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The effect of mutual drag between phonons and spin excitations on the thermal conductivity of a quantum
spin system is discussed. We derive general expression for the drag component of the thermal current using
Boltzmann equation as well as Kubo linear-response formalism to leading order in the spin-phonon coupling.
We demonstrate that aside from higher-order corrections which appear in the Kubo formalism both approaches
yield identical result for the drag thermal conductivity. We discuss the range of applicability of our result and
provide a generalization of our consideration to the cases of fermionic excitations and to anomalous forms of
boson-phonon coupling. Several asymptotic regimes of our findings relevant to realistic situations are
highlighted.
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I. INTRODUCTION

Transport phenomena form a prominent group of prob-
lems in condensed-matter physics. They provide a unique
information on the excitations and their interactions not ac-
cessible by other methods.1,2 Recently, thermal transport by
spin excitations in low-dimensional quantum magnets has
received significant attention due to very large heat conduc-
tivities found in a number of materials, for reviews see Refs.
3 and 4. One may speculate that thermal conductivity could
be used to probe elementary excitations in quantum magnets
in a fashion analogous to the use of electrical conductivity in
metals.

By now it is well established that integrable one-
dimensional �1D� quantum magnets allow for infinite heat
conductivity.4–6 Experimentally, however, many spin sys-
tems rather remote from integrability also demonstrate large
heat conductivities.3,7 Understanding the role of coupling of
the spin degrees of freedom to an environment, such as
phonons and impurities, could be essential in this context.
Phonons are ubiquitous heat carriers along with spin excita-
tions in all quantum magnets. Usually, interaction between
spins and phonons is discussed in the context of dissipation
of their respective currents. Significant progress has been
made here,8–10 yet, many questions remain open.

In this work we focus on one such question which is
rarely addressed: the off-diagonal effect of the flow of one of
the excitations facilitating the flow of the other.11–13 It is
referred to as “spin-phonon drag,” in analogy with electron-
phonon drag discussed in the thermoelectric phenomena in
metals and semiconductors.14–20

The second question we address in this work is the rela-
tion between two distinct theoretical approaches to transport
in a generic coupled two-component system, namely the qua-
siclassical Boltzmann transport theory and the Kubo linear-
response formalism. Such relations, while of fundamental
importance, remain unclear between many techniques21–30

devised in the past. For selected problems and techniques
such correspondence has been established rather firmly,15,31

but, to the best of our knowledge, the comparison discussed

in this work has not been performed previously.
Historically, the term phonon drag appears in two rather

distinct contexts. The first connotation is the negative effect
of phonons on the electrical conductivity by slowing down
electrons via processes that are different from the direct scat-
tering effects.17,18 The second, also referred to as the Gurev-
ich effect,1,19 is responsible for the dramatic deviation of the
thermopower in many materials from the predictions of the
“electron-only” theory.20 In its idealized version,1,19 the pho-
non drag results in a substantial heat flow due to adjustment
of the momentum distribution of phonons to that of the elec-
trons, the latter being displaced by the electric field.

In this work, the “thermal-only” analog of the Gurevich
effect for a generic spin-phonon problem is considered. In
this case, only the thermal current is of interest. In the stan-
dard electron-phonon problem, the thermal-only drag is dis-
carded traditionally. This is because the thermal conductivity
by phonons in metals can usually be neglected due to strong
scattering of phonons and the very large ratio of the Fermi to
sound velocity.1 However, this is not the case in several mag-
netic insulators of current interest3,7,32–35 where the magnetic
and lattice heat conductivity can be of the same order. There-
fore, the drag between spin excitations and phonons can be
an important phenomenon. We also note in passing, that in
contrast the previous electron-phonon problems the dimen-
sionality of the spin and the phonon system in magnetic in-
sulators can be different. Spin excitations may be confined to
chains, ladders, and planes. Thus, the focus of our study is on
the general problem of a two-component system and the drag
effect in the thermal conductivity.

While the spin-phonon problem is our main motivation,
we consider a generic model of bosonic quasiparticlelike ex-
citations, e.g., magnons, coupled to phonons. We derive the
contribution of the phonon drag to the thermal conductivity
in the lowest order of the boson-phonon coupling using
Kubo and Boltzmann formalisms. We demonstrate that both
approaches yield identical results for the drag component of
the thermal conductivity, thus establishing a direct corre-
spondence between these methods. We note that despite a
significant body of work on thermoelectric phenomena, such
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results have not been discussed within these two approaches.
While most of the work is devoted to bosonic spin exci-

tations, we have also generalized our consideration to the
case of fermionic excitations, as well as to the case of par-
ticle nonconserving boson-phonon interactions. The latter are
as common as the “normal,” particle-conserving ones and
occur, e.g., in the phases with broken symmetry. We also
note that using our expressions for the drag thermal conduc-
tivity we reproduce some of the results of the recent work,12

which considers spin-phonon drag in a particular class of
quantum magnets using the memory-function approach.

The paper is organized as follows. In Sec. II, we introduce
the model. Section III outlines the derivation of the drag
conductivity from the Boltzmann equation. In Section IV we
detail the Kubo diagrams for drag and elaborate on one ap-
proach to their evaluation. Section V extends the consider-
ation of the drag thermal conductivity onto fermionic excita-
tions as well as onto anomalous �particle-nonconserving�
boson-phonon coupling. In Sec. VI, we provide a qualitative
discussion of thermal drag for several representative cases
and asymptotic regimes. We conclude with Sec. VII. Several
Appendices are provided. In Appendix A, we detail more
technical points of the Boltzmann approach. Appendix B is
devoted to the evaluation of the Kubo diagrams for the drag
using an alternative approach. Finally, in Appendix C we
discuss some corrections beyond the Boltzmann results from
the Kubo diagrams.

II. MODEL

Spin systems can yield a wide variety of excitations, such
as spinons, magnons, triplet excitations, etc., depending on
the dimensionality, spin value, and geometry of the structural
arrangement. Because the focus of this work is on the drag
between spin excitations and phonons, we assume that both
of them are describable by well-defined quasiparticles. For
the spin excitations we assume energy dispersion �k and
some phenomenological intrinsic or extrinsic transport relax-
ation rate. This rate may include scattering caused by impu-
rities, spin-spin interaction, and other degrees of freedom.
The corresponding energy for phonons will be denoted by �p
and they are also assumed to have a finite relaxation rate. In
most of the paper, we assume the statistics of the spin exci-
tations to be that of bosons. Section V outlines the changes in
the drag conductivity which results if the choice of the sta-
tistics would be that of fermions.

The spin-phonon coupling occurs because lattice displace-
ments cause changes in the spin interactions and
anisotropies.36 Thus, the simplest, yet very general form of
the spin-phonon coupling is linear in the lattice displacement
and quadratic in the spin operators. After mapping spins onto
bosonic quasiparticles, the resultant lowest-order boson-
phonon coupling will generally contain the normal part,
which conserves the boson number,9 and the off-diagonal,
“anomalous” bosonic terms.36 Since the subsequent drag
conductivity derivation is conceptually identical for the nor-
mal and anomalous forms of interactions, we will postpone
consideration of the latter until Sec. V and will treat it in less
detail. Here and in the next two sections, we will concentrate
on the normal form of the coupling.

Altogether, the Hamiltonian implied for our subsequent
consideration is

H = Hb + Hph + Hb-ph, �1�

Hb = �
k

�kbk
†bk, Hph = �

p
�pap

†ap, �2�

Hb-ph = �
k,p

Vp;k,k−p
b-ph bk−p

† bk�ap
† + a−p� , �3�

where bk
�†� and ap

�†� are boson and phonon operators, and
V−p;k−p,k

b-ph = �Vp;k,k−p
b-ph �� due to hermiticity of Hb-ph, and we do

not specify interaction terms that result in the relaxation rates
of bosons and phonons. Note that, aside from a more general
momentum dependence, the boson-phonon interaction in Eq.
�3� is the same as the one in the electron-phonon coupling
case.

III. BOLTZMANN APPROACH

A. Thermal drag conductivity

Let us denote boson and phonon distribution functions as
fk and np, respectively. In Boltzmann’s approach the total
heat current is the sum of the currents from each of the
particle species,

jtot = �
k

vk�k�fk + �
p

up�p�np, �4�

where vk=��k /�k and up=��p /�p are the velocities, the
chemical potential is set to zero, and �fk and �np are the
nonequilibrium parts of the distribution functions of the
bosons and phonons, respectively.

The distribution functions are determined from the Boltz-
mann equations,

dfk

dt
= Stk

b�f ,n�,
dnp

dt
= Stp

ph�n, f� , �5�

where Stb�ph� are the collision integrals which include all pos-
sible scatterings for bosons �phonons�. These Boltzmann
equations are coupled because the boson-phonon interaction
in Eq. �3� yields terms in the collision integrals which de-
pend on both fk and np.

Assuming the system to be in a steady state under a small
uniform thermal gradient, we may linearize the Boltzmann
equations in �f and �n to find

�k

T

� fk
0

��
�vk · �T� = −

�fk

�k
b − �

p

�np

�p,k
ph→b , �6�

�p

T

�np
0

��
�up · �T� = −

�np

�p
ph − �

k

�fk

�k,p
b→ph , �7�

where fk
0 = �e�k/T−1�−1 and np

0 = �e�p/T−1�−1 are the equilib-
rium distribution functions and the collision integrals in the
right-hand sides are expanded in �f and �n and are consid-
ered in the relaxation-time approximation. The first terms on
the right-hand sides of Eqs. �6� and �7� are the usual diffu-
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sion terms, with 1 /�k
b and 1 /�p

ph being the transport relax-
ation rates of the bosons and phonons due to all possible
relaxation mechanisms, as discussed in Sec. II. The second
term on the right-hand side of the Boltzmann equation, Eq.
�6� for bosons with the momentum k is from the expansion
of the collision integral Stk

b�f ,n� in the phonon nonequilib-
rium distribution �np. Because of that it contains an integral
over the phonon momentum. The same is true for the phonon
Boltzmann equation, Eq. �7�. These latter terms arise solely
due to the boson-phonon coupling �Eq. �3�� and are due to
the nonequilibrium components of the particles of opposite
species. Therefore, it is natural to identify them with the drag
from one species of excitations onto the other. Below we are
going to explicate the relation of 1 /�p,k

ph→b and 1 /�k,p
b→ph with

Vp;k,k−p
b-ph through the boson-phonon collision integral but at

this stage we simply use them as a shorthand notations for
the “drag rates.”37

In general, Eqs. �6� and �7� reduce to integral equations
for �f and �n. However, we assume that the drag terms in
Eqs. �6� and �7� are small compared to the diffusion contri-
bution, i.e., the drag rates 1 /�ph→b and 1 /�b→ph are small
compared to the intrinsic boson and phonon rates 1 /�b and
1 /�ph. This is equivalent to treating the boson-phonon cou-
pling Vb-ph as a perturbation. In turn, one can solve Eqs. �6�
and �7� iteratively by using the diffusion-only components in
the integrals containing �n and �f . This corresponds to ne-
glecting the terms of order �Vb-ph�4 and higher. Within this
approximation, the total current in Eq. �4� is

jtot = jb + jph + jd,ph→b + jd,b→ph, �8�

where jb and jph are the usual, “diagonal” terms, and jd,ph→b
and jd,b→ph are the currents due to the drag of phonons on
bosons and vice versa. The total drag current can be written
as

jdrag
� = jd,ph→b

� + jd,b→ph
� = −

1

T
�
k,p

�k
b�p

ph�k�p

�� �np
0

��

vk
�up

�

�p,k
ph→b +

� fk
0

��

up
�vk

�

�k,p
b→ph���T , �9�

where � and � are vector components. Choosing the tem-
perature gradient in the x direction and assuming the conduc-
tivity tensor to be diagonal, we obtain the drag thermal con-
ductivity,

�drag =
1

T
�
k,p

�vk
x�k�k

b��up
x�p�p

ph�� �np
0

��

1

�p,k
ph→b +

� fk
0

��

1

�k,p
b→ph� .

�10�

The above analysis thus far has been independent of the mi-
croscopic form of the boson-phonon coupling.

B. Microscopic consideration

The drag rates 1 /�p,k
ph→b and 1 /�k,p

b→ph are obtained by tak-
ing variations in f and n in the corresponding functionals
St�f ,n�. We now detail the derivation of one of them. The
collision integral for phonons scattered off bosons via Eq. �3�
contains two terms: the first one increases the number of

phonons with momentum p, the second one reduces it. They
can be grouped together as

Stp
ph�n, f� = 2	�

k
�Vp;k,k−p

b-ph �2 · ���k − �k−p − �p�

��fk�fk−p + np + 1� − fk−pnp� . �11�

This is the complete expression of the phonon collision inte-
gral due to phonon-boson interaction �Eq. �3��. The subse-
quent linearization of Eq. �11� uses the condition
Stp

ph�f0 ,n0�	0. Writing f = f0+�f and n=n0+�n and neglect-
ing terms of order �f�n and ��f�2 yields the first and second
terms in the right-hand side of Eq. �7�. The first one is the
diffusion term while the second one is the drag term. In the
latter, for the terms containing �fk−p, we shift summation
over k→k+p so that �fk−p→�fk. After these manipulations,
the drag rate of bosons on phonons is given by

Stp
ph�n0, f0 + �f� 
 − �

k

�fk

�k,p
b-ph ,

1

�k,p
b→ph = − 2	��Vp;k,k−p

b-ph �2�fk−p
0 + np

0 + 1����k − �k−p − �p�

+ �Vp;k+p,k
b-ph �2�fk+p

0 − np
0� · ���k − �k+p + �p�� . �12�

Note that under p→−p, the second term in Eq. �12� changes
to �V−p;k−p,k

b-ph �2= �Vp;k,k−p
b-ph �2 and the phonon velocity changes its

sign, up→−u−p, see discussion after Eq. �3�. Using this sym-
metry we obtain a compact form for the component of the
thermal conductivity due to the drag of bosons on phonons,

�drag
b→ph = −

2	

T
�
k,p

�vk
x�k�k

b��up
x�p�p

ph��Vp;k,k−p
b-ph �2

�� � fk
0

��
�fk−p

0 + np
0 + 1����k − �k−p − �p� −

� fk
0

��
�fk−p

0

− np
0����k − �k−p + �p�� . �13�

The derivation of the drag rate 1 /�p,k
ph→b and of the drag con-

ductivity of phonon on bosons follows similar reasoning and
is presented in Appendix A 1. After some algebra one arrives
at the following statement:

�drag
b→ph 	 �drag

ph→b. �14�

This relation bears a simple and general physical meaning:
within linear response, the nonequilibrium component of one
species of particles causes the same drag on the other species
as the nonequilibrium component of the other causes on the
first one. That is, phonons drag bosons the same as bosons
drag phonons. Thus, the total contribution to the conductivity
is simply twice the contribution in Eq. �13�. In addition to the
algebra above, to obtain Eq. �14� we have used the following
identities between the combinations of the bosonic distribu-
tion functions and their derivatives:

�np
0

��
�fk−p

0 − fk
0� 	

� fk
0

��
�fk−p

0 + np
0 + 1���k−�k−p=�p

, �15�
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�np
0

��
�fk−p

0 − fk
0� 	

� fk
0

��
�fk−p

0 − np
0���k−p−�k=�p

, �16�

which can be obtained with the help of Stp
ph�f0 ,n0�	0.

Thus, within the Boltzmann formalism, the total drag
thermal conductivity, to leading order in the boson-phonon
coupling, is given by

�drag = −
4	

T
�
k,p

�vk
x�k�k

b��up
x�p�p

ph��Vp;k,k−p
b-ph �2

�� � fk
0

��
�fk−p

0 + np
0 + 1����k − �k−p − �p�

−
� fk

0

��
�fk−p

0 − np
0����k − �k−p + �p�� . �17�

This expression is the main result of this work. We would
like to note, that within the approximations discussed above
this result is valid for any type of scattering, impurity, bound-
ary, or Umklapp, all being implicitly incorporated in the
transport relaxation times of phonons and bosons. This ex-
pression also contains normal as well as the Umklapp boson-
phonon scattering. That is, the quasimomenta in Eq. �17� are
defined up to the reciprocal lattice vectors and the summa-
tion over the latter is assumed as usual.38

IV. KUBO APPROACH

A different theoretical approach to transport, alternative to
the Boltzmann equation, is the Kubo linear-response formal-
ism. The great advantage of this approach is its conceptual
clarity with regard to the definition of the drag thermal con-
ductivity. It is also very effective in classifying terms by their
respective order in the coupling constant as it contains them
explicitly.

In Kubo’s approach, the uniform part of the thermal con-
ductivity is obtained by taking the dc limit of the imaginary
part of the dynamical heat-current susceptibility 
��,15

��� = − lim
�→0

�

� + i0+Im�
���0,� + i0+�� , �18�

where � and � are the spatial directions and the susceptibility
is a sum of diagonal and off-diagonal terms,


�� = �
i,j=1,2


i,j
��, �19�

with the components


i,j
���q,� + i0+� = i�

0



��jqi
� �t�, j−qj

� �ei��+i0+�tdt , �20�

which contain the heat currents jqi
� . In this study, the long-

wavelength limit of the thermal current of bosons is given by

jq1 = �
k

�kvkbk+q
† bk, �21�

and the phonon one by

jq2 = �
p

�pupap+q
† ap, �22�

where the energies and velocities were defined previously in
Eqs. �2� and �4�. For the remainder of the paper the usual
limit of q=0 is implied for the currents, however q is kept
visible for clarity. Note that Eq. �18� is derived from the
linear response to the temperature gradient, which couples to
the total energy density. Therefore, apart from the bare heat
currents of Eqs. �21� and �22�, the interaction term in the
Hamiltonian �3� will also give rise to a contribution to the
thermal current. This current, labeled by j3,q, follows from
the continuity equation,

q · j3,q = �H,Hq� − q · �j1,q + j2,q� , �23�

where Hq=�re
−iq·rHr is the Fourier transform of a position-

dependent Hamiltonian energy density, H=�rHr. However,
j3,q does not constitute a contribution to thermal drag and we
will not consider the corresponding terms in this work.

We would like to emphasize that Eq. �18� refers only to
the dc limit and does not incorporate the Drude weight.4 The
latter is assumed to be zero henceforth. The diagonal �i= j�
components in Eq. �20� are the “usual” diffusion terms and
they do not contribute to the drag. Naturally, the drag is
given by the off-diagonal current-current correlation func-
tions, 
1,2 and 
2,1. Considering the boson-phonon coupling
Vp;k,k−p

b-ph in Eq. �3� as a perturbation, the lowest-order dia-
grams contributing to the drag are shown in Fig. 1. These
two diagrams are the only “drag” diagrams of the order
�Vb-ph�2 that contribute to 
1,2. The mirror reflection of these
diagrams with respect to a vertical line yields equivalent con-
tributions to 
2,1. This is, again, a graphical way of stating
that in the linear response the drag of phonons on bosons and
the one from bosons on phonons are identical. Thus, the total
drag conductivity is given by twice the value of the diagrams
in Fig. 1. The choice of the momenta in Fig. 1 is made to
keep all the momentum-dependent functions between the
two diagrams, such as energies and vertices, the same. Since
in the diagram A the phonon momentum is −p, its sign is
opposite due to the velocity in the current vertex. The ana-
lytical expression for the total drag thermal conductivity
given by Fig. 1 and its mirror reflection is

FIG. 1. Graphical representation of the lowest order, off-
diagonal current-current correlations contributing to boson-phonon
drag conductivity. Solid lines are bosons, wavy lines are phonons.
�’s are the auxiliary frequencies used in the spectral representation
approach.
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�drag = lim
�→0

� 2

T�
�
k,p

�vk
x�k��up

x�p��Vp;k,k−p
b-ph �2

�Im��A�k,p,� + i0+� − �B�k,p,� + i0+���
�24�

with

�A�k,p,i�� = T2 �
�1,�2

Gk�i� + i�1�Gk�i�1�

�Gk−p�i�1 + i�2�Ḡp�i�2 − i��Ḡp�i�2�
�25�

and

�B�k,p,i�� = T2 �
�1,�2

Gk�i� + i�1�Gk�i�1�

�Gk−p�i�1 − i�2�Ḡp�i�2 + i��Ḡp�i�2� ,

�26�

where Gk�i�� and Ḡp�i�� are the boson and phonon Green’s
functions, respectively.

To calculate the thermal conductivity, one needs to per-
form the frequency summations in Eqs. �25� and �26�. We
utilize two technical approaches for that: the first uses the
spectral representation for the Matsubara Green’s functions
and the second one uses integration along the branch cuts of

the Green’s functions.15 Below we elaborate on the use of the
first one while the branch cut integration approach is dis-
cussed in Appendix B.

Spectral representation approach

The spectral representation for the Matsubara Green’s
function is

Gk�i�n� = �
�

Ak���
i�n − �

, �27�

where the shorthand notation ��	�−
 d� /2	 and the follow-

ing relation of the spectral function to the retarded Green’s
function, Ak���=−2 Im Gk

R���, are used.
Below we calculate the contributions to the thermal con-

ductivity from the diagram A in Fig. 1, those from the dia-
gram B are discussed near the end of the section. Using the
spectral function representation �27�, and assigning auxiliary
frequencies according to the diagrams in Fig. 1, one can
rewrite �A as

�A�k,p,i�� = �
�1,. . .,�5

Ak��1�Ak��2�Ak−p��3�

� Āp��4�Āp��5� · �̄A�i�,�1. . .5� , �28�

where �1,. . .,5 stands for the five frequencies associated with
each individual line in Fig. 1�A�. The frequency summation

over �1 and �2 is now accumulated in �̄A, which is given by

�̄A�i�,�1,. . .,5� = T2 �
�1,�2

1

i�1 − �1
·

1

i�1 + i� − �2
·

1

i�1 + i�2 − �3
·

1

i�2 − �4
·

1

i�2 − i� − �5
. �29�

Performing Matsubara frequency summations in Eq. �29� we obtain

�̄A�i�,�1,. . .,5� =
1

i� + �1 − �2
·

1

i� + �5 − �4
� �n3 − n1��n3−1 − n5�

i� + �5 + �1 − �3
−

�n3 − n1��n3−1 − n4�
�4 + �1 − �3

+
�n3 − n2��n3−2 − n4�
− i� + �4 + �2 − �3

−
�n3 − n2��n3−2 − n5�

�5 + �2 − �3
� , �30�

where ni	n0��i� are the Bose distribution functions with the
corresponding energies and ni−j 	n0��i−� j�.

For the uniform, dc thermal conductivity �Eq. �24�� we
need to take the imaginary part and the �→0 limit of Eq.

�30�: Im �̄A�i�n→�+ i0+� at �→0, which splits naturally
into four terms

Im �̄A��� = �
m=1

4

Im �̄A
�m���� = Im�I�Re�II�Re��III��

+ Re�I�Im�II�Re��III�� + Re�I�Re�II�Im��III��

− Im�I�Im�II�Im��III�� , �31�

where I, II, and �III� are the first, second, and third factors of
the product in Eq. �30�, respectively, and �III� includes all the
terms inside the square bracket. In what follows, we refer to
the four contributions to the conductivity coming from the
four terms in Eq. �31� as to Im �A

�m�, m=1, . . . ,4.

Boltzmann terms

Here we explicitly evaluate the leading-order contribu-
tions to the thermal drag conductivity and show that the
Kubo approach yields the same answer as the one obtained
using Boltzmann equation. The discussion of the other, sub-
leading non-Boltzmann contributions is deferred to Appen-
dix C.
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We would like to assert that within the spectral represen-
tation calculation, the leading contributions are given only by

Im �̄A
�4� in Eq. �31�. The rest of the terms, Im �A

�1�, Im �A
�2�,

and Im �A
�3�, yield results that are subleading in the sense of

containing higher power of �’s, which is equivalent to having
higher-order terms in Vb-ph and other couplings.

Consider Im �̄A
�4� term where all three factors in Eq. �30�

contribute their imaginary parts,

Im �̄A
�4���� = 	3��� + �1 − �2���� + �5 − �4���n3 − n1��n3−1

− n5���� + �5 + �1 − �3� − �n3 − n2��n3−2

− n4����4 + �2 − �3 − ��� . �32�

In the low-frequency limit Eq. �32� reduces to

� Im �̄A
�4����

�
�

�=0
= 2	3���1 − �2����5 − �4�

��n3 − n1�
�n5

��
���5 + �1 − �3� . �33�

Substituting this into Eq. �28� and performing integrations
with delta functions, we obtain the leading contribution to
Im �A�k ,p ,��,

� Im �A
�4��k,p,��

�
�

�=0
=

1

4
�

�1

�Ak��1��2�
�5

�Āp��5��2Ak−p��1

+ �5��n1+5 − n1�
�n5

��
. �34�

We assume that bosons and phonons are well-defined quasi-
particles with frequency-independent imaginary parts of their
self-energies, rk and sp, such that rk�sp���k��p�. They are
also related to the relaxation times used in Sec. III as rk

−1

=2�k
b and sp

−1=2�p
ph, see Ref. 15. Thus, the spectral functions

of bosons and phonons can be approximated as Lorentzians,

Ak��1� =
2rk

��1 − �k�2 + rk
2 , �35�

Āp��5� =
2sp

��5 − �p�2 + sp
2 . �36�

Since the spectral functions �Eqs. �35� and �36�� are strongly
peaked at �k and �p, the main contributions in the integrals
in Eq. �34� are obtained at �1
�k and �5
�p. Identifying
distribution functions with that of phonons and bosons via
n��p�	np

0, n��k�= fk
0, and n��k−p�= fk−p

0 , finally yields,

� Im �A�k,p,��
�

�
�=0


 2	�k
b�p

ph�np
0

��
�fk−p

0 − fk
0�Ak−p��k + �p�


 2	�k
b�p

ph�np
0

��
�fk−p

0 − fk
0� · ���k + �p

− �k−p� , �37�

where in the last line we have approximated the Lorenzian
with the delta function and have neglected contributions
from �A

�1–3� terms. As we discuss in Appendix C, both ap-

proximation are of the same order and correspond to neglect-
ing terms that are subleading to Eq. �37�.

Repeating the same consideration for the diagram B in
Fig. 1 gives

� Im �B�k,p,��
�

�
�=0


 2	�k
b�p

ph�np
0

��
�fk−p

0 − fk
0�

����k − �p − �k−p� . �38�

Using the identities for the distribution functions in Eqs. �15�
and �16� and substituting Eqs. �37� and �38� into Eq. �24�
gives the Kubo answer for the drag component of the ther-
mal conductivity,

�drag = −
4	

T
�
k,p

�vk
x�k�k

b��up
x�p�p

ph��Vp;k,k−p
b-ph �2

�� � fk
0

��
�fk−p

0 + np
0 + 1����k − �k−p − �p�

−
� fk

0

��
�fk−p

0 − np
0����k − �k−p + �p�� . �39�

One can see that this is identical to the Boltzmann answer in
Eq. �17�. We discuss in Appendix C that the contributions
from the remaining terms Im �A

�m�, m=1, . . . ,3 and correc-
tions to Eq. �39� due to the broadening in the spectral func-
tions are of the order O��3� and, therefore, can be neglected.

One can check the consistency of the drag conductivity
expression in Eqs. �17� and �39� with the diagonal terms in
conductivity by assuming that the leading source of the re-
laxations defining both the spin and phonon transport relax-
ation times is the spin-phonon coupling in Eq. �3�. Then the
diagonal and the drag conductivities are all of the same order

in the spin-phonon coupling: �ph��b��drag�1 / �Ṽb-ph�2.
This also demonstrates that in the idealized case of free spin
excitations coupled to dissipationless phonons via a weak
coupling all conductivities should be of the same order in
that coupling.

We would like to emphasize again, that the identity be-
tween Eqs. �17� and �39� is rather remarkable as they are
derived starting from completely different physical formula-
tions.

V. FERMIONS AND OTHER

Here we generalize the analysis of this work onto two
additional cases. First, we assume the same form of the cou-
pling to phonons �Eq. �3��, but consider fermions instead of
bosons. This scenario is not only applicable to cases where
the spin algebra has been mapped onto fermions but is also
relevant to the thermal conductivity in metals and semicon-
ductors. The second generalization extends our drag consid-
eration on the case of anomalous bosonic terms in the boson-
phonon interaction. Such terms readily exist in the
interaction of phonons with magnons in the ordered antifer-
romagnets, as was discussed previously.36 They also exist for
triplet excitations in gapped, dimerized, and other phases.
The following derivations are based on the Boltzmann for-
malism only.
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A. Fermions

Coupling of fermionic excitations with phonons is, gener-
ally, of the same form as given in Eq. �3�. This is obviously
the case for the coupling of electrons with phonons, and is
also true for the XXZ spin chains when spins are represented
by the Jordan-Wigner fermions. The general expression for
the drag current will be still given by Eq. �9�, where �k is
replaced by �̃k=�k−�, the fermion energy relative to the
chemical potential, and the drag rates 1 /�ph→f and 1 /�f→ph

are determined by the corresponding collision integral in-
volving fermions and bosons, with f now representing the
fermion occupation number and fk

0 = �exp���k−�� /T�+1�−1

being the equilibrium Fermi-distribution function. One obvi-
ous difference for the probabilities is that a fermion with the
momentum k is created with the probability given by �1
− fk�. The derivation for the drag conductivity follows ex-
actly the same steps as those for the boson-phonon case con-
sidered in Sec. III. Useful identities for certain combinations
of f0 and n0, analogous to the ones in Eqs. �15� and �16�, are
listed in Appendix A 2. Taking into consideration the above
differences, we obtain the total drag conductivity,

�drag = −
4	

T
�
k,p

�vk
x �̃k�k

f ��up
x�p�p

ph��Vp;k,k−p
f-ph �2

�� � fk
0

��
�1 − fk−p

0 + np
0����k − �k−p − �p� +

� fk
0

��
�fk−p

0

+ np
0����k − �k−p + �p�� . �40�

To summarize, the phonon drag conductivity for the fermi-
onic case �Eq. �40�� takes the same form as for the bosonic
case �Eq. �17�� with two modifications: �i� fk−p

0 →−fk−p
0 and

�ii� �k→ �̃k=�k−�. Note that the second change should also
be made in the case of bosons if the chemical potential for
them is not zero.

We note, that the fermionic case of the drag discussed
here is different from the one traditionally considered in the
thermoelectric phenomena. As mentioned in Sec. I, for the
electron-phonon problem in metals, the thermal-only drag
effect is usually neglected because of the dominance of the
electronic thermal conductivity over the phonon one.1 This
is not the case in many low-dimensional quantum
magnets.3,7,32–35

Regarding potentially different outcomes of the drag ef-
fect for the fermionic systems �Eq. �40�� compared to the
bosonic ones �Eq. �17�� �Eq. �39��, we remark that the major
difference may arise due to the presence of the Fermi surface
in the former cases. It is known, that the normal and the
Umklapp scatterings contribute with opposite sign to the
drag conductivity, which is discussed as one of the reasons
for the suppression of the Gurevich effect in metals.1,16,20

Such an effect of Umklapp can be expected to be small at
low temperature for the bosonic case because all of the heat
carriers are at small momenta. For the fermionic case, on the
other hand, the effect of the Umklapp should be present,
similarly to the electron-phonon case. However, since the
fermionic representation of spins is restricted to 1D, signifi-

cant differences from the traditional three-dimensional �3D�
electron-phonon consideration may also occur. Any quantita-
tive statement on whether the drag will be more substantial
for magnetic excitations obeying bosonic or fermionic statis-
tics will depend on specific model calculations, which are
not the focus of this work.

B. Anomalous bosonic terms

Next we consider drag contributions in the phonon-boson
case due to anomalous terms of the kind

H = �
k,p

Ṽp;k,k−p
b-ph �b−k+p

† bk
†ap + H.c.� . �41�

These describe processes involving creation of two bosons
from a phonon and generation of a phonon due to the anni-
hilation of two bosons.

With the details of the algebra provided in Appendix A 3,
here we simply state that the approach described in Sec. III
yields the following result:

�drag = −
4	

T
�
k,p

�vk
x�k�k

f ��up
x�p�p

ph��Ṽp;k,k−p
b-ph �2

�
�nk

0

��
�1 + fk

0 + fk−p
0 ����k + �k−p − �p� . �42�

In the case when both the normal �Eq. �3�� and anomalous
�Eq. �41�� boson-phonon couplings are present, the leading
contribution to the drag thermal conductivity is the sum of
the results in Eqs. �17� and �42�.

VI. QUALITATIVE ESTIMATES

In this section we provide a qualitative discussion of vari-
ous asymptotic results that can be readily inferred from Eq.
�17� for several representative spin-phonon systems with the
goal of estimating when drag effects can be significant and
when they are not. The temperature dependence of the drag
thermal conductivity is determined by two factors: scattering
lifetimes and the occupation numbers of the excitations.

A. Boundary-limited regime

First, we would like to consider gapless spin excitations
with linear dispersion �k
v�k�, coupled to acoustic 3D
phonons, the situation relevant to a wide variety of antifer-
romagnets. For the low impurity concentration and at low
temperatures both phonon and boson mean-free paths can be
expected to be boundary limited, the case well documented
for Nd2CuO4.39 However, the heat carrying excitations will
be few in number and the drag conductivity has to go to zero
at low temperatures. A straightforward algebra in Eq. �17�
yields a power law: �drag�T�, with �=2+Ds+m, where Ds is
the dimensionality of the spin system and m depends on the
long-wavelength k and p dependence of the spin-phonon

coupling Ṽp;k,k−p
b-ph . In the case of Ds=3 �e.g., 3D magnons�

and assuming that the coupling follows the standard form

Ṽp;k,k�
b-ph

��pkk�, which corresponds to m=3, altogether gives

�drag
3D �T8. This should be compared with the diagonal ther-

THERMAL DRAG REVISITED: BOLTZMANN VERSUS KUBO PHYSICAL REVIEW B 82, 134421 �2010�

134421-7



mal conductivities in this regime �ph��b�T3. Thus, the
drag effect is, generally, subleading in the considered regime.

B. Gapped spin system

In another specific example let us consider a gapped spin
system at low enough temperatures so that the occupation
number of spin excitations is exponentially small: fk�e−�/T,
where � is the gap in the spectrum. In the case when the
relaxation within the spin system is only due to a weak cou-
pling to phonons whose relaxation rate is dominated by the

Umklapp processes, i.e., �p
ph�e�̃D/T, where �̃D is a fraction

of the Debye energy,14 our Eq. �17� naturally leads to �drag

�e��̃D−��/T. This result was obtained in Ref. 12 using the
memory-matrix approach.

C. High-temperature regime and disorder effects

Third, we consider the high-temperature limit, for either
gapped or gapless spin system, when temperature is higher
than both the Debye energy and the spin-excitation energy
scale, T��D ,J. Formally this case may raise questions re-
garding the transition into the disordered state, however is
fully analogous to the textbook consideration of the lattice
thermal conductivity at T��D.1 In fact. in this region qua-
siparticles can be considered as strongly damped. The rates
of the Umklapp scattering for spin excitations and phonons
are high and are proportional to the occupation numbers of a
“typical” boson or phonon, thus leading to �ph��b�1 /T.
The rest of the estimate in Eq. �17� is again straightforward,
giving �drag�1 /T. This should be compared to the diagonal
conductivities in this regime, which show the same
asymptotic behavior40 �ph��b�1 /T. This consideration,
combined with the low-temperature one, implies that the
drag conductivity should go through a maximum at interme-
diate temperatures, similar to the diagonal conductivities.

When the energy scales of the phonon and spin system are
well separated, as in the cuprate-based materials where J
��D, another asymptotic regime is possible, �D�T�J. In-
tuitively, the drag can be expected to diminish together with
the phonon conductivity ��ph�1 /T� because phonons are
sufficiently equilibrated by the phonon-phonon scattering.
However, the T dependence of the drag also depends on the
specifics of the relaxation within the spin system. Thus, no
definite conclusion on the prevalent behavior of the drag
conductivity in this regime can be drawn without identifying
such a relaxation.

The disorder dependence of the drag can also be consid-
ered using similar qualitative reasoning. If the disorder af-
fects both types of excitations on equal footing, so that �ph

��b�1 /nimp, where nimp is the impurity concentration, then
the drag conductivity diminishes as �drag�1 / �nimp�2. If the
disorder can be introduced selectively in one of the sub-
systems without significantly affecting the other, as in the
case of lattice disorder in the ladder cuprate system
Ca9La5Cu24O41,

7 the drag conductivity will be reduced to-
gether with the diagonal conductivity of the most affected
species of excitations.

Thus, intuitive conditions for maximizing the effect of
drag are the simultaneous presence of significant population

of spin excitations and phonons with long scattering times.
Since such conditions also imply large diagonal contribu-
tions of spins and phonons to the heat current, they are typi-
cally satisfied for temperatures that are low enough in com-
parison with either J or �D but are above the boundary-
limited regime. Note that the optimal regime for the phonon
drag in thermoelectric phenomenon is often quoted as T
��D /5.20 Such a regime can be of relevance to the recently
reported record-breaking thermal conductivity by spin exci-
tation in a high-purity 1D spin-chain material SrCuO2, Ref.
35, where a nearly ballistic propagation of spin excitations
was reported.

The issue of the separation of the drag component of the
thermal conductivity from the diagonal one may require a
series of doping experiments in which disorder is introduced
deliberately to suppress the conductivity of one of the spe-
cies and thus diminishing the drag as well.35

D. Qualitative estimate of the drag

Lastly, we would like to come back to the problem of the
gapless spin excitations with linear dispersion coupled to
phonons, the problem motivated by the 1D spin-chain and
2D layered cuprates where the spin excitations are fast and
the phonons are slow, J��D. Analogous to similar estimates
of the thermoelectric power,1 and without reference to a spe-
cific model, the following consideration is not intended to be
entirely rigorous, but rather is aimed at deriving an upper-
limit estimate of the thermal Gurevich effect.

Let us assume that the boson relaxation is due to impuri-
ties or some other extrinsic or intrinsic mechanism while
phonons are dissipationless, a consideration similar to the
electron-phonon drag problem.1 Such a scenario is also po-
tentially relevant to the 1D spin-chain materials in low-T
regime. Then, the spin-phonon coupling will provide both
the dissipation for phonons and the drag between phonons
and spin excitations. In the drag conductivity, the phonon

relaxation time ��ph�1 / �Ṽb-ph�2� enters together with the drag

rates �1 /�ph↔b� �Ṽb-ph�2�. As shown in Appendix A 4, one can
demonstrate that for quasiparticles with linear dispersions
and for k-independent boson relaxation time �k

b =�b the fol-
lowing simplification for the drag conductivity is possible for

an arbitrary form of the coupling Ṽp;k,k−p
b-ph :

�drag = −
u2v2�b

T
�
p

�np
0

��
�px�2 =

1

3
v2�bCph, �43�

where u and v are the phonon and boson velocities, and Cph
is the phonon specific heat. Since the diagonal conductivity
of bosons in this case is �b= 1

Ds
v2�bCb, where Ds is the di-

mensionality of the spin system, the ratio of the drag con-
ductivity to the boson one is independent of the scatterings
and is defined by the boson and phonon specific heats,

�drag

�b
=

Ds

3
·

Cph

Cb
. �44�

Since the population of phonons at a given temperature can
be much larger than that of bosons, the drag conductivity can
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significantly exceed the one by spin excitations. Similar ar-
gument is at the core of the original proposal by Gurevich for
the large thermoelectric effect in metals,1,19 where the rela-
tion �drag /�e=Cph /Ce also implies the same drift velocities
of phonons and electrons.

While the parallel and the similarity between the electron-
phonon drag and the thermal-only drag considered in the last
example are clear, they are not complete. The difference is in
the presence of another diagonal conductivity term in our

consideration, �ph�1 / �Ṽb-ph�2, which, in the limit of the small
spin-phonon coupling will dominate both �drag and �b.
Therefore, in general, the relation �44� does not imply the
equivalence of the drift velocities of phonons and spin exci-
tations.

VII. CONCLUSION

In this work we have considered a two-component system
of phonons and spin excitations and have obtained general
expression for the off-diagonal contribution to its thermal
conductivity in the lowest order of the spin-phonon coupling.
The off-diagonal contribution to the thermal current, referred
to as thermal drag, is an enhancement of the heat flux of one
of the species due to the flow of another and vice versa. We
have employed two distinct approaches, the Boltzmann for-
malism and the Kubo approach, to derive the spin-phonon
drag thermal conductivity and have established that both ap-
proaches yield identical results, Eqs. �17� and �39�. In addi-
tion, we have considered contributions to drag from anoma-
lous terms, which generally arise from the spin-phonon
coupling, e.g., in the symmetry broken phases as well as in
the gapped systems characterized by tripletlike excitations.
While we mainly focus on the drag between phonons and
bosonic spin excitations, we have also discussed the case
where the spin excitation’s statistics is fermionic.

To conclude, we have obtained an explicit expression for
the drag conductivity in the two-component system of
phonons and spin excitations under general assumptions on
the nature of interaction between them. This should allow for
the practical calculations of the drag effects in a number of
materials.
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APPENDIX A: DETAILS OF THE BOLTZMANN
APPROACH

In this appendix, we provide some further details of the
Boltzmann approach to the drag discussed in Secs. III and V.

1. Derivation of the drag rate of phonons on bosons

Here we derive the drag rate of phonons on bosons
1 /�p,k

ph→b in Eq. �6�. While not necessary, it is nevertheless
convenient to depict processes contributing to the collision
integral as “probability diagrams,” see Fig. 2. The collision
integral for bosons scattered off phonons via interaction �Eq.
�3�� contains four terms, see Fig. 2�a�: the first two increase
the number of bosons with momentum k the other two scat-
ter k bosons into a different state. They can be grouped to-
gether by energy conservation to yield,

Stk
b�f ,n� = 2	�

p
�Vp;k,k−p

b-ph �2��fk−pnp�fk + 1� − fk�np + 1��fk−p

+ 1�� � ���k − �k−p − �p� + �fk−p�n−p + 1��fk + 1�

− fkn−p�fk−p + 1�� � ���k − �k−p + �p�� �A1�

using V−p;k−p,k
b-ph = �Vp;k,k−p

b-ph �� discussed after Eq. �3�, writing
f = f0+�f and n=n0+�n and neglecting terms of order �f�n
and �f�f will yield the terms proportional to �f and �n
shown in Eq. �6�. Performing this procedure and using
�n−p=−�np yields the drag rate of phonons on bosons,

Stk
b�f0,n0 + �n� 
 − �

p

�np

�p,k
ph→b ,

1

�p,k
ph-b = − 2	�Vp;k,k−p

b-ph �2��fk−p
0 − fk

0����k − �k−p − �p� − �fk−p
0

− fk
0����k − �k−p + �p�� . �A2�

Substituting this into the thermal conductivity in Eq. �10�
and using relations �15� and �16� yields the thermal conduc-
tivity in Eqs. �14� and �17�.

The phonon collision integral discussed in Sec. III B is
shown in Fig. 2�b�.

2. Useful identities for the fermionic case

Identities similar to Eqs. �15� and �16� that are useful for
simplifying expressions for the thermal conductivity and for
relating its components to each other can also be obtained for
the fermion-phonon system. They are

�np
0

��
�fk−p

0 − fk
0� 	

� fk
0

��
�np

0 − fk−p
0 + 1���p=�k−�k−p

�A3�

(a) [ +kk−p

p

St [f,n]=k k−p k

−p

b

(b) [ ]−k k−p

p

St [n,f]=p kk−p

p

ph

]− −k k−p

−p

k k−p

p

FIG. 2. Graphical representation of the collision integral
terms.
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�np
0

��
�fk

0 − fk−p
0 � 	

� fk
0

��
�fk−p

0 + np
0���p=�k−p−�k

. �A4�

These identities help to see that both contribution to the drag
are equivalent.

3. Derivation of the drag rates for the anomalous boson-
phonon coupling

The derivation of the drag in the case of the anomalous
boson-phonon coupling is similar to the procedure detailed
in Sec. III and Appendix A 1. For the coupling in Eq. �41�
the scatterings describe the processes involving creation of
two bosons from a phonon and generation of a phonon due to
annihilation of two bosons. In that case the boson and the
phonon collision integrals are described by two similar prob-
ability diagrams, see Fig. 3.

The expression for the boson collision integral has the
following form:

Stk
b�f ,n� = 2	�

p
�Ṽp;k,k−p

b-ph �2 · ���k − �k−p − �p�

���1 + fk−p��1 + fk�np − fk−pfk�1 + np�� .

�A5�

Thus, the drag rate of phonons on bosons is

Stk
b�f0,n0 + �n� 
 − �

p

�np

�p,k
ph→b ,

1

�p,k
ph→b = − 2	�Ṽp;k,k−p

b-ph �2�1 + fk−p
0 + fk

0����k + �k−p − �p� .

�A6�

Similar consideration gives the phonon collision integral,

Stp
ph�n, f� = 	�

k
�Ṽp;k+p/2,k−p/2

b-ph �2��1 + np�fk−p/2fk+p/2 − np�1

+ fk−p/2��1 + fk+p/2�����k−p/2 + �k+p/2 − �p� ,

�A7�

where the factor of 2 has been removed to avoid double
counting of the final states and the symmetrized notations for
the momenta are used. The drag rate of bosons on phonons is
given by

Stk
ph�n0, f0 + �f� 
 − �

k

�fk

�k,p
b→ph ,

1

�k,p
b→ph = − 2	�Ṽp;k,k−p

b-ph �2�fk−p
0 − np

0����k + �k−p − �p� .

�A8�

After some algebra, the drag conductivity from bosons on
phonons and phonons on bosons turn out to be identical and
yield the total thermal conductivity of Eq. �42�.

4. Drag conductivity in a limiting case

Here we derive the thermal drag conductivity under two
main assumptions: the boson scattering times are indepen-
dent of the momentum and those of the phonons are deter-
mined entirely by its interaction with bosons. We consider
linear energy spectrum for both bosons and phonons which
are given by �k=v�k� and �p=u�p�, respectively. Thus the
drag conductivity of Eq. �17� reduces to,

�drag = −
4	u2v2�b

T
�
k,p

kxpx�p
ph�Vp;k,k−p

b-ph �2
�np

0

��
�fk−p

0 − fk
0�

�����k − �k−p − �p� − ���k − �k−p + �p�� . �A9�

The phonon scattering time in Eq. �A9� can be obtained from
the phonon-boson collision integral in a standard way, simi-
lar to the derivation of the drag rates in Appendix A 1. Such
a derivation yields,

1

�p
ph = 2	�

k
�Vp;k,k−p

b-ph �2�fk−p
0 − fk

0�����k − �k−p − �p� − ���k

− �k−p + �p�� . �A10�

We now rewrite the drag term in a compact form,

�drag =
1

3
v2�bC̄ph, �A11�

using the auxiliary function C̄ph, which is a “modified” pho-
non specific heat given by,

C̄ph = −
3

T
�
p

�np
0

��
�upx�2F�p� . �A12�

The k integration is now hidden in another auxiliary function
F�p�, which is given by

pxF�p� = 4	�p
ph�

k
kx�Vp;k,k−p

b-ph �2

��fk−p
0 − fk

0�����k − �k−p − �p�

− ���k − �k−p + �p�� . �A13�

Let us split the above expression into two terms

I1 = 4	�p
ph�

k
kx�Vp;k,k−p

b-ph �2�fk−p
0 − fk

0����k − �k−p − �p�

�A14�

and

[ ]−St [n,f]=p

[ ]−St [f,n]=k k

k−p

p k

k−p

p

k

k−p

pk

k−p

p

b

ph

FIG. 3. Graphical representation of the collision integrals for the
anomalous terms, Eq. �41�.
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I2 = − 4	�p
ph�

k
kx�Vp;k,k−p

b-ph �2�fk−p
0 − fk

0����k − �k−p + �p� .

�A15�

In I2 we make the change k−p→−k,

I2 = − 4	�p
ph�

k
�kx − px��Vp;p−k,−k

b-ph �2�fk−p
0 − fk

0����k − �k−p

− �p� , �A16�

Thus, C̄ph in Eq. �A12� is given by,

C̄ph = −
3u2

T
�
p

�np
0

��
px�I1 + I2�

= −
3u2

T
�
p

�np
0

��
�px�2�4	�p

ph�
k

�Vp;k,k−p
b-ph �2

��fk−p
0 − fk

0����k − �k−p − �p�� , �A17�

where we have utilized the relations �Vp;k,k−p
b-ph �2= �V−p;k−p,k

b-ph �2

and �p
ph=�−p

ph . Performing similar manipulations on �p
ph in Eq.

�A10� one can see that the k integral in �p
ph cancels exactly

the one in Eq. �A17�. Thus,

C̄ph = −
3u2

T
�
p

�np
0

��
�px�2 	 Cph, �A18�

where Cph is the phonon specific heat. This is a rather re-
markable result given the arbitrary form of boson-phonon
interaction. Thus, the thermal drag conductivity expressed in
terms of �b=v2�bCb /Ds is

�drag

�b
=

Ds

3
·

Cph

Cb
, �A19�

where Cb is the boson specific heat and Ds is the dimension-
ality of the spin system.

We find that C̄ph	Cph even for the scenario when 3D
phonons interact with 1D bosons. In this case, the 3D-
phonon momentum can be split into p=p� +p�, the part par-
allel to the 1D momentum of the boson k and the part per-
pendicular to it. Thus, the boson occupation numbers in the
3D-1D case change to �fk−p�

0 − fk
0� and the � function changes

to ���k−�k−p�
+�p�. The momentum transformation to be

used for this case is k−p�→−k.

APPENDIX B: BRANCH CUT INTEGRATION APPROACH

Here we derive the results of Sec. IV using a different
approach, namely, by converting the frequency summations
in Eqs. �25� and �26� to the problem of integration along the
branch cuts of the Green’s functions. In Sec. IV we have
analyzed in detail the diagram A in Fig. 1. Here we consider
the derivation for the diagram B. Carrying out the Matsubara
summation in Eq. �26�, obeying the location of the branch
cuts of the Green’s functions and using the shorthand nota-
tion �x=�−

+dx /2	 leads to

�B�k,p,i�� = 4�
x
�

y

n�x�n�y��− Im�Gk
R�y�Ḡp

R�x + y��

� Gk�y − i��Ḡp�x + y − i��Gk−p� �− x�

− Im�Gk
R�y�Ḡp

R�x + y��Gk�y + i��Ḡp�x + y

+ i��Gk−p� �− x�� �B1�

+ �Im�Gk
R�y�Gk−p

R �y − x��Gk�y − i��Ḡp�x − i��Ḡp��x�

+ Gk��y�Gk�y + i��Gk−p�y − x + i��Ḡp�x − i��Ḡp��x��
�B2�

�+ �Gk��y�Gk�y − i��Gk−p�y − x − i��Ḡp�x + i��Ḡp��x�

+ Im�Gk
R�y�Gk−p

R �y − x��Gk�y + i��Ḡp�x + i��Ḡp��x���
�B3�

=�B
a�k,p,i�� + �B

b+c�k,p,i�� , �B4�

where G
�−�

k
R�x�=Gk

�−�
�i�n→x+ i0+�=Gk�

�−�

�x�+ iGk�
�−�

�x� refers to the
retarded Green’s functions and their decomposition into real
� �� and imaginary � �� parts and n�¯ � is the Bose distribu-
tion function. The subscripts “a,” “b,” and “c” refer the con-
tributions to �B�k ,p , i�� which stem from the curly brackets
labeled by Eqs. �B1�–�B3�. For the dc heat conductivity we
need

�B�k,p� = lim
�→0

1

�
Im��B�k,p,i� → � + i0+�� . �B5�

We first take this limit focusing on �B
a . The variables of

integration can be substituted such as to express this limit in
terms of a derivative of the distribution function

�B
a�k,p� = 4�

x
�

y

n�x�
�n�y�

�y

��Im�Gk
R�y�Ḡp

R�x + y���2Gk−p� �− x�

	 4�
x
�

y

n�x�
�n�y�

�y
Ra�x,y,k,p� , �B6�

where the abbreviation Ra�x ,y ,k ,p� has been defined. A
similar substitution cannot be achieved for the contributions
from Eqs. �B2� and �B3�. Instead, we expand the Green’s
functions to lowest order in �,

�B
b+c�k,p� = 4�

x
�

y

n�x�n�y�
�

��
�Gk��y�Ḡp��x�

��Im�Gk
R�y + ��Gk−p

R �y − x + ��Ḡp
A�x − ���

− Im�Gk
R�y − ��Gk−p

R �y − x − ��Ḡp
A�x + ����

+ Ḡp��x�Im�Gk
R�y�Gk−p

R �y − x���Im�Gk
R�y

+ ��Ḡp
R�x + ��� − Im�Gk

R�y − ��Ḡp
R�x − �������=0
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	 4�
x
�

y

n�x�n�y�Rb+c�x,y,k,p� . �B7�

As in Eqs. �35� and �36� we introduce a phenomenological,
momentum-dependent one-particle self-energy for the
bosons �phonons�,

G�Ḡ��z,k� =
1

z − �k��k� + irk�sk�sgn�Im�z��
, �B8�

where � �-bracketed terms refer to phonons and z is complex.
Inserting this into Eq. �B6�, Ra�x ,y ,k ,p� turns into a rational
function

Ra�x,y,k,p� =
Pa�x,y,k,p�
Qa�x,y,k,p�

,

Pa�x,y,k,p� = − rk−p�rk�p�x + y� + sp�k�y��2,

Qa�x,y,k,p� = �sp
2 + �p�x + y�2�2�rk−p

2 + �k−p�− x�2��rk
2

+ �k�y�2�2, �B9�

where the abbreviations �k�x�=x−�k and �k�y�=y−�k are
used. Note that �k�x+y�=x+�k�y�. Similarly, in Eq. �B7�
Rb+c�x ,y ,k ,p� turns into

Rb+c�x,y,k,p� =
Pb+c�x,y,k,p�
Qb+c�x,y,k,p�

,

Pb+c�x,y,k,p� = 2sp�− 2rkrk−p��p�x�2 + sp
2��rk

2 + �k�y�2�

��rk−p��p�x�rk − sp�k�y�� − �rksp

+ �p�x��k�y���k−p�y − x�� + �rk−p
2 + �k−p�y

− x�2��− �rk − rk−p�sp��p�x�2 + sp
2��k�y��rk

2

+ �k�y�2� + �p�x�sp�− 2rk
4rk−p + rk

4sp

− rk
3rk−psp + rk

2sp�k�y�2 + 3rkrk−psp�k�y�2

+ 2rk−p�k�y�4 + 4rk�k�y��rk�rk + sp�

+ �k�y�2��k−p�y − x�� + �p�x�3rk�rk
3 − rk

2rk−p

+ 3rk−p�k�y�2 + rk�k�y���k�y� + 4�k−p�y

− x����� ,

Qb+c�x,y,k,p� = �sp
2 + �p

2�x��3�rk
2 + �k

2�y��3

��rk−p
2 + �k−p

2 �y − x��2. �B10�

�B
a�b+c��k ,p� will be evaluated assuming, as before, that the

bosons and phonons are quasiparticles with rk�sk���k��k�.
In that case, expressions valid to leading order in
rk�sk� /�k��k� for Eqs. �B6� and �B7� are obtained from the
residues of Ra�b+c��x ,y ,k ,p� alone, while assuming the dis-
tribution functions to be holomorphic and retaining only
their lowest-order nonvanishing derivatives. Moreover, any
imaginary part of the arguments of the distribution functions
arising in that process can be dropped. Since the poles of
Ra�b+c��x ,y ,k ,p� stem from quadratic equations at most, this
calculation can be done analytically. We emphasize that the

proper evaluation of the higher-order contributions in
rk�sk� /�k��k� to �B

a�b+c��k ,p� would require a treatment of
the pole structure of the Bose distribution functions and their
derivatives. Analytically this is not feasible given
Ra�b+c��x ,y ,k ,p�. This also implies that the “non-
Boltzmann” terms of Appendix C are not a systematic ac-
count of all next-leading order corrections. The leading-order
analytic calculation is tedious but straightforward. After
some algebra we arrive at

�B
a�k,p� = −

1

2rksp

�n��k�
��k

n�− �k−p�
�kp

��kp
2 + ekp

2 �
,

�B
b+c�k,p� =

1

2rksp

�n��k�
��k

n��p�
�kp

��kp
2 + ekp

2 �
, �B11�

where �kp=rk+rk−p+sp and ekp=�p−�k+�k−p. Thus, the
rightmost fraction in both expressions can be approximated
by 	���p−�k+�k−p�. The corresponding constraint �p
�k
−�k−p has also been used to rearrange the arguments of the
distribution functions in Eq. �B11�. Diagram A in Fig. 1 can
be obtained directly from the preceding derivation by rela-
beling �2→−�2 and by realizing that −i�n−�p
+ isp sgn�Im�−i�n��=−�i�n+�p+ isp sgn�Im�i�n���. That is,

A can be obtained from Eq. �B11� simply by using the sym-
metries: sp=s−p, �p→�−p, up

�=−u−p
� , and by replacing �p

→−�p. Since ���=�A
��+�B

�� and the total drag is �drag=�12
+�21, the final result is

�drag = −
4	

T
�
k,p

vk
x�kup

x�p�Vp;k,k−p
b-ph �2�k

b�p
ph

�� � fk
0

��k
�1 + fk−p

0 + np
0����k − �k−p − �p� −

� fk
0

��k
�fk−p

0

− np
0����k − �k−p + �p�� , �B12�

where we have renamed the Bose distribution functions with
arguments �k��k� to fk

0�nk
0�, as in Sec. IV. This result is iden-

tical to Eq. �39�. Thus, both technical approaches within the
Kubo formalism yield the same answer.

APPENDIX C: NON-BOLTZMANN CONTRIBUTIONS

In Sec. IV, we have discussed contributions from

Im �̄A
�4���� and showed that they lead to the results identical

to the ones from Boltzmann theory. In the following we will
discuss additional contributions to drag thermal conductivity

from the remaining terms of Eq. �31�, Im �̄A
�m����, m=1, 2,

and 3, which, however, are subleading and can be safely
neglected. Evaluation of these terms is rather cumbersome,

and for illustrative purposes we focus only on Im �̄A
�2����,

which is given by
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Im �̄A
�2��k,p,�� = −

1

2
�

�1

�
�2

�
�3

�
�5

Ak��1�Ak��2�Ak−p��3�Āp��5 + ��Āp��5�P
1

�1 − �2 + �

�P� �n3 − n1��n3−1 − n5�
� + �5 + �1 − �3

−
�n3 − n1��n3−1 − n5+��

� + �5 + �1 − �3
+

�n3 − n2��n3−2 − n5+��
�5 + �2 − �3

−
�n3 − n2��n3−2 − n5�

�5 + �2 − �3
� ,

�C1�

where P stands for the principal value. In the limit of zero frequency, �→0, we obtain,

� Im �̄A
�2��k,p,��

�
�

�=0
= �

�1

�
�2

�
�3

�
�5

Ak��1�Ak��2�Ak−p��3��Āp��5��2P
1

�1 − �2
P

�n1 − n3�
�1 + �5 − �3

�n5

��5
. �C2�

Using the spectral representation �35� one can easily perform integrations in �2. We further simplify the expression by
performing the �1 and �3 integrations on the terms containing n3 and n1, respectively, to obtain

� Im �̄A
�2��k,p,��

�
�

�=0
= �

�1

�
�5

Ak��1��Āp��5��2�1

2

y1

y1
2 + rk

2

�n1

��1
+ �1

2

�

�y1

y1

y1
2 + rk

2�n1� �n5

��5
− �

�3

�
�5

Ak−p��3�

��Āp��5��2�1

2

�

�y

y

y2 + rk
2�n3

�n5

��5
, �C3�

where y= ��k+�5−�3� and y1= ��1+�5−�k−p�. The contributions from all three terms in the above expression are of the same
order. Consider contributions from the first term which is given by

1

2
�

�1

�
�5

Ak��1��Āp��5��2 y1

y1
2 + rk

2

�n1

��1

�n5

��5



	

2

1

rksp

�np
0

��

� fk
0

��
· ��k + �p − �k−p� · ���k + �p − �k−p� . �C4�

It appears that this expression contains the factor of the type x ·��x�, which implies x	0. However, under strict consideration,
i.e., taking into account finite lifetime rk, x is nonzero and is of the same order as the “spread” of the � function �x�rk�. From
a direct comparison of Eq. �C4� with Eq. �37�, we conclude that contributions from Eq. �C4� are smaller by the factor
�rk��fk

0 /��� / fk
0��rk /�k�1. Thus, the thermal conductivity contributions from Eq. �C4� and from the rest of the terms of Eq.

�C3� can be neglected in comparison to the Boltzmann terms of Eq. �37�. For the similar reason it is justified to use the
delta-function form in Eq. �39� for the leading contributions because the broadening in the spectral function only yields a
subleading correction of higher order in rk�sp�.
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