.5a). This makes the
saddle-point equations very complicated, and no exact solu-
tion is known. We therefore take a variational approach by
inserting Eq. (2.1a) into the action and minimizing with re-
spect to the parameters of the ansatz. Of all the members of
the class of functions represented by Eq. (2.1) this will yield
the one with the lowest free energy.

By writing Eq. (1.5a) we have fixed the coordinate system
by choosing the crystallographic axes to be the x,y,z
=1,2,3 axes. We thus are no longer free to choose the di-
rection of H, m, or q. For simplicity, we will consider only
the case of a magnetic field along the z axis: H=(0,0,H).
4 =¢q/q we parameterize in terms of angles ¥ and ¢ as fol-
lows:

G = (sin ¥ cos ¢,sin Isin @,cos I) = (B, 62,53
(2.10a)

with =2 B?=1. This leaves one free parameter for é,,
namely, an azimuthal angle ¢,,

é, = (cos U cos ¢ sin ¢, — sin ¢ cos ¢,,cos Y sin ¢ sin ¢,

+€os @ cos @,,— sin ¥ sin @,). (2.10Db)

This uniquely determines é_=q X é,. Finally, m in general
needs to be decomposed into components parallel and per-
pendicular, respectively, to g.>> However, while a perpen-
dicular component can lead to a slightly lower free energy, it
has no qualitative effects on the structure of the phase dia-
gram, and we therefore restrict our ansatz to

m0=m0é. (2100)

We further assume that the system is sufficiently close to a
second-order or weakly first-order phase transition that one
can neglect the last term in Eq. (1.5a). With these approxi-
mations, the free energy does not depend on the angle ¢, and
is completely parameterized in terms of six parameters,
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namely, two amplitudes, m, and m1=[(mJ{)2+(m])2]”2/\5,
the polarization parameter 7, the modulus ¢, and the two
direction angles ¥ and ¢. We find

r u 1
6tm% + E(m% + m%) + Z(m% + m%)2 + Em%

0| =

f=
2 ! 2
X| 8t+aq” —cq+ Ecq(&r) — Hmg cos 9
b b b
+ B0, 0) + i B (9. 9) = T omB,(D,¢)

b
~ g’ OmBL(9.9) + 0(g),). (2.112)
Here we have defined r=t- dt, with ot arbitrary at this point.
We also have made use of the fact that we know, from Sec.
II B, that the physical solution has the property 7=1+dm
with m=0(g%), and have expanded in powers of &m. The
angle-dependent functions in Eq. (2.11a) are

B, (9, ¢) =B*(9,¢) = B (%,¢),

Biou(9,9) = Bi(9,0) = Bi(9,¢),  (2.11b)

where

B*(9,¢) =2 sin®> ¥ sin® ¢ cos’ ¢,
B~ (9,¢) =sin’> 9 cos®> ¥(1 + sin* ¢ + cos* ¢),
B (9, ¢) =sin? 9 cos* ¢ + cos 9 sin” @,

B (9, ¢) =sin* 9 sin? ¢ + cos* & cos’ ¢

+sin? & cos® O sin® @ cos® @.  (2.11¢)

We now need to minimize the free energy with respect to
the six parameters. We will first consider the case H=0 to
understand the pinning of the helix by the crystal-field terms,
and then determined the effects of a magnetic field. Further-
more, in order to keep the discussion transparent we will
initially restrict ourselves to an ansatz with a circular polar-
ization, 67=0. This suffices to understand the existence of
the critical field H.;. We will then generalize the ansatz to
allow for a noncircular polarization and show that this leads
to a splitting of the transition at H,;, with a first-order tran-
sition from a circularly polarized helix to an elliptically po-
larized one at a critical field H,, <H,, preceding the align-
ment transition at H;.

1. Pinning of the helix

We consider the system at H=0 and initially restrict our
ansatz to the case of circular polarization, dm=0. The re-
maining angular dependence in the free energy, Eq. (2.11a),
is contained in the functions By and B;,. Minimizing with
respect to ¢ we find that there are two cases.

Case (1): @=0,7/2,7,37/2. This implies ¢
=(0, =sin 9,cos ¥9) or (xsin 9,0,cos ¥), and B,
=3sin? 29, By =sin? d+cos* . Minimizing with respect to
U leads to two subcases.
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Case (la): 2b<b,. The free energy is minimized by ¥
=7/4,37/4,57/4, 77/ 4, which implies §=(1,0,1)/2 or
equivalent.

Case (1b): 2b>b,. The free energy is minimized by
=0,m/2,m,37/2, which implies §=(1,0,0) or equivalent.

Case (2): @=m/4,3w/4,5w/4,7w/4. This implies §
=(sin 9/2,sin ¥/ \E,cos ¥) or equivalent, and B,=1
—sin* 9/2-cos* 9, By;=1-sin? 9+3 sin* /4. Minimizing
with respect to U yields

Case (2a): 2b<b,. The free energy is minimized by
= *arcsiny2/3, which implies §=(1,1,1)/+3 or equivalent.

Case (2b): 2b>b. The free energy is minimized by ¢
=0, 7, which implies §=(0,0, = 1).

By comparing the resulting free energies for these cases,
we see that Case (1b) provides the minimum for b>5b,/2,
whereas Case (2a) provides the minimum for 5<b,/2. This
is a generalization of the result obtained in Ref. 36, which
considered a model with b;=0.

In MnSi, the pinning is observed to be in the (1,1,1)
directions, which implies b<<b/2, and we will mostly con-
sider this case from now on. Minimizing the free energy with
respect to g, we find

cl/2

=, 2.12
q a+(b+b))3 ( )

which generalizes Eq. (2.6b). Choosing &t=cg/2 and mini-
mizing with respect to m; we finally have

f==r4u, (2.13a)
where
r=t-25t (2.13b)
with
2
14
< (2.13¢)

St=—T-—"—"—7.
a+(b+b))/3
These results are valid for H=0 and b<b,/2.

2. Alignment transition and the critical field H .,

For H>0 we expect the pitch vector to move away from
(1,1,1) toward (0,0,1). The calculation proceeds as for H=0,
except that now the minimization with respect to ¥ yields an
H-dependent result. For Case (2a), we find

1 if H=H,,
=cos O=31
Ps 3(1 +2H%/H?) if H<H,,,

(2.14a)

where [remember r<<0 and b<b,/2 in the ordered phase for
Case (2a)]

HZy = r(b - b1/2)(80)*/ua. (2.14b)

The helical pitch vector § thus moves continuously along the
shortest path from its initial value, (1,1,1)/y3 at H=0, to
(0,0,1) at H=H_;, and remains in that position for H>H;.
There thus is a second-order transition at H=H,, (Ref. 35)
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that we refer to as the alignment transition. An inspection
shows that Case (1b) has a larger free energy for all H
<Hcl.

For reference in the next section, we mention that if one
expands the free energy for small values of 1, and looks for
the instability of the solution with 9=0, one finds that the
latter occurs at H=H_|, as expected.

3. Polarization transition and the critical field H_,

The circular polarization ansatz we have used so far ex-
plains the two critical fields H., and H_, observed in MnSi.
However, the solution obtained in this way misses a qualita-
tive feature, as was first pointed out in Ref. 32 on symmetry
grounds. Since in general b # b, the crystal-field contribu-
tion to the action, Eq. (1.5a), is not invariant under x < y. As
a result, there is no reason for the x and y components of § to
become nonzero at the same value of H as H is lowered from
above, yet the solution constructed in the previous section
has this property. Clearly, this is a result of the fact that our
ansatz with circular polarization possesses cubic symmetry
while the action does not. In general, one therefore expects
two separate transitions in the vicinity of H;; one where the
x component of § becomes nonzero, and a separate one
where the y component becomes nonzero. We now show that
this expectation is borne out if we allow for a noncircular
polarization of the helix, which breaks the cubic symmetry
of the ansatz.

Consider the full Eq. (2.11a), allowing for &7+ 0. Mini-
mizing with respect to ¢ we see that there are two distinct
cases.

Case (1): ¢=0,m/2,m,3m7/2 and o7 arbitrary. Minimiz-
ing with respect to o7 yields

5m(9) = 21[1)33(19) +b,B,,(9)]. (2.152)
c

That is, the polarization is in general elliptical. We have B*

=0, B~=2 sin? 9 cos? 9, which leads to

1.,
B..,= * —sin” 2,
2

s,a

(2.15b)

B, =sin*> &+ cos* 0. (2.15¢)

Considering B, we find two subcases. The first one is
Case (1)(i): ¢=0,, which implies

4 = (£sin 9,0,cos ) (2.16a)
and
B, =sin®> & - cos* 9. (2.16b)
The second one is
Case (1)(ii): ¢=/2,3/2, which implies
¢ =(0, * sin Y,cos ) (2.17a)
and
By, =cos’ & = sin* 9. (2.17b)

The second case is
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Case (2): o=m/4,3mw/4,57/4,77/4 and

om=0. (2.18a)
That is, the polarization is circular. This implies
L (1 1
g =| —=sin ¥,—=sin 9¥,cos ¥ (2.18b)
v V2
and

L. 4
B,=1- Esm U -cos” O, (2.18c¢)

. 2 3 . 4
Big=1-sin" 9+ 25in J. (2.18d)

Now first consider the case H=0. Minimizing with re-
spect to ¥ one finds that, for b<<b,/2, Case (2) yields the
lower free energy.?” The physical solution is thus a circularly
polarized helix pinned in the (1,1, 1) directions, and the re-
laxation of the condition we had imposed in Sec. IL E 1 does
not change anything. For > b,/2, the physical solution is an
elliptically polarized helix pinned in the (0,0, 1) directions.

Next we consider a solution with ¥=0, which we expect
to be stable for sufficiently large H. It is easy to see that Case
(1), which takes advantage of the possibility of an elliptical
polarization, has a free energy that is lower than that of Case
(2) by a term of O(ggo) everywhere in the conical phase, i.e.,
for H<H_. We next look for the instability of the ¥=0
solution at small H, which can be found by expanding the
action to second order in ¥ and looking for the zero of the
coefficient of the quadratic term. As expected, this instability
occurs at a field H, :0(g30). To leading order in g, H.; is
given by Eq. (2.14b). The values of H,, for the two cases are
different, but the difference is only of O(g>)) and is irrelevant
for the following argument.

We now have the following situation. For H<H_;, the
free energy of Case (1) is lower by a term of O(gfo). How-
ever, we know that at H=0 the free energy of Case (2) is
lower by a term of O(g ). The two solutions cross at a field
H!, given by

H! 1 | 3p
) Y —1=1—0(gso), (2.19)
Hcl 2 4a|b—bl/2|

see Fig. 6. At this value of H, the state will change discon-
tinuously from an elliptically polarized helix with a pitch
vector given by either Eq. (2.16a) or (2.17a) to a circularly
polarized one with a pitch vector given by Eq. (2.18b).

We now have the following progression of phases and
phase transitions as the magnetic field is lowered from a
value greater than H.,: H> H,: field-polarized state, no he-
lix. H=H ,* 8503 second-order transition to a conical state
with an elliptically polarized helix, §=(0,0,1). H=H_
g2 : second-order transition to a conical state with elliptical
polarization as above but §=(0,sin J,cos ). ¥ increases
from zero with decreasing H. H=H] =H_[1-0(g,)]: first-
order transition to a conical state with circular polarization
and é=(%sin ﬁ,\L—sin J,cos ). O increases from its value
at H., with decreasing H. H=0: system reaches helical state
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FIG. 6. Schematic plot of the free energy density as a function
of H for Case (1) (dashed line) and Case (2) (dotted line),
respectively.

with circular polarization and §=(1,1,1)/ V3.

The phase diagram is thus predicted to have the structure
shown in Fig. 7, with the second-order alignment transition
at H., followed by a first-order polarization (and realign-
ment) transition at H;,. The latter has so far not been ob-
served experimentally. It is an explicit realization of the type
of transition first predicted by Walker’> on symmetry
grounds. It needs to be stressed that the detailed features of
this transition are restricted by our ansatz, Eq. (2.1); the
states obtained are not true minima of the action. However,
the basic physical idea, which is expected to be realized in
the true ground state as well, is as follows. In the conical
phase, where the helical pitch vector is aligned with the mag-
netic field, the system can take advantage of the lack of cubic
symmetry of the action, Eq. (1.5a), by forming a helix with a
noncircular polarization. This leads to an energy gain, com-
pared to a circularly polarized state, of order gfo. However, it
forces the pitch vector into either the y=0 or x=0 plane, i.e.,
Case (1) above. At low fields, these states have a free energy
that is larger by a term of O(gfo) than the states with the pitch
vector along a cubic diagonal, which requires a circular po-

H field—polarized FM
H field—
< polarized
PM

conical

H,[ -

pinned helical >

FIG. 7. Phase diagram of MnSi in the H-T plane showing the
predicted polarization transition at H., (first order, dashed line) in
addition to the second-order transitions at H.; and H,. The nature
of the transition from the conical phase to the A phase, or the A
phase to the paramagnetic phase, has not been investigated so far.
The dotted line denotes the crossover from a field-polarized para-
magnet to a field-polarized ferromagnet.
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larization. The competition between these two effects leads
to the first-order transition at H_;, where both the polariza-
tion and the orientation of the pitch vector change discon-
tinuously.

The preceding discussion pertains to the case b<<b,.’7 It
is worthwhile noting that the case b> b, is qualitatively dif-
ferent since the polarization is elliptical for any value of the
magnetic field, see the remark after Eq. (2.18). In this case,
the transition at H., is a realignment transition but not a
polarization transition.

4. Pinning of the A crystal and the NFL region

Experimentally, the A crystal is found to be pinned very
weakly, and theoretical considerations conclude that the pin-
ning potential is only of O(gSO).11 This is a consequence of
the sixfold rotation symmetry of the A crystal. Similarly one
expects the (average) direction of the fluctuating defect lines
in the NFL region to be pinned only very weakly.

F. Beyond classical mean-field theory

We have treated the phase transitions that we have dis-
cussed in this section within classical mean-field theory, and
the question arises what changes will result from the consid-
eration of fluctuations, classical or quantum. One example of
the effects of fluctuations is the tricritical point and the asso-
ciated tricritical wings shown in Fig. 3, which result from
quantum fluctuations that can be taken into account within a
renormalized mean-field theory.'*3* Elsewhere in the phase
diagram, fluctuations are also of qualitative importance. Con-
sider, for instance, the transition from the conical phase to
the field-polarized phase at the critical field H,, see Fig. 1.
The transition is characterized by the vanishing of the one-
dimensional order parameter m;, the amplitude of the helix,
see Eq. (2.6). The action is invariant under m; ——m,, and
we therefore expect this transition at nonzero temperature to
be in the universality class of the classical Ising model.3® At
zero temperature, the statics and the dynamics will
couple,’**? and one expects the quantum phase transition to
be described by Hertz’s model*’ with a scalar order param-
eter.

III. GOLDSTONE MODES

Goldstone’s theorem states that if a continuous symmetry
described by a Lie group G is spontaneously broken, with the
remaining subgroup in the broken-symmetry phase being H
(not to be confused with the magnetic field), then in the
ordered phase there are n soft or massless modes, with n
equal to the dimensionality of the coset space G/H.*! All of
the ordered states discussed in Sec. II break a continuous
symmetry, and therefore there must be one or more soft
modes in the ordered phase.* The number and functional
form of the Goldstone modes in the various phases can be
determined from general arguments. In this section, we will
do so, and we will augment these arguments by explicit cal-
culations in some cases where this is feasible. Via a coupling
to the conduction electrons, the Goldstone modes have inter-
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esting consequences for various observables; this is the topic
of Sec. IV.

A. O(ggo): Ferromagnons

To zeroth order in gy, the system is a ferromagnet, see
Sec. IT A. The relevant symmetry is the rotation group, G
=0(3), which in the ordered state is spontaneously broken to
H=0(2). Hence there are dim[O(3)/0(2)]=2 Goldstone
modes, the well-known ferromagnons (FM). Their dispersion
relation for small wave numbers is

with D the spin wave stiffness, which depends on the mag-
netization and vanishes as the magnetization goes to zero.

The easiest way to derive this result is to consider a non-
linear sigma-model version of the Heisenberg action.*! Ne-
glecting fluctuations of the amplitude of the magnetization,
which can be shown to be massive, one parameterizes the
order parameter

(%)
(%)
V1= 72(x)
and expands the action to bilinear order in 7 . If we neglect
the small relativistic term with coupling constant d in Eq.

(1.3), the resulting quadratic form has two identical eigen-
values

M(x) = m, (3.2)

N="ak? + H). (3.3)
For H=0, one has \(k— 0) — 0, which reflects the two Gold-
stone modes. Physically, the homogeneous transverse mag-
netic susceptibility diverges. This is the static manifestation
of the spontaneously broken continuous symmetry. Deter-
mining the dynamics requires an additional step. One either
needs to solve an appropriate Langevin equation within a
classical ~context,®® or treat the problem quantum
mechanically.*>*3 Either way one obtains Eq. (3.1) with D
o my.

B. O(ggo): Helimagnons

When the spin-orbit coupling is taken into account, we
have the various phases involving helical spin textures dis-
cussed in Sec. II A. For all of these phases the relevant sym-
metry is the translational one. Let T be the Lie group of
one-dimensional translations. Then the action is invariant un-
der G=TRTRT=T".

1. Symmetry arguments

Consider the ACS discussed in Sec. II B, from which the
unpinned helical phase emerges as a special case at H=0. T°
is broken down to 72 (translations in the two directions per-

pendicular to tj=ﬁ), so we expect one Goldstone mode. At
H=0, one expects the soft fluctuations in the ordered phase
to be phase fluctuations of the helix, and one might naively
expect them to be governed by an action S=[dx[V¢(x)]%,
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with ¢ the phase variable, which would lead to a soft eigen-
value proportional to k. However, the ordered state is also
invariant under rotations of ¢, which can be written as a
phase fluctuation with a nonvanishing gradient, so this can-
not be the correct answer. The lowest-order term allowed by
rotational symmetry that involves the gradients perpendicu-
lar to g is of the form (Viu)z, with u a generalized phase
variable, and this leads to an eigenvalue, or inverse order
parameter susceptibility, proportional to the term under the
square root in Eq. (1.1).* The dynamics again require addi-
tional considerations, which lead to a resonance frequency
that is proportional to the square root of the inverse suscep-
tibility, unlike the ferromagnetic case, and this is expressed
in Eq. (1.1).* These results were first obtained by means of
an explicit calculation for both classical and quantum heli-
magnets in Ref. 25.

A magnetic field breaks the rotational invariance, so a ki
term will be present in the dispersion relation. The prefactor
is expected to be analytic in H, and we thus expect for the
dispersion relation of this “conimagnon,” the Goldstone
model of the ACS,

wacs(k) = \'/c||kﬁ + Clki + Cikt (3.4)

with ¢/, o H2.

2. Model calculation

For the action to O(gfo), Egs. (2.6) and (2.7) constitute an
exact saddle-point solution, and we can perform an explicit
calculation of the Goldstone mode. A complete parameteriza-
tion of fluctuations about the saddle point can be written as

m(x)
M(x) =[mg + Sme(x)] (%)
V1 - 7 (x)
cos[qz + @o(x)]
my+omy(x) ]
—\’m sin[gz + @(x)] (3.5)

ih(x)

The first term is the nonlinear sigma model for the homoge-
neous magnetization from Sec. III A, and the second one
parameterizes fluctuations of the helix in terms of an ampli-
tude modulation, a phase ¢,, and a third component . The
amplitude fluctuations one expects to be massive, and an
explicit calculation confirms this, so we drop dm, and om;.
The field ¢(x) is conveniently written as

(x) = @, (x)cos(q - x) + ¢_(x)sin(g -x),  (3.6)
which ensure that ¢ and ¢, at zero wave number both cor-
respond to M at wave number g. Double counting is avoided
by restricting the theory to wave numbers small compared to
q. If we use Eq. (3.5) in the action to O(gfo), Egs. (1.3) and
(1.4a), and expand to bilinear order in the fluctuations

(¢1’¢2’¢3> ¢4»¢5)E((P0»(P+’ (P—57Tl’772)’ we obtain a
Gaussian action
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¢ 5
)= _E 2 ¢i(k) 7ij(k)¢j(— k).

A =
2uV7 i

(3.7)

A sketch of the derivation, and the explicit form of the ma-
trix 7, are given in Appendix B. Of the five eigenvalues, one
goes to zero for k— 0, in agreement with the expectation
from the symmetry arguments given above. It takes the form

N = ak? + B+ okt (3.8a)
with k=k/ g, and coefficients
=1, (3.8b)
o
B= m (3.8¢c)
5 1”3%(1 +1i1})* = g (1 +r?1‘1‘)+2ﬁ13ﬁ1%. (3.84)

2 (1+ M3 +mg)?

Here we have defined n%é’lzum%,l/aqz. This result is consis-
tent with Eq. (3.4). For H=0, which implies 71,=0, it re-
duces to the helimagnon result of Ref. 25. In addition, there
are four massive eigenvalues that appear in pairs. At zero
wave number, they are

Ny=N3 =N =i[ 1 +1ig + O(riig) ], (3.92)

Ny =Ny = N, =m[1 +ml]+ O(ig). (3.9b)

We recognize A, as representing the massive helimagnon
modes,” modified by the presence of m, and \ . as the mas-
sive (due to the presence of a magnetic field) ferromagnons,
Eq. (3.3), modified by the presence of m;.

C. O(ggo): Skyrmionic Goldstone modes in the A phase and
the NFL region

The helical states that have been proposed as candidates
for the A phase and were discussed in Sec. II C are not
saddle-point solutions of the action, which precludes a model
calculation of the Goldstone modes resulting from this type
of order.>* However, assuming that the order is stabilized by
some mechanism, the functional form of the soft modes can
still be determined by symmetry arguments analogous to
those put forward in the previous subsection.

Consider a skyrmion lattice state. The state described by
Eq. (2.9) is invariant only under translations in one direction,
viz., the direction perpendicular to the plane of helices. The
same is true for any state that is characterized by columnar
order so this property does not depend on the precise nature
of the skyrmions. Any such state will thus have dim(7°/T)
=2 Goldstone modes. This was to be expected. Since the
skyrmions form a two-dimensional lattice, there should be
two generalized phonon modes, namely, a compression mode
and a shear mode. In zero magnetic field, the energy would
still be invariant under global rotations of the skyrmion lat-
tice. Hence, the soft eigenvalue can have no ki contribution.
For H+# 0 this is no longer true, and we thus expect
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N=ak’ + B+ yi2, (3.10)
for the soft eigenvalue, with yx H?, and
wg (k) = \/chi + cékg + czkj, (3.11)

for the dispersion relation, with ¢, ,c,=0(1) and c] =O0(H?).

If the NFL region can be interpreted as a molten A crystal,
see Sec. II D then one of the two Goldstone modes, the com-
pression mode, will persist as long as their is columnar struc-
ture. This is analogous to the fact that longitudinal phonons,
or ordinary sound, exist in a liquid, whereas in a crystal one
has transverse phonons or shear modes in addition. The NFL
region extends to H=0, where the dispersion relation of the
compressional Goldstone mode is given by Eq. (3.11) with
c!=0 to first order in g,.

D. O(g?): Effects of the crystal-field terms
1. Symmetry arguments

Now consider the crystal-field terms in the action that first
appear at O(g?), Eq. (1.5a). For simplicity, let us consider
the term with coupling constant b. It breaks rotational invari-
ance, which invalidates the argument that leads to the ab-
sence of a ki term in the soft-mode resonance frequency.
The system must remain stable regardless of the sign of b,
and we thus expect for the dispersion relation of the helimag-
nons in the pinned helical state

opvk) = V/c”kﬁ + c'iki + clkt (3.12)

with ¢” o |b|, which replaces Eq. (1.1). For the more general
model given by Egs. (1.2) and (1.3), b,, v, and H will also
contribute to the elastic constant ¢’} .

2. Model calculation

We now check this expectation by means of an explicit
calculation. For the model with only the first of the crystal-

1 1
ak; + EbkzL ++ E(G +b)k’ /g

A=
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field terms present, we have an exact saddle-point solution,
namely,

M, (x) =m[€é, cos(q -x)+é_sin(g-x)] (3.13a)
with é,, é_, and q a dreibein,
my=\-rlu, (3.13b)
where
r=t-cq/2 (3.13c)
and
L1,1)3 if b<0
q= (LL Dy . (3.13d)
(1,0,0) if b>0,
c2(a+b/3) if b<0
q= . (3.13¢)
cl2a if b>0.

The parameterization of fluctuations about this state is given
by the second term in Eq. (3.5)

M(x) = (my + 6m,){é, cos[q - x + @y(x)]

+é_sin[q - x + @y(x)] + §i(x)} (3.14)

with ¢(x) given by Eq. (3.6). We again drop the massive
amplitude fluctuations and expand the action to quadratic
order in the phase fluctuations. The Gaussian action is of the
form

2

A )= S 0 )T 4k) opk).

(3.15)
2 k a=0,=

The explicit form of the matrix I' depends on the sign of b; it
is given explicitly in Appendix C. An inspection of the ei-
genvalues shows that in either case there is one eigenvalue A
that vanishes as k— 0 and hence represents the Goldstone
mode, as expected from the symmetry argument given
above. To order k and k' we find

if b>0,
(3.16)

2 1
(a+b/3)ki + §|b|k2L +5la+b+ O(gd)IK 14> if b <.

In the case b<0 we have neglected terms proportional to
b?=0(g?) in the prefactor of k% /¢ This result agrees with
the functional form obtained by symmetry arguments alone,
Eq. (3.1), and for h=0 it correctly reduces to the result for
the isotropic model, Ref. 25 and Eq. (1.1).

3. Generalized helimagnons

We can now summarize the results for the single-helix
phases discussed above as follows. In the helical and conical

phases, including pinning effects, there is a single Goldstone
mode with a resonance frequency

wy(k) = \/c“kﬁ +C k2 +c Kk (3.17)
with &, =O(H?,g2) small compared to ¢ and ¢, . This com-
prises Egs. (3.4) and (3.12). From our results we can also see
the crossover between the regimes where ¢, is dominated by
pinning and magnetic field effects, respectively. Equations
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(3.15), (3.16), and (3.7) imply that deep inside the ordered
phase ¢, is well represented by

« |b| + aH?*/H2,. (3.18)

Since H2, H22|b|/ a, see Egs. (2.7b) and (2.14b), it follows
that ¢ 1s dominated by pinning and magnetic field effects
for H<H_, and H> H_,, respectively.

4. A phase, and NFL region

In the A phase, pinning effects are weaker than in the
helical phase due to the hexagonal nature of the skyrmion
lattice, see Sec. I E4 above. When this weak pinning is
taken in to account, the Goldstone mode is thus given by Eq.
(3.11) with cé:O(gSO,HZ). While in MnSi the A phase is
observed only in an external magnetic field, there is no in-
trinsic reason why in some other system it could not be
stable in a zero field. The Goldstone modes in such a system
would be given by Eq. (3.11) with an extremely small c,. By
the same argument, in the NFL region at H=0 we expect a
Goldstone mode given by Eq. (3.11) with cé:O(gSD).

E. Summary of Goldstone modes and temperature regimes

To summarize, we have found that the (single) Goldstone
mode in the pinned helical and conical phases is given by
Eq. (3.17). In the pinned helical phase the parallel direction
is determined by the crystal-field effects that pin the helix; in
the conical phase, it is the direction of the magnetic field
(which we have chosen to be the z direction for all of our
considerations). The elastic constant ¢, is small compared to
the other elastic constants. In the pinned helical phase it is of
O(gqo) and in the conical phase it is of O(H?). By contrast, c;
and ¢, are of O(g,) and O(g2), and of O(H"), respectively.
In the A phase, there are two Goldstone modes whose dis-
persion relation is given by Eq. (3.11). The elastic constant
c! is small of O(H?) and O(ggo) compared to the others. In
the NFL region, the single Goldstone mode is also given by
Eq. (3.11), with ¢/=0(g’). Finally, in the perpendicular
conical state discussed in Appendix A there is a single Gold-
stone mode that in the absence of crystal-field effects is
given by Eq. (A3). If pinning by crystal-field terms is taken
into account there is an additional term c, k under the square
root, with ¢ —O(gso) All of these results are also summa-
rized in Table L.

The structures of the various Goldstone modes, and the
fact that the various elastic coefficients have very different
magnitudes, leads to the formation of different temperature
regimes that are dominated by different physics. We now
explain this using the generalized helimagnons, Eq. (3.17),
as an example; the argument for the other cases works analo-
gously. As far as the coupling of the magnetic Goldstone
mode to the electronic degrees of freedom is concerned, the
resonance frequency wy scales as the temperature, wy~ 7. If
we scale ky with 7/ \a and k, with \T/cl/4 we obtain

wolk) = TNIC +K2.& /T, +K*, (3.19)

where k now denotes the scaled, dimensionless, wave num-
ber. For T>¢ | /Vc, the symmetry-breaking k2l term is neg-
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ligible, and the Goldstone mode is effectively what it would
be in a rotationally invariant system. In this regime the phys-
ics is dominated by universal hydrodynamic effects that are
independent of the microscopic details of the solid and
analogous to the corresponding effects in liquid crystals. In
the opposite limit, 7<<¢, /\c |, the crystal-field effects due
to the underlying ionic lattice, or the external magnetic field,
if present, dominate and the Goldstone mode has the same
functional form as (anisotropic) acoustic phonons. Due to the
smallness of ¢, the universal hydrodynamic regime is siz-
able, and it is in this region that the most interesting effects
of the magnetic order manifest themselves in the electronic
properties of the system. This is true especially if the Gold-
stone mode appears in zero magnetic field and the pinning is
very small, such as in the NFL region or a (so far hypotheti-
cal) A phase in zero field.

We finally mention that the generalized helimagnon dis-
persion relation as given by Eq. (3.17) is valid only for wave
numbers k<<g. As a result, the anisotropy dominates the tem-
perature dependence of observables only for temperatures

T<T,=\eg, (3.20)

see Ref. 28. T, thus provides an upper bound for the univer-
sal hydrodynamic regime.

IV. EFFECTS OF GOLDSTONE MODES ON ELECTRONIC
PROPERTIES

Via a coupling to the conduction electrons, the Goldstone
modes derived in the preceding section influence the elec-
tronic properties of the helical magnet. In this section we
derive the consequences for the specific heat, the single-
particle relaxation rate, and the thermal and electrical resis-
tivities. In all cases we consider the contribution of the Gold-
stone mode in isolation; it comes in addition to all other
contributions to these observables, and the results given are
valid for T<T,, Eq. (3.20).

A. Specific heat

Any well-defined (i.e., not overdamped) excitation with a
dispersion relation w(k) yields a contribution to the specific
heat C given by

C(T) = ——2 w(k)nglwk)]. (4.1)

ITVS

Here ng(x)=1/[exp(x/T)—1] is the Bose distribution func-
tion, V is the system volume, and we use units such that 7
=kg=1. This allows one to determine the contributions to the
specific heat by the various Goldstone modes.

1. Generalized helimagnons

We first consider the helical and aligned conical phase.
The dispersion relation is given by Eq. (3.17). Performing
the integral in Eq. (4.1) yields

— . IO
T3Ne.e, if T<E, /e
C(T) = const X oL T (42)

2/ if T7>¢ e,
Ve,ep 1 ¢, /e .

The universal hydrodynamic result, C(T) T2, was first de-
rived in Ref. 28. It is subleading to, but distinct from, the
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TABLE 1. Properties of various ordered phases and the proposed state representing the non-Fermi-liquid region. Listed are the number
of Goldstone modes and their respective dispersion relations, as well as the temperature dependence of various observables. The elastic
constants ¢, ¢., and ¢, in the Goldstone modes for the pinned helical/conical phase, the A phase, and the PCS, respectively, are due to
crystal-field effects or an external magnetic field and are small compared to the other elastic constants. The universal hydrodynamic regime
is the temperature region where crystal-field effects are not important and these elastic constants can be neglected. It is bounded above by
T, see Eq. (3.20). The true asymptotic behavior as T—0 is dominated by the crystal-field effects and is realized only at very low
temperatures. In the presence of weak disorder, the regime dominated by crystal-field effects is bounded below as well as above and does not
represent the true asymptotic low-temperature regime. See the text for more information.

Pinned helical/

conical A phase (H||2) PCS* (H|Z,qlI%) NFLY
Goldstone wy(k) \/c”kﬁ+c~' Lki +c lkt \/cz'k§+czk?+ c lki V"c‘xk§+ czk§+c Lki V/cukﬁ+ c lki
modes No. 1 2 1 1
Universal hydrodynamic
regime 77 75?2 17
C(T) 7512
Crystal-field regime
(T—0) Al Al 752
Universal hydrodynamic
1/4(T) regime 732 12 732
Clean 77
Crystal-field regime
Ppu(T) (T—0) 7 s T
Universal hydrodynamic
regime 75?2 73 752
pei(T) T
Crystal-field regime
(T—0) 75 7’ &l
Universal hydrodynamic
Weak Spe(T) regime T 732 T -
disorder Crystal-field
Spu(T) regime® 77 77 77

“This phase, the perpendicular conical state, has not been experimentally observed so far.

The crystal-field effects are much smaller in the NFL region than in the ordered phases, see Secs. Il E 4 and III D 4. We results listed are
valid in the universal hydrodynamic regime, which is expected to extend to very low temperatures; the true asymptotic low-7 behavior is the
same as in the A phase, where the size of the 7— 0 region is determined by the external magnetic field.

“In the presence of quenched disorder this regime does not represent the true asymptotic 7— 0 behavior, which is characterized by diffusive
rather than ballistic electron dynamics, see the table caption and Eq. (4.13).

Fermi-liquid result C(T)=T+O(T? In T). At asymptotically B. Relaxation times and transport coefficients
low temperatures it crosses over to a T° behavior consistent
with the acoustic-phononlike dispersion relation in either the
pinned helical phase or the aligned conical phase at asymp-
totically small wave numbers.

The temperature dependence of the single-particle relax-
ation rate, as well as that of the electrical transport relaxation
rate or the electrical resistivity, can be obtained by using the
results of Refs. 29 and 30. The former paper obtained the

following expression for the single-particle relaxation rate,
2. A phase

In the skyrmion-lattice state we find from Eq. (3.11) in 1 — J‘ * Cdu 1 V'(p —kk.p:u) X _
conjunction with Eq. (4.1) (k) o Sinh(u/T) V%: (p —ksk.p;u) X du - w(p)].

(4.4)
Tlc el if T< cz’/\gZ

— (4.3) Here the quasiparticle momentum k is taken to be on the

C(T) = const X s v ;
I"Fleye,” if T>c/Ne,. one-Fermi surface, w,(k)=0, with

134427-13



HO et al.

1 —_—
w (k) = §[§k+q + & (g — &) +4N?], (4.52)

which is separated from the two-Fermi surface, w,(k)=0, by
twice the Stoner gap \. Here
G=&— € (4.5b)

with

=k*2m, +

sk + Kok + K2k) - (4.5¢)
F
an electronic energy-momentum relation consistent with a
cubic crystal. The dimensionless parameter v is a measure of
deviations from a nearly free-electron model. V" is the spec-

trum of an effective potential given by

1
V(k;p1.py) = va(k) ykp)¥-kpy)  (4.6a)

with vertices

~ q
yk.p) = k. + _[kJM +2(k, -p)p] [+ 0K,
8m\ k
(4.6b)
and y the soft-mode susceptibility,
2
q 1
x(k) = ——5 (4.6¢)

2Ng 3ki wi(k) — (i)

Here wy(k) is the resonance frequency, which is equal to the
frequency given in Eq. (3.4), (3.11), and (3.12), or (A3),
depending on the phase under consideration. The electrical
transport relaxation time, which determines the electrical re-
sistivity, is effectively given by averaging a similar expres-
sion over the Fermi surface,’°

L_ (7 dw 1 2 (- k)’

5 NeJ_.sinhwT) V253 i

el
XV'(p—k:k.p;u)du-w(p)ldwk)]. (4.7)

Note the additional, compared to Eq. (4.4), factor of (p
—k)? under the integral in Eq. (4.7). This is characteristic of
the description of electrical transport in a Boltzmann ap-
proximation and leads to a temperature dependence of the
electrical resistivity that is different from that of the single-
particle relaxation rate.*®%” In contrast, in a Boltzmann de-
scription of thermal transport this additional factor is absent,
and the temperature dependence of the thermal conductivity
is given by that of the single-particle relaxation rate.*’

We note that these expressions for 1/7(k) and 1/ 7, vanish
as ¢ — 0. While they give the leading asymptotic temperature
dependence for the relaxation rates in helimagnets, they
therefore cannot be used to obtain the corresponding results
in the ferromagnetic limit. The asymptotic low-7 behavior of
the rates in ferromagnets is qualitatively different and briefly
treated in Appendix D. In the context of helimagnets, for a
nonspherical Fermi surface [i.e., v# 0 in Eq. (4.5¢)], and for
generic wave vectors k, the temperature scaling behavior of
the single-particle relaxation rate 1/7=1/7(k), the thermal
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resistivity pg,, and the electrical resistivity p, can be repre-
sented schematically by the expressions

wy@)—p —pil
wo(p) '
(4.8a)

2 2
P tp
-~ dp, | dp’,
P ™ J ”f *sinh[wy(p)/T]

. 0> +pD)* Swolp)-p. - p|]
f dp"f smh[wo(p)/T] wo(p) '

(4.8b)

The resonance frequency always scales as the temperature,

~T, and the temperature dependence of the relaxation
rates thus is determined by how the momentum components
scale with temperature.

1. Generalized helimagnons

For the helical and conical phases we have, from Egq.
(3.17), py~T, and p, ~T and ~T"? at asymptotically low
and intermediate temperatures, respectively. This yields the
following temperature dependence for the single-particle re-
laxation rate and the thermal resistivity,

1 T it T<&, e, o)
— % py * ) _ .
. 2% if T> cl/\"E.
The corresponding result for the electrical resistivity is
T if T<E, e,
pa (4.10)

T2 if T /Ne,.

In a vanishing external field, and in a temperature regime
where pinning effects are not relevant, we recover the 7°/2
and T°? behavior for 1/7 and p,, respectively, of Refs. 28
and 30.

2. A phase
For a skyrmion lattice, we obtain by using Eq. (3.11)

1 T if T< cz'/\"'crZ
— X Py &~ 2 . , (411)
T " if T>c./Neg,
for the single-particle rate, and
T if T<c!/e.
Pe1 = (4.12)

T if T> /e,

for the electrical resistivity.

C. Systems with quenched disorder

The preceding results hold for clean systems. In the pres-
ence of quenched disorder, elastic scattering of the conduc-
tion electrons leads to profound effects that manifest them-
selves in the transport properties. One needs to distinguish
between the strong-disorder regime, where the transport is
diffusive, and the weak-disorder regime, where it is ballistic.
In a Fermi liquid, these two regimes are characterized by
Tr<1 and T7>1, respectively.*® In a helical magnet, the
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weak-disorder or ballistic regime is characterized by?%-3°

(ep7)*TIN> 1,

\ (4.13)

where 7 is the elastic relaxation time. In this regime there is
an additional contribution &(1/7) to the relaxation rates that
is qualitatively the same for both the single-particle rate and
the electron transport rate,*” and thus provides the tempera-
ture dependence of the corrections to both the electrical and
thermal resistivities. It was shown in Refs. 29 and 30 that,
for temperature scaling purposes, this contribution can be
represented by

8(1/7) < Opey * Spg ~ f dung(u/T) f dp,

1
X f dp’, o) L @] (4.14)

1. Generalized helimagnons

From Eq. (4.14) we see that at temperatures where pin-
ning effects are not important, generalized helimagnons lead
to 8(1/7) =T, a result first obtained in Ref. 30. At asymptoti-
cally low temperatures, characterized by T<<¢,/\c,, one
finds a 72 behavior. In the pinned helical phase the crossover
temperature between these two regimes is determined by the
strength of the crystal-field effects; in the conical phase the
magnetic field also cuts off the universal hydrodynamics T
behavior.

2. A phase
For the A phase, Eq. (3.11) yields

2 : ! r/_
" if T<c/Ne,

o(1/7) o
52 if T c!Ne,.

(4.15)

The pinning effects in the A phase are very weak due to the
hexagonal nature of the skyrmion lattice, with ¢, only of
0(g%), see Secs. IIE4 and NI D4. The size of the
asymptotic region is therefore likely to be dominated by the
H dependence of ¢]. Whether or not the universal hydrody-
namic T2 behavior is observable in the A phase (there cur-
rently are no experimental indications that it is) would re-
quire a detailed quantitative analysis that goes beyond the
scope of the current paper.

3. NFL region

The preceding result is also of interest with respect to the
non-Fermi-liquid region shown in Fig. 2, which is nor a
phase with long-range order, but where the electrical conduc-
tivity shows a pronounced 7% behavior.'”> An explanation
that has recently been proposed!® is as follows. The 7%/ be-
havior derived above is a consequence of the structure of the
Goldstone modes due to columnar fluctuations, Eq. (3.11), in
conjunction with weak quenched disorder. In the A phase,
which displays long-range order in the form of a skyrmion
lattice, there are two such Goldstone modes, see Sec. III C. If
the NFL region can be interpreted as a melted skyrmion lat-
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tice, then the resulting skyrmion fluid will still have one
Goldstone mode with the same structure, namely, the com-
pression mode mentioned in Sec. III C. Weak quenched dis-
order will then still produce a contribution to the electrical
resistivity, as well as to the single-particle relaxation rate,
that is proportional to 7%? in a preasymptotic region. The
NFL region is observed to extend to a vanishing external
magnetic field, so the low-T boundary of the universal hy-
drodynamic region is determined by the pinning effects,
which are very weak, see Secs. Il E4 and III D 4. The uni-
versal hydrodynamic 7% behavior is therefore expected to
extend to very low temperatures. A remaining question is the
size of the prefactor, which in a bare theory is expected to be
small due to the long length scale set by the skyrmion lattice.
The resolution proposed in Ref. 16 is that mode-mode cou-
pling effects drastically enhance the magnitude of the effect,
in analogy to what is believed to happen in the blue phases
of liquid crystals.%-52

V. SUMMARY AND CONCLUSION

In summary, we have given a comprehensive description
of all phases in Dzyaloshinsky-Moriya helical magnets
where long-range order has been observed. These include,
the pinned helical phase at weak magnetic fields, the conical
phase at higher magnetic fields, and the A phase at interme-
diate magnetic fields and temperatures close to the critical
temperature. We have shown that the system goes from the
conical phase at high magnetic field to the pinned helical
phase at low magnetic field via two distinct phase transitions;
a second-order transition where the orientation of the helix
changes smoothly, followed by a first-order transition where
both the orientation and the polarization of the helix change
discontinuously. For the A phase we have considered the
recent interpretation, based on the observation of a sixfold
symmetry in the neutron scattering signature, as a hexagonal
lattice of skyrmionic line defects. We have also discussed the
perpendicular conical state, which had been discussed earlier
as a possible realization of the A phase. In addition, we have
discussed a proposal for the interpretation of the NFL region
in the disordered phase, which does not display long-range
magnetic order but has many features in common with the A
phase. For all of these states we have determined the number
and nature of the Goldstone modes, and the temperature de-
pendencies of various observables that result from the scat-
tering of the conduction electrons by these excitations. If the
state in question can be described by an exact saddle-point
solution of a model Hamiltonian we have provided an ex-
plicit calculation; in other cases we have used symmetry ar-
guments to determine the functional form of the Goldstone
modes. The results are summarized in Table I. The Goldstone
modes show unusual anisotropic frequency-momentum rela-
tions that result from helical spin structures in the various
states and are reminiscent of the Goldstone modes in smectic
and cholesteric liquid crystals. The specific heat C(T), the
single-particle relaxation rate 1/7(T) and the thermal resis-
tivity py,(7), and the electrical resistivity py(7T), all display
temperature dependencies that are distinct from, and in some
cases stronger than, those in a Fermi liquid. The most re-
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FIG. 8. (Color online) Stabilization of the PCS by a large nega-
tive value of w. Shown are the regions of stability for various
phases for the action shown in Eq. (1.3) with a=1, d=0.025, u
=0.1, and w=-300.

markable result is a non-Fermi-liquid 7°> behavior of the
electrical resistivity in certain temperature regimes in the A
phase and in the NFL region, which is proposed as an expla-
nation of the observed enigmatic properties of the DM mag-
net MnSi.
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APPENDIX A: THE PERPENDICULAR CONICAL STATE

Guided by earlier experimental results that did not reveal
the sixfold symmetry discovered by Miihlbauer et al.,'" Grig-
oriev et al.'® had proposed a perpendicular conical state
(PCS) to represent the A phase, i.e., a spin configuration of
the form

M(x) = mOI:I+ my[é, cos(q-x)+é_sin(g-x)] (A1)

with ¢ perpendicular to H and é,, é_, and ¢ forming a
dreibein. This state is not a saddle point either, and Ref. 11
found it energetically unfavorable compared to the conical
and skyrmion lattice states. However, it can be stabilized, at
least, in principle, and we therefore include it in our discus-
sion. Reference 10 proposed that the PCS is stabilized due to
a gap in the helimagnon excitation spectrum, which in turn
had been proposed theoretically in Ref. 53. Such a gap is at
odds with Goldstone’s theorem as well as with the calcula-
tion in Ref. 25. A different possibility, which is consistent
with symmetry considerations, is a large negative value of
the parameter w in Eq. (1.3), which stabilizes the PCS in a
parameter regime close to where the A phase is observed, see
Fig. 8. While such a large value of w is not realistic, this
illustrates that the PCS can be stabilized by terms in the
action that are allowed by symmetry, and it therefore is use-
ful to determine the properties of this state.

Let us now consider the Goldstone modes in the PCS,
using the symmetry arguments explained in Sec. III A. For
definiteness, we assume that the ¢ vector points in the x
direction. The ordered state is still invariant under transla-
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tions in the y and z directions, so we have dim(73/7%)=1
Goldstone mode. With the magnetic field H in the z direc-
tion, the state is still invariant under rotations of ¢ in the x-y
plane. The eigenvalue therefore cannot have a ki term. The
soft eigenvalue therefore must have the form
2 4, 14 2

\ = ak; + B(k; + k) + vk, (A2)

where yo H? for small H. The structure of the dynamics will

be the same as in the aligned conical case, and we thus have
a dispersion relation

wpcs(K) = Ve &2+ cd +c | (ki + kD) (A3)
with ¢, H? and ¢, and ¢, constant for H— 0. Here we ne-
glect pinning effects, which lead to a kf term under the
square root at asymptotically low wave numbers.

For the specific heat contribution we find, from Egs. (4.1)
and (A3),

T°2/(c,c.)" 20114 if T<c./ \"Z
°Nee,  if T>cle,.
(A4)

C(T) = const X

This result is different from the one for the skyrmionic Gold-
stone mode in Sec. III C. Measurements of the specific heat
therefore offer a way to distinguish between these two states
short of a direct determination of the spin structure.

Using Eq. (A3) in an obvious generalization of Eq. (4.8)
we find for the single-particle relaxation rate and the thermal
resistivity

1 % if T<c/e,
-« Pth o< 3/2 - — (AS)
T " if T>c /ey,
and for the electrical resistivity
T if T<c/Ve,
Pe1 * (A6)

. f
% if T> c/Ncy.

APPENDIX B: GAUSSIAN FLUCTUATIONS IN THE
ALIGNED CONICAL PHASE

Here we derive the Gaussian fluctuation action in the
conical phase, Eq. (3.7). The equation of state for this phase,
Eqgs. (2.6) and (2.7), can be written as

t—aq2+u(m§+m%)=0 (B1)
with ¢ and m, given by Egs. (2.6b) and (2.6¢), respectively.
Inserting Eq. (3.10) into the action, Egs. (1.3) and (1.4a),

dropping the amplitude fluctuations dm, and dm;, and ex-
panding to bilinear order in the phases yields Eq. (3.7) with
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ik — ik, ik, 0 0
ik, rh%<1 + 102+ %18) — ik, 0 sigri
=1 it ik, mf(l e %122) Ly 0 : (B2)
0 0 A2 W+t + R 2imdk,
0 i’ 0 —2imdk, M1+ w2+ k)

A determination of the eigenvalues yields Egs. (3.8) and (3.9).

APPENDIX C: GAUSSIAN FLUCTUATIONS IN THE PINNED HELICAL PHASE

Here we derive the Gaussian fluctuation action in the pinned helical phase, Eq. (3.15). Dropping the amplitude fluctuations,
and expanding to linear order in the phase fluctuations, Eq. (3.14) becomes

M(x) = M,(x) + oM(x), (Cla)
with
M (x)=m{[-é_sin(q-x) +é, cos(q - x)]py(x) + § sin(q - x)p_(x) + § cos(q - x),(x) + O(go%)}. (C1b)

M, is an exact saddle point of the action, Eqgs. (1.2) and (1.3) with b;=v =0 so the terms linear in 6M vanish. We now consider
terms bilinear in ¢, , _ and first concentrate on the gradient-free terms. Neglecting rapidly fluctuating Fourier components
proportional to ¢4 with n=2 one finds

3
1 1 5 A
AP[eM)/m7 = EJ dx (%)) t+aq® — cq + umi + EbE giL(€)> + (89 [ @o(x)
i=1

3 3
1 1 .
+g J dx 2, @ox)[t+aq +umi +bg* 2 Gile.(x) = Tbq® | dx 2 28,4} ¢0(x)¢ax) + (gradient terms).

i=1 a== i=1
(C2)
An explicit calculation shows that
3
2 GE +(E=1- @), (C3a)
i=1
3
24 =1@) (C3b)
i=1
with
f@)=B1+ B+ B, (C3c)
where ) ,; are the direction cosines of 4. Furthermore,
3
> 2,(3)*=0 (C3d)

i=1

for a=+,— and for both §=(1,1, 1)/\6 and §=(1,0,0). Using the equation of state, Egs. (3.13b) and (3.13c), we see that the
@o-¢p vertex and the ¢y-¢, vertices all vanish. At zero wave number we thus have one zero eigenvalue that corresponds to one
Goldstone mode, in agreement with the expectation from Sec. III B 1.

We next calculate the gradient-squared terms. Geometric identities similar to those expressed in Eq. (C3) allow to determine
the vertices. One finds a Gaussian action of the form given by Eq. (3.15). For 5> 0, the matrix I" is given by
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1 1
ak? + —bk*

PHYSICAL REVIEW B 82, 134427 (2010)

1

5 - iECky - lECkx
1 T PR TN ,
I'k)= lzcky S¢d + Eak + Ebkz i(a+b)gk, (b>0). (C4)
k i(a+b)gk ! L+ Ly
- —cq+ —ak” + =
i—ck, i(a+b)gk, Scd+ 5d S bk

For <0, the matrix I" takes the form

Loolk) = (a + b/3)k>,
I‘I0+(k) = I‘I+()(k)*

11 \1 1
=il ¢+ =bq | =(k - 3k,) + —=b(k> - k),
1(26‘ 3 6]) \E( I z) 2\@ (x y)

Lo (k) =T (k)"

11 \1 1
=i| —c+—bq | =(k,—k,) = —=b(i + k} - 2k),
l(zc 3 q)\/i( X )) 2\’/8 (x y Z)

1 1
I, (k)=T__(k)= Sca+ E(a + b3k,

T, (k)=T_ (k)" =i(a+b3)gk, (b<0). (C5)

Calculating the eigenvalues one finds Eq. (3.16).

APPENDIX D: RELAXATION RATES IN FERROMAGNETS

In this appendix, we sketch how the expressions for the
single-particle and transport relaxation rates given in Sec.
IV B change in the ferromagnetic limit. A more thorough
discussion of this topic will be given elsewhere.>*

There are three major changes compared to Egs. (4.4) and
(4.7) that take place in the ferromagnetic limit. First, there is
no intra-Stoner-band scattering. This is because in a ferro-
magnet, the Goldstone mode is entirely transverse with re-
spect to the direction of the magnetization whereas in a he-
limagnet this is not the case.>® As a result, with k in Eq. (4.4)
on the one-Fermi surface, the resonance frequency inside the
delta function under the integral will be w,(p). Second, the
dimensionless vertex ¥, Eq. (4.6b), changes to unity. Techni-
cally, this is seen most easily within the formalism of Ref.
29. Physically, it reflects the fact that for intra-Stoner-band
scattering the magnetic fluctuations couple to the quasiparti-
cle density, and thus physically act akin to a chemical poten-
tial, only gradients of which contribute to scattering. For
inter-Stoner-band scattering, on the other hand, they physi-
cally act akin to an external magnetic field, and thus they
couple without gradients. Third, the form of the susceptibil-
ity x, Eq. (4.6¢), changes. It now reflects the ferromagnetic
magnons, and for power counting purposes it can be ad-
equately represented by

1
X' (k,u) = méfu — wpp(k)] (D1a)

with

wpp(k) = const X )\kz/k% (D1b)

the ferromagnon frequency. Putting all of this together, and
neglecting numerical prefactors, we obtain for the single-
particle scattering rate due to ferromagnetic magnons

1 A 1

0~ Ny V= sinh[ampyr] L2 *P) ~ orulp)]

(D2a)
and for the electrical transport rate
1 N1 p2lks
—=—=—> —F gk
7 Np V24 sinh[wpy(p)/T] Aok}
X dw,(k +p) — opy(p)]. (D2b)

Performing the integrals leads to the following results. For
the single-particle relaxation rate on the Fermi surface, or the
thermal resistivity, one finds
TeNGT if T<\Yé
1 3
e TIn(Te/\%) if N <T <\
T In(e/\?) if T> X\,

(D3)

where we have omitted numerical prefactors as well as less-
leading terms. For the electrical resistivity, the corresponding
result is
TOE)eN/aT if T<\/ek
Per * | T?/\ if N/ <T<\
T if T>\.

(D4)

We provide some brief comments regarding these results, a
more complete discussion will be given elsewhere.’* (1) The
energy scales A3/ e% and \ that lead to the three temperature
regimes shown above emerge within the bare (Stoner-level)
theory. It is not obvious how these scales become renormal-
ized, and one therefore has to be careful when making
quantitative comparisons with experiment. In particular,
within the bare theory the regime 7>\ is not realizable
since it implies 7> T; this may change within a fully renor-
malized theory. (2) The second result in Eq. (D4),
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1/ 7% T2/ \, reproduces the result of Ueda and Moriya.>® We
note, however, that this is not the true asymptotic low-
temperature result; it is valid only in a pre-asymptotic tem-
perature window. (3) The true asymptotic behavior for T

PHYSICAL REVIEW B 82, 134427 (2010)

— 0 is exponential, rather than power-law, in 7. This is due
to the Stoner splitting of the conduction electrons; this effect
was neglected in Ref. 56. In helimagnets the situation is
qualitatively different, see Sec. IV B.
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