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Harmonic and anharmonic properties of Fe and Ni: Thermal expansion, exchange-correlation
errors, and magnetism
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We have investigated the source of errors in ab initio calculations of thermal properties of the magnetic
metals Fe and Ni and their dependence on the form of the exchange and correlation functional. We used
density-functional theory and density-functional perturbation theory together with the quasiharmonic approxi-
mation to compute the coefficient of thermal expansion, bulk modulus and its pressure derivative, phonon
modes, and Grueneisen parameters of bcc Fe and fcc Ni. In nonmagnetic metals the main source of error in
calculated thermal properties can be attributed to evaluation of properties at incorrect lattice constants, which
in turn may be traced to the choice of exchange and correlation functional. However, for magnetic metals the
properties may be evaluated at both incorrect lattice constant and incorrect magnetic moment. This affects
vibrational properties so that it is no longer true that anharmonic errors are significantly less than errors at

harmonic order.
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I. INTRODUCTION

The development of density-functional theory (DFT) has
enabled the calculation of crystal properties from first prin-
ciples. Though, in principle, such calculations could be ex-
act, the precise form of the exchange and correlation (XC)
interaction between electrons is not known. Therefore, in
practice, the accuracy of any DFT calculation depends on the
choice of XC functional used. It has been suggested' that
such XC errors may be expected to increase with tempera-
ture, and thus may contribute significantly to errors in com-
puted thermodynamic properties. There are other sources of
possible error at finite temperatures: due to the presence of
phonon-phonon interactions, the lattice constant of a crystal
changes with temperature. This anharmonic effect is fre-
quently treated within the quasiharmonic approximation,>?
whose validity may break down at high temperatures. Fi-
nally, in magnetic materials, there are additional effects due
to the disordering of magnetic moments as temperature is
increased; the effects of this are not well understood and are
difficult to treat theoretically. In this paper, we attempt to
investigate the systematics of the errors introduced by these
factors in the calculated thermal properties of the ferromag-
netic metals Fe and Ni.

The two most commonly used forms of the XC functional
are the local (spin)-density approximation or L(S)DA and the
generalized gradient approximation (GGA). (In the rest of
this paper, when we refer to the LDA or GGA, we will im-
plicitly be referring to their spin polarized versions.) They
have been widely tested and found to give good results in
many systems. However, it is often hard to decide, before-
hand, which of these two functionals may be expected to
perform better in a given situation. The LDA usually
overbinds, leading (most of the time) to lattice constants that
are too small, while the GGA leads frequently (but not al-
ways) to lattice constants that are too high.
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There have been few studies of the implications and
variation in this over/underbinding as a function of tempera-
ture. In a study of the thermal properties of copper, Narasim-
han and de Gironcoli speculated that computational errors in
a variety of measurable thermal properties may be traced
back to the error made in computing the equilibrium lattice
parameter at zero temperature, ay(0). One consequence of
this is that the XC errors in calculated anharmonic properties
are considerably less than in the corresponding harmonic
properties. Another consequence of this is that the un-
der(over)estimation of a,(0) by the LDA (GGA) leads to a
value of the bulk modulus, B(0), that is too high (low). The
combination of these two effects results in too low (high) a
value for the coefficient of thermal expansion, «(7). Thus, a
low (high) ao(T) may be expected to always be accompanied
by a low (high) «(7), leading to an increasing error in ay(7)
and other quantities dependent on this, as the temperature is
increased. The authors suggested that these features may
hold true for a wide variety of materials.

In recent work, Grabowski e al.* have demonstrated that
these arguments are applicable to other metals: in addition to
Cu, they have studied the nonmagnetic face-centered-cubic
(fcc) metals Al, Pb, Ag, Au, Pd, Pt, Rd, and Ir. In most cases,
they found that the LDA (GGA) does indeed find lattice
constants that are too small (large) and bulk moduli that are
too high (low), at zero temperature. The exceptions are Pt
and Au, where the LDA gets the lattice constant almost ex-
actly right. Similarly, in most cases the LDA (GGA) finds
phonon frequencies that are higher (lower) than experiment.
An examination of their data also reveals that AB, the dis-
crepancy between the LDA and GGA values of By, a har-
monic quantity, is much larger than AB(, the discrepancy
between the LDA and GGA values of the corresponding an-
harmonic quantity, the pressure derivative of the bulk modu-
lus, Bj. ABy is typically an order of magnitude smaller than
AB,. Their results for a(7) are also in keeping with the
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trends predicted by Narasimhan and de Gironcoli: (i) in most
cases the LDA (GGA) gives values of a(T) that are too low
(high), (ii) for Pt, where the LDA gets a, exactly correct, it
also gets «(T) in agreement with experiment, and (iii) for
Au, where LDA gets a, very slightly too large, it slightly
overestimates a(7), while the GGA error in «a(7T) is consid-
erably larger.

This line of investigation has thus far been limited to non-
magnetic metals. In the present work we examine the case of
two elemental ferromagnetic materials, body-centered-cubic
(bcc) Fe and fcc Ni, to determine whether the same trends
are present and to illuminate the effects of magnetic order on
the calculation of thermal properties. Specifically, we want to
know if the relative accuracy of harmonic and anharmonic
properties, as calculated with GGA and LDA, may be pre-
dicted by the accuracy of the zero temperature lattice param-
eter. The presence of magnetic moments complicates the
situation by increasing the dimensionality of the phase space
in which minima of the (free) energy landscape have to be
determined, i.e., the equilibrium structure now corresponds
to a minimum with respect to both coordinate and spin de-
grees of freedom. Moreover, there can be a significant inter-
play between the degrees of freedom corresponding to spins
and lattice parameters. It is well known that larger lattice
constants promote an increased degree of spin polarization,
and that the presence of ferromagnetism tends to favor an
expansion of the lattice. Finite temperature properties also
depend on the behavior of phonons, and it has been demon-
strated recently that there can be strong interactions between
phonons and magnetism.>’

An improved understanding of the sources and magni-
tudes of errors in the thermodynamic properties of magnetic
materials could conceivably play a role in resolving several
long-standing puzzles of scientific and technological interest,
such as the debate over the properties of the earth’s magnetic
core, or the precise origin of the Invar effect in the thermal
expansion of magnetic alloys.®?

II. METHODS

The quasiharmonic approximation separates the free en-
ergy into a static and a dynamic part. In order to evaluate
these, we use DFT and density-functional perturbation theory
(DFPT) as implemented in the PWSCF and PHONON packages
of the QUANTUM ESPRESSO distribution.!® The calculations
are carried out making use of the spin-polarized (SP) form of
the Kohn-Sham equations. Unless otherwise mentioned, the
magnetic moment is allowed to vary freely so as to minimize
the total energy; some calculations to extract trends are how-
ever carried out using the constrained moment approach. We
use ultrasoft pseudopotentials (USPPs) and a plane-wave ba-
sis with a kinetic-energy cutoff of 25 Ry for Fe and 40 Ry for
Ni, along with increased cutoffs of 200 Ry and 320 Ry, re-
spectively, for the augmentation charges associated with the
USPPs. For the LDA we use the Perdew-Zunger form!! and
for the GGA we use the form given by Perdew, Burke, and
Ernzerhof,'? with nonlinear core corrections in both cases.!3
Brillouin zone (BZ) integrations involved in computing the
total (static) energy E,,, are performed with 10X 10X 10
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and 6 X 6 X 6 Monkhorst-Pack meshes for bcc Fe and fcc Ni,
respectively, along with a Methfessel-Paxton smearing
scheme with widths of 0.02 Ry and 0.01 Ry. All these pa-
rameters have been chosen so as to ensure that the values of
ag, By, B, and phonon frequencies are well converged.

In order to compute properties at finite temperatures using
the quasiharmonic approximation, one needs to know how
the vibrational frequencies wg, vary with lattice constant a;
here q denotes the phonon wave vector, and \ the phonon
branch. DFPT calculations are carried out for a number of
values of a, and for values of q corresponding to a 4 X4
X 4 Monkhorst-Pack grid in the first BZ. Phonon frequencies
at other values of q are then obtained by Fourier interpola-
tion, and at other (intermediate) values of a by a three-point
interpolation formula. All vibrational properties that involve
a sum over the BZ are evaluated using interpolated values on
a finer 10 X 10X 10 grid. The free energy at temperature 7
and lattice constant a is then given by

F(a,T)=E,,(a) + kzT>, ln{Z sinh[ M] } . (1)
Y kT

Here, the second term on the right-hand side is the vibra-
tional free energy; in the present work, we neglect the con-
tribution from the electronic free energy, as it is expected to
be small. The sum is over all three phonon branches A\ and
over all wave vectors q in the BZ, # is the Planck constant
and kp is the Boltzmann constant. By fitting the Murnaghan
equation of state (EOS) (Ref. 14) to F(a,T) at a given tem-
perature, we obtain the equilibrium lattice parameter a,, bulk
modulus By, and pressure derivative of the bulk modulus B,
all as functions of temperature 7. Once the temperature de-
pendence of the lattice constant is known, one can then also
compute how phonon frequencies (w) and mode Grueneisen
parameters (y) vary with temperature [through their depen-
dence on ay(T)], as well as the coefficient of thermal expan-
sion a(T).

III. RESULTS AND DISCUSSION

A. Results at room temperature

In Table I, we give the calculated values at a temperature
T=300 K, of ay, By, B\(T), «, Yavg» @avg> and m. Here, avg
indicates an averaging over all wave vectors q and branches
\, weighted by Bose-Einstein occupation factors. The corre-
sponding experimental values, where available, are also
given. Note that, for both Fe and Ni, the GGA value for a,
lies very close to the experimental value while LDA under-
estimates the lattice constant: by 3.8% for Fe and by 2.6%
for Ni. This behavior is quite different from that seen for the
other metals mentioned in Sec. I, where the experimental
value of aq lies either sandwiched between the LDA and
GGA values or, in the case of Au and Pt, very close to the
LDA value. If the arguments mentioned in Sec. I apply to
these ferromagnetic metals, one would expect that the GGA,
having more accurately predicted a, should perform consid-
erably better than the LDA in evaluating the elastic and ther-
mal properties as well.

Comparing calculated and experimental values for both
Fe and Ni (see Table I), we find significantly smaller errors
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TABLE I. Calculated and experimental values, at room temperature, of the equilibrium lattice parameter
ag, bulk modulus B, pressure derivative of the bulk modulus B('), the coefficient of thermal expansion «,
average phonon frequency w,,,, average Grueneisen parameter 7,,, and magnetization for Fe and both spin
polarized (SP) and nonspin polarized (NSP) Ni. NSP values are not given for Fe due to unstable phonon

modes in nonmagnetic bcc Fe. Experimental values are from Refs. 15-18.

ag By Wy m
(A) (GPa) B), ax107° (ecm™) Yavg (up/ atom)
Fe
LDA 2.76 213 5.59 7.39 222 1.28 2.07
GGA 2.87 142 4.8 11.6 209 1.88 2.44
Expt. 2.87 168 5.29 11.6 2.22
Ni, SP
LDA 3.43 230 5.47 10.0 210 1.90 0.512
GGA 3.54 177 5.27 11.8 190 191 0.69
Expt. 3.52 186 52 12.7 0.61
Ni, NSP
LDA 3.43 238 5.08 10.5
GGA 3.53 186 5.57 12.0

4Reference 19.

in By and « with GGA than LDA. This is not true for B(');
however, experimental values for this quantity typically in-
volve rather large error bars and so the comparison may be
less meaningful.

The LDA and GGA values of magnetization m(0) are
also found to differ significantly. For Fe, the experimental
value of 2.22 up per atom lies sandwiched between the
LDA and GGA values of 2.07 wp and 2.44 up, respectively.
Similarly, for Ni, the LDA and GGA values are 0.51 ug and
0.69 up, respectively,!” while the experimental value is
0.61 wup.

We now consider the discrepancy between LDA and GGA
values of the calculated properties, denoted by A. For Fe,
ABy is 40%, which is indeed larger (though not by an order
of magnitude) than the value of 15% for AB. For Ni the
value of ABy=26% is much larger than AB{=3.7%. Thus,
the trend exhibited by the nonmagnetic metals, where the
discrepancies in all anharmonic quantities are considerably
less than the discrepancies in the corresponding harmonic
quantities, still holds for the magnetic metals, though to a
lesser extent.

Finally, we look for this trend in comparison of Aw,,,, a
harmonic quantity, with Ay,,,, the corresponding anhar-
monic quantity. For Fe, the former has a value of 6%, which
is much less than the value of 38% for the latter, and so the
trend is reversed. However, we find that it holds for Ni in
which Aw,,,=10% and Avy,,,=0.5%.

Some insight into the reasons why these magnetic metals
behave so differently from the nonmagnetic metals can be
obtained from looking at the plots of phonon frequencies and
Grueneisen parameters. For the nonmagnetic metals, the pri-
mary effect upon going from the LDA to the GGA is an
increase in lattice constant and a corresponding decrease in
force constants, which scale inversely as a high (8-10)

power of bond lengths.??! As a result, the GGA graphs of
phonon dispersion curves look essentially like a scaled ver-
sion of the LDA curves. However, this is not true for mag-
netic metals, especially not for Fe. In Fig. 1, we show the
phonon dispersion curves along high-symmetry directions in
the BZ for bec Fe; our results are very similar to those ob-
tained by previous authors.?® It can be seen that the shape of
the LDA and GGA curves is quite different, especially in the
neighborhood of the N and H points due to the complicating
factor of magnetic moments. This becomes even more evi-
dent upon examining Fig. 2, which shows the LDA and GGA
values of the mode Grueneisen parameters 7y through the BZ.
The LDA and GGA curves bear very little resemblance to
each other. It is important to note that even in areas of the BZ
where the LDA and GGA phonon dispersion curves appear

400

300 i

§ 200+

100 —

0 -
H P T

FIG. 1. Phonon dispersion for SP bce Fe at room temperature,
along high-symmetry directions. The dashed and solid curves rep-
resent LDA and GGA results, respectively. The dots are experimen-
tal points from Ref. 22.
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FIG. 2. Calculated Grueneisen parameters of SP Fe at room
temperature. The gray and black curves represent LDA and GGA
results, respectively.

qualitatively similar (for example, between P and I', N and P,
or N and I') the mode Grueneisen parameters differ dramati-
cally for the LDA and GGA, indicating that though the pho-
non frequencies may be close, the nature of the mode is quite
different in the two cases. When there is such a large quali-
tative change, it is not meaningful to compute percentage
discrepancies, and it is not surprising that Ay,,, is very
large.

In Fig. 3, we have plotted the LDA and GGA phonon
dispersion curves for Ni, at room temperature. Again our
results are similar to those in Ref. 23 but with a small dis-
crepancy due to the difference in a, at room temperature and
0 K. On looking at the dispersion one might be tempted to
conclude that the LDA and GGA results produce qualita-
tively similar modes as the phonon frequencies appear to
differ merely by a scaling factor. However, we have further
calculated the Grueneisen parameters, shown in Fig. 4 which
reveal that, as in the case of Fe, the nature of modes is
actually quite different between the LDA and GGA, espe-
cially in the interior of the BZ, in the regions from K to I"
and from I” to L.

400
300 o s 2
o200 [ gmZet
3
100 1 « Expt.
y LDA |
— GGA
0 - ,
r X W X K r L

FIG. 3. Calculated phonons dispersion curves for SP Ni at room
temperature, LDA. The gray and black curves represent LDA and
GGA results, respectively. Experimental points from Ref. 24.
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FIG. 4. Calculated values of Grueneisen parameters of SP Ni at
room temperature. The gray and black curves represent LDA and
GGA results, respectively.

B. Effect of magnetic moment on the equation of state

As mentioned in Sec. I, there is an interplay between
magnetism on the one hand, and structure and elastic prop-
erties on the other hand. In order to examine this, we com-
pare relaxed magnetization (RM) calculations for Fe to con-
strained magnetization (CM) calculations where the
magnetic moment is fixed at a particular value.

As an example, we have plotted, in Fig. 5(a), both RM
and CM results showing how the (static) total energy E var-
ies with lattice constant a, using the GGA (qualitatively simi-
lar sets of curves are obtained on using the LDA). From an
examination of this figure, the following points are evident:
(i) the most favored magnetization varies with lattice con-
stant, (ii) the magnetization increases with increasing lattice
constant, and (iii) as a result of this, the bulk modulus is
softened considerably when the magnetic moment is allowed
to relax. This last point is manifested in the lower curvature
of the RM curve, compared to that of any of the CM curves.

The interplay between magnetic moment and lattice con-
stant is made evident in Fig. 5(b), which is extracted from
the data contained in Fig. 5(a). The solid lines show how the
magnetization varies when the lattice constant is held fixed,
and the dashed lines show how the lattice constant varies
when the magnetization is held fixed. In terms of Fig. 5(a),
the former is comprised of points along the RM curve while
the latter consists of points that lie at the minima of each of
the CM curves [see, e.g., points in Fig. 5(a)]. The intersec-
tion of solid and dashed lines corresponds to the point that
lies at the minimum of the RM curve. The solid lines in Fig.
5(b) show that the magnetization is increased when the lat-
tice constant is increased. This can be understood in terms of
the Stoner argument:>®> as a becomes larger, the bands be-
come narrower and more highly peaked, and ferromagnetism
is progressively favored as the lowering of energy from the
exchange interaction prevails increasingly over the gain in
band energy. The dashed lines in Fig. 5(b) show the comple-
mentary effect: a spin-polarized system would prefer to in-
crease its interatomic spacing because the presence of
aligned spins disfavors bonding. Note also that similar trends
are exhibited by both the LDA and GGA.

By fitting the CM and RM curves to the Murnaghan EOS,
we can see how magnetism affects elastic properties. The
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FIG. 5. Interplay between magnetic moments m and lattice con-
stant a, for bee Fe. (a) Total energy E as a function of a. Each curve
corresponds to a different value of constrained magnetic moment,
except for the bottommost (thick, gray) curve, which corresponds to
the results when the magnetic moments are allowed to relax. The
black dots indicate the minima of each CM curve. (b) Magnetic
moment m as a function of lattice parameter a. Solid lines corre-
spond to CM and minimized a; dashed lines correspond to con-
strained a and RM.

dependence of B, and B (at T=0) on magnetization is
shown in Fig. 6; the lines show the results from CM calcu-
lations while the symbols indicate the value obtained from
the RM calculations. In Figs. 6(a) and 6(b), the symbols lie
below and above the curves, respectively, i.e., the effect of
allowing magnetization to relax is to soften the bulk modulus
(as mentioned above), and also to make the EOS more an-
harmonic.

350 ——— T ————— 6.5 —T— T T———=
L(a) LDA, CM || - (b) LDA, CM |
300 1= LDA, RM | | 6~ LDA, RM []
| — GGA, CM| | 555 — GGA, CM[]
GGA, RM L GGA, RM
T 250 © ©
o
c
o 200
150
100
1

FIG. 6. Effect of magnetic moment on static elastic properties of
Fe: the variation in (a) By, the bulk modulus and (b) By, the pressure
derivative of the bulk modulus, with magnetic moment m. The
curves correspond to CM calculations while the symbols represent
the result of an RM calculation.
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FIG. 7. Phonon dispersion curves for NSP bcc Fe, along high-

symmetry directions, at 7=0, obtained using GGA. A negative

value for the frequency w represents an imaginary frequency and

thus an unstable mode, indicating the instability of the bce structure
for nonmagnetic Fe.

Similarly, one can study the effects of magnetization on
phonon dispersion curves. For Ni, this has already been done
by previous authors. While one set of authors,?® upon com-
paring nonspin-polarized (NSP) and SP GGA calculations,
concluded that magnetism has a negligible effect on phonon
frequencies, a subsequent study® concluded that this effect
was not small. As expected, they found that near the zone
boundary larger lattice constants lead to smaller frequencies;
however, near the zone center the opposite effect is seen. We
suggest that our results mentioned above, that the mode
Grueneisen parameters look very different for the LDA and
GGA, serve as a further example that magnetization can af-
fect phonon modes.

The effect of vibrational properties on magnetism is ex-
hibited more dramatically in Fe. In Fig. 7, we have plotted
the phonon dispersion relations for Fe, obtained upon doing
an NSP GGA calculation. In this figure, a negative value of
o indicates an imaginary frequency, i.e., an unstable mode.
The presence of strongly unstable modes in the dispersion
curve indicates that it is only the presence of magnetism that
makes bcc Fe stable, as has been pointed out before.26 In
other words, just as the LDA and GGA SP curves for Fe are
qualitatively different, so are the NSP and SP GGA curves,
again indicating the presence of a strong coupling between
magnetism and positional degrees of freedom.

C. Thermal expansion and temperature dependence

In Fig. 8, we compare our results for a(T), the linear
coefficient of thermal expansion, with experimental data. As
discussed in Sec. I, our experience with nonmagnetic metals
leads us to postulate that errors in thermal and vibrational
properties primarily arise from evaluating derivatives at an
incorrect lattice constant, and hence the error in lattice con-
stant was the primary contribution of error from the XC
functional. Accordingly, in our results for Fe and Ni, we
expect that the XC functional which more successfully pre-
dicts the lattice constant at 7=0 should also obtain a(T) with
greater accuracy. Up to a temperature of about 400 K for Fe,
and 200 K for Ni, this is indeed so: we find that the GGA
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FIG. 8. Calculated values of the temperature dependence of the
coefficient of thermal expansion « for (a) Fe and (b) Ni, obtained
using the LDA and GGA. For Ni, results from both SP and NSP
calculations are presented. The experimental values are from Refs.
15 and 16.

results are in excellent agreement with experiment. Above
these temperatures (which are both roughly a third of the
corresponding Curie temperatures), the experimental results
from Nix and MacNair'> show a sudden departure from the
low-temperature curves for both Fe and Ni, and diverge dra-
matically from the calculated values. However, slightly more
recent experimental results on Fe from Basinski ef al.'® do
not show this behavior, and their results are similar to ours,
although with somewhat higher values of a. This suggests
that the high-temperature disagreement might be resolved by
new, more accurate experimental measurements. This dis-
crepancy above room temperature was also reported in Ref.
27 for linear-response calculations on Fe.

Also plotted in Fig. 8(b) for Ni are results for the nonspin-
polarized case. We find that the effect of spin polarization in
the case of LDA is very small while for GGA it significantly
decreases the value of a. At room temperature, the lattice
parameter for NSP Ni is only ~0.3% smaller than for the SP
case, for both LDA and GGA. Such a comparison is not
possible for Fe since calculating the thermal expansion for
NSP bce Fe would be meaningless, given the presence of
unstable phonon modes.

The temperature range at which the calculated and experi-
mental values of «(T) start to diverge corresponds to the
range of temperatures at which the magnetic moments begin
to disorder, prior to the transition from ferromagnetic to
paramagnetic behavior. This effect is difficult to incorporate
in calculations. The free energy would need to include the
entropy terms due to disordered spins, as well as the effect of
disordered spins on the lattice constant. We note that the
effect of reducing magnetization due to disordered spins is
quite different from that due to ordered spins whose indi-
vidual moment decreases. In the latter case, the lattice con-
stant should decrease, whereas the former leads to an in-
crease. Thus, the constrained magnetization approach of Sec.
III B cannot illuminate the question of a’s dependence on
magnetization.

Figures 9 and 10 show how B and B, vary with tempera-
ture. The experimental data are only available for room tem-
perature, as shown in Table I. We can however compare the
LDA and GGA values as a function of temperature; we find
that AB is ~40% for Fe at all temperatures, and for Ni
ranges from 25% to 27% in the temperature range shown.

350 T ‘ T ‘ T ‘ T T T T ‘ T ‘ T T T T
L) oA [+ (b) LDA, SP |
— GGA LDA, NSP
300~ O EBxpt [ — GGA,SP ||
r T - GGA,NSP [
~ 250 — - O  Expt. H
©
a E + 1
€ 200
@
150
100 - -+ s
1 l 1 l 1 l 1 l 1 1 l 1 l 1 l 1 l 1
0 200 400 600 800 O 200 400 600 800 1000

T(K) T(K)

FIG. 9. Calculated values for the temperature dependence of the
bulk modulus for (a) Fe and (b) Ni. For Ni, results from both SP
and NSP calculations are presented. The experimental values are
from Ref. 17.

The agreement between LDA and GGA is better for B’ but is
more strongly temperature dependent: AB|, ranges from 15%
to 22% for Fe and 1.3% to 11% for Ni.

IV. CONCLUSIONS AND SUMMARY

The main message of this paper is that the presence of
magnetism considerably complicates any consideration of
exchange-correlation errors at harmonic and anharmonic or-
ders. To summarize, for the nonmagnetic metals the lessons
learned from previous calculations are that (i) harmonic and
thermal properties are most accurately predicted by an XC
functional that gets aq(0) closest to experiment and (ii) errors
in anharmonic quantities are negligible. In the present work
we find that while conclusion (i) still holds for magnetic
metals, conclusion (ii) fails. This is because, in the case of
magnetic metals, the relevant phase space for determination
of thermal properties is a function of not one parameter, (a),
but two (ag,m). Therefore, derivatives may be evaluated not
just at an a that is incorrect, due to XC errors, but also at an
incorrect magnetization. The high-temperature properties of
magnetic metals are thus difficult to compute accurately due
to both the disordering of magnetic moments and also the
increasing importance of anharmonic quantities.

For static properties, such as the bulk modulus and its
pressure derivative, the error at anharmonic order is less than

T T
| LDA . LDA —
6501 Gea (a) LDA, nsp (b)
L| O Expt 4+ | — GGA 4
-—- GGA, nsp
6.00 — T O Expt T
o L T - - ]
5.50 T
L o | 5 |
5.00 -+ -
E e S R P T NI R
0 200 400 600 800 O 200 400 600 800 1000
T(K) T (K)

FIG. 10. Calculated values for the temperature dependence of

the pressure derivative of the bulk modulus for (a) Fe and (b) Ni.
For Ni, results from both SP and NSP calculations are presented.
The experimental values are from Refs. 17 and 18, respectively.
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at harmonic order, but only by a factor of ~2, rather than the
factor of ~10 typical of the nonmagnetic metals. Interest-
ingly, the presence of magnetism appears to have much
greater effect on B than on B|). In contrast to the nonmag-
netic metals, the GGA performs considerably better than the
LDA, leading to more accurate lattice constants. As pre-
dicted by the trends seen in nonmagnetic metals, the GGA
also gives a better description of thermal properties than the
LDA. However, at temperatures where the disordering of
magnetic moments becomes evident, the simple spin-
polarized quasiharmonic treatment of thermal expansion

PHYSICAL REVIEW B 82, 134418 (2010)

does not suffice, and the coefficient of thermal expansion is
underestimated.
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