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In this paper, we combine thermal effects with Landau-Zener �LZ� quantum tunneling effects in a dynamical
Monte Carlo �DMC� framework to produce satisfactory magnetization curves of single-molecule magnet
�SMM� systems. We use the giant spin approximation for SMM spins and consider regular lattices of SMMs
with magnetic dipolar interactions �MDIs�. We calculate spin-reversal probabilities from thermal-activated
barrier hurdling, direct LZ tunneling, and thermal-assisted LZ tunnelings in the presence of sweeping magnetic
fields. We do systematical DMC simulations for Mn12 systems with various temperatures and sweeping rates.
Our simulations produce clear step structures in low-temperature magnetization curves, and our results show
that the thermally activated barrier hurdling becomes dominating at high temperature near 3 K and the thermal-
assisted tunnelings play important roles at intermediate temperature. These are consistent with corresponding
experimental results on good Mn12 samples �with less disorders� in the presence of little misalignments
between the easy axis and applied magnetic fields, and therefore our magnetization curves are satisfactory.
Furthermore, our DMC results show that the MDI, with the thermal effects, have important effects on the LZ
tunneling processes, but both the MDI and the LZ tunneling give place to the thermal-activated barrier hurdling
effect in determining the magnetization curves when the temperature is near 3 K. This DMC approach can be
applicable to other SMM systems and could be used to study other properties of SMM systems.
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I. INTRODUCTION

Single-molecule magnet �SMM� systems attract more and
more attention because they can be used to make devices for
spintronic applications,1,2 quantum computing,3 high-density
magnetic information storage,4 etc.5–7 Usually, a SMM can
be treated as a large spin with strong magnetic anisotropy at
low temperature. The most famous and typical is Mn12-ac
��Mn12O12�Ac�16�H2O�4� ·2HAc·4H2O, where HAc=accetic
acid�, or Mn12 for short.8 It usually has spin S=10 and large
anisotropy energy, producing a high-spin-reversal barrier.9

Many interesting phenomena have been observed, such as
various dynamical magnetism. One of the most intriguing
phenomena observed in SMM systems is a stepwise structure
in low-temperature magnetization curves.10–12 Great efforts
have been made to investigate this phenomenon and related
effects.13–20 The stepwise structure is attributed to Landau-
Zener �LZ� quantum tunneling effect.21,22 This stimulates in-
tensive study on LZ model and its variants.23–31 Some au-
thors use numeric diagonalization methods32,33 to study
many-level LZ models to understand the step structure in
experimental magnetization curves. However, it is difficult to
consider thermal effects in these approaches to obtain satis-
factory magnetization curves comparable to experimental re-
sults.

In this paper, we shall combine the classical thermal ef-
fects with the quantum LZ tunneling effects in a dynamical
Monte Carlo �DMC� framework34–36 in order to produce sat-
isfactory magnetization curves comparable to experimental
results. We consider ideal tetragonal body-centered lattices
and use the giant spin approximation for spins of SMMs. We
consider magnetic dipolar interactions but neglect other fac-
tors such as defects, disorders, and misalignments between

the easy axis and applied magnetic field. We calculate spin-
reversal probabilities from thermal-activated barrier hur-
dling, direct LZ tunneling effect, and thermal-assisted LZ
tunneling effects in the presence of sweeping magnetic
fields, and thereby derive a unified probability expression for
any temperature and any sweeping field. Taking the Mn12 as
example, we do systematical DMC simulations with various
temperatures and sweeping rates. The step structure appears
in our simulated low-temperature magnetization curves and
our simulated magnetization curves are semiquantitatively
consistent with corresponding experimental results on those
good Mn12 systems �with less disorders� in the presence of
little misalignments between the easy axis and applied
fields.15,16 Interplays of the LZ tunneling effect, the thermal
effects and the magnetic dipolar interactions are elucidated.
These imply that our simple model and DMC method cap-
ture the main features of experimental magnetization curves
for little misalignments. More detailed results will be pre-
sented in the following.

The rest of this paper is organized as follows. In next
section we shall define our spin model and describe approxi-
mation strategy. In Sec. III we shall describe our simulation
method, present our unified probability formula for the spin-
reversal from the three spin-reversal mechanisms, and give
our simulation parameters. In Sec. IV we shall present our
simulated magnetization curves and some analysis. In Sec. V
we shall show the key roles of the dipolar interactions in
determining LZ tunneling probabilities. Finally, we shall
give our conclusion in Sec. VI.

II. SPIN MODEL AND APPROXIMATION

Without losing generality, we take typical Mn12 system as
our sample in the following. Under giant spin approximation,
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every Mn12 SMM is represented by a spin S=10. Magnetic
dipolar interactions are the only inter-SMM interactions with
hyperfine interactions neglected. Mn12 SMMs are arranged to
form a body-centered tetragonal lattice with experimental
lattice parameters.37 Using a body-centered tetragonal unit
cell that consists of two SMMs, we define our lattice as L1
�L2�L3, where L1, L2, and L3 are three positive integers. A
longitudinal magnetic field Bz�t�=B0+�t is applied along the
c easy axis of magnetization, where � is the field-sweeping
rate and B0 is the starting magnetic field. The total Hamil-
tonian of this system can be expressed as

Ĥ = �
i

Ĥi
0 +

1

2�
i�j

Ĥij
di, �1�

where Ĥi
0 is the single-body part for the ith single SMM and

Ĥij
di describes the magnetic dipolar interaction between the

ith and jth SMM. The factor 1/2 before the sum sign is due

to the double counting in the summation. Ĥi
0 is given by

Ĥi
0 = − D�Ŝi

z�2 + E��Ŝi
x�2 − �Ŝi

y�2� + B4
0Ô4

0 + B4
4Ô4

4 + g�BBzŜi
z,

�2�

where Ŝi��Ŝi
x , Ŝi

y , Ŝi
z� is the spin vector operator for the ith

SMM, g the Landé g factor �here g=2 is used�, �B the Bohr
magneton, D, E, B4

0, and B4
4 are all anisotropic parameters,

and Ô4
0 and Ô4

4 are both Steven operators18 defined by Ô4
0

=35�Ŝi
z�4− �30S�S+1�−25��Ŝi

z�2+3S2�S+1�2−6S�S+1� and

Ô4
4= ��Ŝi

+�4+ �Ŝi
−�4� /2. Ĥij

di is defined by

Ĥij
di =

�0g2�B
2

4�rij
3 �Ŝi · Ŝ j −

3

rij
2 �Ŝi · rij��Ŝ j · rij�� , �3�

where �0 is the magnetic permeability of vacuum, and rij the
vector from i to j, with rij = 	rij	 being the distance between i
and j.

For the ith SMM, we treat all the effects from the other
SMMs by classical-spin approximation. As a result, we de-

rive the partial Hamiltonian Ĥi that acts on the ith SMM,

Ĥi = Ĥi
0 + g�BBi

di · Ŝi = − D�Ŝi
z�2 + B4

0Ô4
0

+ Ĥi
tr + g�B�Bz + Biz

di�Ŝi
z, �4�

where the transverse part Ĥi
tr is defined as

Ĥi
tr = E��Ŝi

x�2 − �Ŝi
y�2� + B4

4Ô4
4 + g�B�Bix

diŜi
x + Biy

diŜi
y� . �5�

For the ith SMM, the dipolar interaction of the other SMMs
is equivalent to Bi

di��Bix
di ,Biy

di ,Biz
di�=� j��i�B ji, where B ji is

the magnetic dipolar field applied by the jth SMM on the ith
SMM. It contributes a magnetic field consisting of longitu-
dinal and transverse parts.

III. SIMULATION METHOD AND PARAMETERS

As we show in Fig. 1, there are three main mechanisms
related to the reversal of a SMM spin:9–13,18,23,26 �a� thermal-
activated barrier-hurdling, �b� direct LZ tunneling, and �c�
thermal-assisted LZ tunneling. The thermal-activated barrier
hurdling dominates at high temperature �if the blocking tem-
perature TB
3.3 K for Mn12 �Ref. 16� is treated as high
temperature�, the direct LZ tunneling at low temperature, and
the thermal-assisted LZ tunneling at intermediate tempera-
ture. For any temperature, we consider all the three spin-
reversal mechanisms simultaneously. For the time scale we
are interested, we do not need to treat phonon-related inter-
actions directly, but shall use an effective transition-state
theory to calculate the thermal-activated spin-reversal rates.
We shall use a DMC method to combine the quantum LZ
tunneling effects with the classical thermal effects. Various
kinetic MC methods,38–42 essentially similar to this DMC
method, have been used to simulate atomic kinetics during
epitaxial growth for many years. On the other hand, MC
simulation has been used to study Glauber dynamics of ki-
netic Ising models.43–45 We shall present a detailed descrip-
tion of this DMC simulation method in the following.

A. Thermal-activated spin-reversal probability

We need the thermal-activated energy barrier in order to
calculate the thermal-activated spin-reversal rate. When cal-

ssdf

thermal-
activated
barrier
hurdling

direct LZ
tunneling

thermal-
assisted

LZ tunneling

(a) (b) (c)

FIG. 1. �Color online� A schematic demonstration of the three spin-reversal mechanisms: �a� thermal-activated barrier hurdling, �b� direct
LZ tunneling, and �c� thermal-assisted LZ tunneling. The probabilities, energy levels, barrier, and other symbols are defined in the text. The
horizontal solid line with arrow in �b� and �c� shows that a pair of energy levels satisfy the resonance tunneling conditions. The horizontal
dotted lines in �b� and �c�, as guide for eyes, imply that these energy levels do not match.
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culating the thermal-activated energy barrier we ignore the

small transverse part Ĥi
tr and use classical approximation for

the spin operators. The large spin S=10 of Mn12 further sup-
ports the approximations. As a result, the energy of the ith
SMM can be expressed as

Ēi = − D2�Si
z�2 − D4�Si

z�4 + hiSi
z, �6�

where Si
z is the classical variable for the spin operator Ŝi

z,
hi=g�B�Bz+Biz

di�, D2=D+ �30S�S+1�−25�B4
0, and D4=

−35B4
0. Because hi is dependent on time t, Ēi changes with t.

We define our MC steps by the time points, tn=�t ·n,
where n takes non-negative integers in sequence. For the nth

MC step, we use Ēi,n, hi,n, and Si,n
z to replace Ēi, hi, and Si

z.
Because each of the spins has two equilibrium orientations
along the easy axis, we assume every spin takes either S or
−S at each of the times tn. Within the nth MC step �t: from tn
to tn+1�, we use an angle variable �i,n to describe the ith
spin’s deviation from its original �tn� orientation Si,n

eq . Natu-
rally, �i,n=0 corresponds to the original state and �i,n=� is
the reversed state and then all the other angle values �0
��i,n��� are treated as transition states. Expressing Si,n

z as
Si,n

eq cos �i,n, we usually have a maximum in the curve of

Ēi,n�cos �i,n� as a function of cos �i,n, and the maximum de-
termines the energy barrier for the spin-reversal
mechanism,46–48 as shown in Fig. 1�a�. We define xi,n
=cos �i,n for convenience. We have −1	xi,n	1 for actual
�i,n, but xi,n can be extended beyond this region in order to
always obtain a formal solution xi,n

max for the maximum.
	xi,n

max	�1 implies that there actually exists an energy barrier
and 	xi,n

max	
1 means that there is no barrier for the corre-
sponding process. Under conditions D2�0 and D4�0, the
barrier can be expressed as

�Ēi,n = �Ēi,n�xi,n
max� , 	xi,n

max	 	 1,

Ēi,n�− 1� = 	2hi,nSi,n
eq 	 , xi,n

max � − 1,

Ēi,n�1� = 0, xi,n
max � 1,

� �7�

where xi,n
max is defined by

xi,n
max = 3 − qi,n/2 + di,n + 3 − qi,n/2 − di,n �8�

and the three parameters are defined by di,n= �qi,n /2�2

+ �p /3�3, p=D2 / �2D4S2�, and qi,n=−hi,nSi,n
eq / �4D4S4�. These

parameters are dependent on the spin configuration and the
magnetic field, and then on the time tn �or n�.

The spin-reversal rate within the nth MC step �between tn

and tn+1� can be expressed as Ri,n=R0 exp�−�Ēi,n /kBT� in
terms of Arrhenius law,49 where kB is the Boltzmann constant
and R0 the characteristic attempt frequency. We use Pn�t�� to
describe the probability that the ith spin is reversed between
0 and t�, where t� satisfies the condition t�	�t. It has the
initial condition Pn�t�=0�=0 and satisfies the equation �1
− Pn�t��� ·Rn�t��dt�= Pn�t�+dt��− Pn�t��, or

�1 − Pn�t���Rn�t�� =
d

dt�
Pn�t�� , �9�

where Rn�t��, the reversal rate at t�, is taken as the rate Ri,n,
independent of t� within the region �0,�t�. Solving the equa-
tion, we obtain the probability Pi,n

clas defined as Pn�t�=�t� for
a classical thermal-activated reversal of the ith spin within
the nth MC step,

Pi,n
clas = 1 − exp�− �t · Ri,n� . �10�

For �t�1 /Ri,n, Eq. �10� reduces to Pi,n
clas=�t ·Ri,n. The prob-

ability expression defined in Eq. �10� is reasonable because
Pi,n

clas will not exceed unity even when �t is very large with
respect to 1 /Ri,n.

B. LZ-tunneling related spin-reversal probabilities

When temperature is lower than TB, LZ tunneling begins
to contribute to spin reversal. We begin with the effective
quantum single-spin Hamiltonian �4� with Eq. �5�. All the
effects of other spins are included in the magnetic dipolar
field Bi

di �depending on the time t� and are depending on the
magnetic field and the current spin configuration. For the nth

MC step, if the transverse term Ĥi
tr is removed, Hamiltonian

�4� is diagonal and has 2S+1 energy levels, Em
i,n, where m

can take any of S ,S−1, . . . ,−�S−1� ,−S. If using the continu-
ous time variable t, we can express the energy levels as Em

i �t�
�with m from S to −S� and derive their crossing fields �at
which Em

i �t�=Em�
i �t��,

Bm,m� =
�m + m���D2 + D4�m2 + m�2��

g�B
. �11�

The transverse term Ĥi
tr will modify the energy levels Em

i,n,
but the 2S+1 energy levels of Hamiltonian �4� with Eq. �5�,
Ẽm

i,n, can be still labeled by m=S ,S−1, . . . ,−�S−1� ,−S. Ac-

tually, the difference between Em
i,n and Ẽm

i,n is small. Due to

the existence of the transverse part Ĥi
tr, there will be an

avoided level crossing between Ẽm
i,n and Ẽm�

i,n for the nth MC
step when the effective field Bz+Biz

di equals Bm,m�
i,n , with m and

m� taking values among S ,S−1, . . . ,−�S−1� ,−S. The set of
all the Bm,m�

i,n values are the effective-field conditions for the
avoided-level crossings. If Em

i,n equals Em�
i,n , Bm,m�

i,n is approxi-
mately equivalent to the crossing field �equaling Bm,m��. The
allowed �m ,m�� pairs are shown in Fig. 2. This means that
when Bz is swept to a right Bm,m�

i,n −Biz
di value, a quantum

tunneling occurs between the m and m� states. The tunneling
can be well described using LZ tunneling.17,32,33,36 The nona-
diabatic LZ tunneling probability Pm,m�

LZ,i,n is given by21,22

Pm,m�
LZ,i,n = 1 − exp�−

���m,m�
i,n �2

2g�B	m − m�	�
� , �12�

where the tunnel splitting �m,m�
i,n is the energy gap at the

avoided crossing of states m and m�. Bm,m�
i,n and �m,m�

i,n can be
calculated by diagonalizing Eq. �4�. If the dipolar field is
neglected, Bm,m�

i,n , �m,m�
i,n , and Pm,m�

LZ,i,n reduce to Bm,m�
0 , �m,m�

0 ,
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and Pm,m�
0 , those of corresponding isolated SMMs, respec-

tively.
At the beginning of field sweeping, we let all the spins

have m=S. If T�TB, thermal activations are frozen, and LZ
tunnelings only occur at the avoided crossings �S ,m��, where
m� takes one of −S ,−S+1, . . . ,S−1. This is the direct tun-
neling shown in Fig. 1�b� and the LZ tunneling probability is
given by

Pi,n
dLZ = PS,m�

dir,i,n = PS,m�
LZ,i,n. �13�

It is nonzero only when the condition ES
i,n=Em�

i,n is satisfied.
When the temperature is in the intermediate region 0�T
�TB, the thermal-assisted tunneling plays an important role.
This process can be represented by S�m→m� as shown in
Fig. 1�c�, in which S and m states lie on one side of the
thermal barrier and m� and −S states on the other side. The
first process S�m means that a spin is thermally activated
from S to m state with the probability PS�m

act,i,n, which is given
by PS�m

act,i,n=1−exp�−�t ·Ri,n
act�, where Ri,n

act is given by R0 exp�
−�Em

i,n−ES
i,n� /kBT�. The second process m→m� is the LZ tun-

neling from m to m�, with the probability defined in Eq. �12�.
Therefore, the reversal probability of thermal-assisted LZ
tunneling through m is given by

Pi,n,m
taLZ = PS�m→m�

ass,i,n = PS�m
act,i,nPm,m�

LZ,i,n. �14�

It is nonzero only when the condition Em
i,n=Em�

i,n is satisfied.

It must be pointed out that m� in PS,m�
dir,i,n and PS�m→m�

ass,i,n is
determined by Em�

i,n =ES
i,n and Em�

i,n =Em
i,n, respectively, as is

shown in Figs. 1�b� and 1�c�. If the energy-level condition is
satisfied, the probability is larger than zero; or else the prob-
ability is equivalent to zero. Therefore, the subscript m� in
PS,m�

dir,i,n and PS�m→m�
ass,i,n can be removed, as we have done in

Pi,n
dLZ and Pi,n,m

taLZ .

C. Unified spin-reversal probability for MC simulation

Generally speaking, every one of the three spin-reversal
mechanisms takes action at any given temperature. Actually
the LZ tunneling effect dominates at low temperatures and
the thermal effects become more important at higher tem-
peratures. For the nth MC step, the probability for the
thermal-activated barrier-hurdling reversal of the ith spin is
given by Pi,n

clas defined in Eq. �10� �see Fig. 1�a��, that for the
direct LZ tunneling effect equals Pi,n

dLZ defined in Eq. �13�
�see Fig. 1�b��, and that for the thermal-assisted LZ tunneling
effects through the m state is given by Pi,n,m

taLZ defined in Eq.
�14� �see Fig. 1�c��. Here the partial probabilities from the
three mechanisms are considered independent of each other.
Therefore, we can derive the total probability Pi,n

tot for the
reversal of the ith spin within the nth MC step,

Pi,n
tot = 1 − �1 − Pi,n

clas��1 − Pi,n
dLZ� �

mtop�m�S

�1 − Pi,n,m
taLZ � ,

�15�

where mtop, depending on the effective field, is determined
by the highest level Emtop

i,n among the 2S energy levels,
Em

i,n�−S	m�S�, as we show in Fig. 1�c�.
It must be pointed out that Pi,n

clas is always larger than zero,
but the LZ-tunneling related probabilities, Pi,n

dLZ and Pi,n,m
taLZ ,

are nonzero only at some special values of the effective field.
As is shown in Fig. 2, there is at most one LZ-tunneling
channel, from either direct or thermal-assisted LZ effect, for
a given nonzero value of the effective field. As a result, when
the effective field is nonzero, we have at most one nonzero
value from either Pi,n

dLZ or one of Pi,n,m
taLZ �mtop�m�S�. It is

only at the zero value of the effective field that both Pi,n
dLZ and

Pi,n,m
taLZ �0�m�S��mtop=0� can be larger than zero so that we

can have the direct LZ tunneling and all the thermal-assisted
LZ-tunneling channels simultaneously. In our simulations,
the processes that a reversed spin is reversed again are also
considered, but the probabilities are tiny.

D. Simulation parameters

We use experimental lattice constants, a=b=17.1668 Å
and c=12.2545 Å, and experimental anisotropy parameters,
D /kB=0.66 K, B4

0 /kB=−3.2�10−5 K, and B4
4 /kB=6

�10−5 K.15,19,37 As for the second-order transverse param-
eter E, E /kB=1.8�10−3 K is taken from the average of ex-
perimental values.20 We describe the time by using both con-
tinuous variable t and discrete superscript/subscript n. In
some cases, the sweeping field can be used to describe the
time because it is defined by Bz�t�=B0+�t. There is always a
nonnegative integer n for any given t value, and there is a t
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m
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(T)
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FIG. 2. �Color online� A schematic demonstration for the con-
ditions of the ith spin that Landau-Zener tunnelings can happen. m
labels the spin z component, from −10 to 10, and Bz+Biz

di is the
effective magnetic field. A hollow circle indicates one of the al-
lowed m values. The two circles �m and m�� connected with one
vertical line means that a LZ tunneling condition is satisfied be-
tween the two states at the corresponding effective field Bm,m�

i,n

within the nth MC step. There is at most one LZ tunneling at any
nonzero value of the effective field but every m state can tunnel to
the −m state when the effective field is zero. The inset amplifies the
part between 0.3 and 1.2 T.
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region, �tn , tn+1�, for any given nonnegative n. We take �t
=0.1 ms and R0=109 /s, which guarantee the good balance
between computational demand and precision.

The dipolar fields �Bix
di ,Biy

di ,Biz
di� at each SMM are updated

whenever any of the SMM spins is reversed. The �m,m�
i,n val-

ues are recalculated whenever any LZ tunneling happens. In
the simulations, the field Bz is swept from −7 to 7 T in the
forward process and the full magnetization hysteresis loop is
obtained simply by using the loop symmetry. Every magne-
tization curve is calculated by averaging over 100 runs to
make statistical errors small enough. The main results pre-
sented in the following are simulated and calculated with
lattices consisting approximately of 900–1200 body-centered
unit cells or 1800–2400 spins. We have tested our results
with lattices consisting approximately of 100–6000 body-
centered unit cells or 200–12 000 spins.

IV. SIMULATED MAGNETIZATION CURVES

Presented in Fig. 3 are simulated magnetization curves
�with M normalized to the saturated value MS� against the
applied sweeping field Bz for ten different temperatures: 0.1,
0.5, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 2.8, and 3.2 K. Here, the
lattice dimension is 10�10�10 and the field sweeping rate
is 0.02 T/s. Each of the curves is calculated by averaging
over 100 runs. The curves of 0.1 and 0.5 K fall in the same
curve, which implies that thermal activation is totally frozen
when the temperature is below 0.5 K. It can be seen in Fig. 3
that the area enclosed by a magnetization loop decreases
with the temperature increasing, becoming nearly zero at 3.2
K �near the blocking temperature 3.3 K of Mn12�. There are
clear magnetization steps when the temperature is below 2.0
K. They are caused by the LZ quantum tunneling effects. For
convenience, we describe a step by using a H part, a vertex,
and a V part. For an ideal step, the H part is horizontal and
the V-part vertical, but for any actual step in a magnetization
curve, the H part is not horizontal and the V part not vertical
because of the dipolar interaction and thermal effects, and
the two parts still meet at the vertex. The vertex is convex
toward the up-left direction in the right part of a magnetiza-
tion loop and toward the down-right direction in the left part.

At higher temperatures �
2.0 K�, there is no complete step
and there are only some kinks that remind us of some LZ
tunnelings. This should be caused mainly by thermal effects.

Presented in Fig. 4 are the right parts of the magnetization
curves against the applied sweeping field for three tempera-
tures, 0.1, 1.5, and 2.5 K, and with three sweeping rates,
0.002, 0.02, and 0.2 T/s. Here, the lattice dimension is 10
�10�10. We label a magnetization step by the magnetic
field defined by its V part near its vertex. For T=0.1 K, only
the direct LZ tunnelings change the magnetization, and the
magnetization steps from Bz=2 to 6 T in Fig. 4 correspond to
BS,m�

0 with m� being from −6 to 2 in Table I. For T=1.5 K,
there are clear steps in the lower parts of the three magneti-
zation curves, but their V parts deviate substantially from the
corresponding BS,m�

0 values and the steps are substantially
deformed, which show that thermal-assisted LZ tunnelings
play an important role. When temperature rises to 2.5 K,
there is no step structure and only one kink can be seen in the
lower part of the magnetization curve in the cases of 0.2 and
0.02 T/s. This is because the effects of thermal activation
become dominating over the LZ tunneling effects. Different
sweeping rates lead to substantial changes in the magnetiza-
tion curves, and the larger the sweeping rate becomes, the
larger the hysteresis loops are.

Presented in Fig. 5 are the right parts of simulated hyster-
esis loops with �=0.02 T /s at three temperatures for five
different lattice dimensions: 20�20�3, 12�12�8, 10
�10�10, 9�9�14, and 3�3�100. The temperatures are
0.1, 1.5, and 2.5 K. For comparison, the simulated results
without the dipolar interaction are presented too. For T
=0.1 K, there are clear step structures for all the five lattice
shapes. The step height varies with the lattice shape, which
can be attributed to the dipolar interaction. If the dipolar
interaction is switched off, there are only two steps: one tall
step at Bz=4.00 T and the other very short step at 3.06 T.
They correspond to the two transitions from 10 to −2 and −4,
respectively. Other transitions from 10 to −4, −6, −8, and
−10 have too small probabilities to be seen. When the dipolar
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FIG. 3. Simulated magnetic hysteresis loops �M /MS vs Bz� with
sweeping rate �=0.02 T /s for ten temperatures: 0.1, 0.5, 0.6, 0.8,
1.0, 1.5, 2.0, 2.5, 2.8, and 3.2 K �from outside to inside�. The lattice
dimension is 10�10�10. Note that the two curves of 0.1 and 0.5
K fall in the same curve.
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FIG. 4. �Color online� The right parts of simulated magnetiza-
tion curves of different sweeping rates 0.002 �dot�, 0.02 �dash�, and
0.2 �solid� T/s for three temperatures 0.1, 1.5, and 2.5 K, as labeled.
The lattice dimension is 10�10�10. Each of the visible steps and
kinks along a magnetization curve corresponds to one of the mag-
netic fields at which the direct and thermal-assisted LZ tunnelings
take place. The thin vertical dotted lines show the positions of BS,m�

0

for m�=−10,−9, . . . ,2.
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interaction is switched on, the transition from 10 to −3 is
allowed and the tall step becomes much shorter, resulting in
the rich step structures between 3 and 6 T. The steps are
caused by the direct LZ tunnelings. When the temperature
changes to 1.5 K, the hysteresis loops become substantially
smaller because of the enhanced thermal effects. In this case,
there are deformed step structures in the lower parts of the
magnetization curves and there does not exist any clear step
structure in the upper parts. The deformed step structures
between 1 and 3 T result from the thermally assisted LZ
tunnelings. For T=2.5 K, there does not exist any step struc-
ture at all for all the six cases. The effect of the lattice shape
is attributed to the long-range property of the dipolar inter-
action, and can be clearly seen in the magnetization curves
only at the low temperatures in the extreme cases of 20

�20�3 and 3�3�100. Actually, there is little visible dif-
ference between the magnetization curves of the three lat-
tices: 12�12�8, 10�10�10, and 9�9�14. Visible dif-
ference can be found at 0.1 and 1.5 K only for the two
extreme cases: 20�20�3 and 3�3�100. If we define a
ratio r=Ll /Lt of longitudinal size to transverse size for Lt
�Lt�Ll, we have r=1 for 10�10�10, r=0.67 for 12
�12�8, r=1.56 for 9�9�14, r=0.15 for 20�20�3, and
r=33 for 3�3�100. Therefore, there is little clear effect of
lattice shape as long as the shape parameter r is neither ex-
tremely large nor extremely small.

Now we address the statistical errors. We have calculated
standard errors �M of the reduced magnetization M /Ms as
functions of the sweeping field for various temperatures and
sweeping rates. Our results show that for a given magnetiza-
tion curve, the statistical errors are very small ��M �0.005�
in the region of Bz defined by 	M /Ms	�0.9, and reach a
maximal value �M

max near the point of Bz defined by M /Ms
=0. The maximal statistical error �M

max is dependent on the
temperature and sweeping rate, varying from 0.015 to 0.025
for our simulation parameters. Such statistical errors appear
only in a very small region of Bz. For any magnetization
curve as a whole, the statistical errors are small enough to be
acceptable.

Here we discuss effects of lattice sizes on simulated re-
sults. The above simulated results are based on the lattice
dimensions: 20�20�3, 12�12�8, 10�10�10, 9�9
�14, and 3�3�100. They have 900–1200 body-centered
unit cells, or 1800–2400 spins. To test our results, we have
done a series of simulations for different parameters using
lattice dimension defined by Lt�Lt�Ll. In the cases of T
=0.1 K, �=0.2 T /s, and Lt=Ll=L with L=5
20, the larg-
est size effects appear between 4 and 5.5 T for the right parts
of the magnetization curves. For the steps at 4 T, the
L-caused change in the magnetization decreases quickly with

TABLE I. Calculated results of BS,m�
0 , �BS,m�

n , PS,m�
0 , �PS,m�

LZ,n�, and �S,m�
n for the direct LZ tunneling �S ,m��

when the field Bz is swept to 3.75 T, where n is determined by the field 3.75 T. T=0.1 K, �=0.02 T /s, and
the lattice dimension is 10�10�10.

m�
BS,m�

0

�T�
�BS,m�

n

�T� PS,m�
0 �PS,m�

LZ,n� �S,m�
n

−10 0.000000 6.4�10−15 0.00000 0.00000 0.00000

−9 0.564160 1.6�10−6 0 0.00000 0.00000

−8 1.099966 3.5�10−6 0.00000 0.00000 0.00000

−7 1.612415 5.1�10−6 0 0.00000 0.00000

−6 2.106511 6.7�10−6 0.00138 0.00138 0.00001

−5 2.587260 7.9�10−6 0 0.00002 0.00002

−4 3.059671 8.6�10−6 0.01815 0.01838 0.00320

−3 3.528757 8.6�10−6 0 0.22194 0.21086

−2 3.999529 7.8�10−6 1.00000 1.00000 0.00000

−1 4.476997 6.3�10−6 0 0.53746 0.33455

0 4.966165 3.9�10−6 1.00000 1.00000 0.00089

1 5.472035 7.4�10−7 0 0.99975 0.01091

2 5.999604 3.6�10−6 1.00000 1.00000 0.00000

3 6.553867 8.6�10−6 0 0.99988 0.00749
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FIG. 5. �Color online� The right parts of simulated magnetiza-
tion curves for three temperatures with five different lattice dimen-
sions: 20�20�3 �dash dot�, 12�12�8 �dash�, 10�10�10
�solid�, 9�9�14 �dot�, and 3�3�100 �short dash�. The tempera-
tures are 0.1, 1.5, and 2.5 K, as labeled. The sweeping rate is 0.02
T/s. For comparison, we also present the results without considering
dipolar interaction �thin solid line�.
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increasing L, becoming very small when L is larger than 9.
Therefore, our lattice sizes of the results presented above are
large enough to be reliable.

The above simulated results show that the area enclosed
by a magnetization hysteresis loop decreases with the tem-
perature increasing and increases with the sweeping rate in-
creasing. This is completely consistent with the temperature
and sweeping-rate dependence of the thermal reversal prob-
ability and LZ tunneling probabilities. Thermal-activation ef-
fects dominate at high temperature. The LZ tunneling effects
manifest themselves through the steps and kinks along the
magnetization curves. However, there is a limit for the hys-
teresis loops at the low-temperature end for a given sweeping
rate. These limiting magnetization curves are caused by the
minimal reversal probability set by the direct LZ quantum
tunneling effect because the thermal-activation probability
becomes tiny at such low temperatures. With usual shape
parameter r, these results are consistent with experimental
magnetization curves of good Mn12 crystal samples in the
presence of little misalignments between the easy axis and
applied fields.15,16 In principle, a transverse magnetic field
�due to the misalignment of the applied field and the easy
axis� can enhance the energy splitting, and as a result will
reduce the magnetization loop and smooth some steps.15,16,50

These usual �not extreme� shape parameters should reflect
real shape factors in experimental samples. The consistence
should be satisfactory, especially considering that our theo-
retical probabilities are calculated under leading-order ap-
proximation and our model does not include possible defects
and disorders in actual materials.

V. KEY ROLES OF DIPOLAR FIELDS

To investigate the effects of dipolar interactions, we di-
vide the dipolar fields within the nth MC step,
�Bix,n

di ,Biy,n
di ,Biz,n

di �, into two parts: transverse dipolar field Bix,n
di

and Biy,n
di , and longitudinal dipolar field Biz,n

di . Transverse di-
polar field not only modifies Bm,m�

i,n but also affects �m,m�
i,n and

Pm,m�
LZ,i,n. In contrast, longitudinal dipolar field affects neither

�m,m�
i,n nor Pm,m�

LZ,i,n but shifts Bm,m�
i,n by −Biz,n

di . This means that
LZ tunnelings actually occur at the field Bm,m�

i,n −Biz,n
di , not

Bm,m�
i,n . This shift has two effects. First, it broadens the LZ

transition and deforms the steps in magnetization curves.
Second, the quick changing of Biz,n

di results in that the value
Bm,m�

i,n can be missed by the effective field Bz+Biz,n
di , and

therefore the actual percentage of the reversed spins due to
the LZ tunneling effect with respect to the total spins is
smaller than the LZ probability Pm,m�

LZ,i,n given in Eq. �12�. This
means that the dipolar interaction hinders both the direct LZ
tunneling process and the thermal-assisted LZ tunneling pro-
cesses.

Without transverse dipolar field, Bm,m�
i,n becomes Bm,m�

0 ,
and PS,m�

LZ,i,n equals 0 for odd m� values because transverse
dipolar field is the only transverse term of odd order in
Hamiltonian �4�. Without longitudinal dipolar field, the V
parts of steps remain vertical and the percentage of the re-
versed spins due to LZ tunneling is strictly equivalent to the

LZ probability PS,m�
LZ,i,n at low temperatures. These are shown

by the thin solid line for 0.1 K in Fig. 5. In Table I we also
present the average value ��BS,m�

n = �	BS,m�
n −BS,m�

0 	�� of
dipolar-field fluctuations with respect to BS,m�

0 , the dipolar-
field-free LZ probability PS,m�

0 , and the average value �PS,m�
LZ,n�

and the corresponding standard error �S,m�
n of PS,m�

LZ,i,n for the
avoided crossing positions of S and m�, where m� varies
from −10 to 3 and the averaging �Xn� of Xi,n is calculated
over all the spins and all the runs within the nth MC step. It
should be pointed out that the �BS,m�

n values, although very
important to LZ tunnelings, are very small, as shown in
Table I. It is transverse dipolar field that make �BS,m�

n non-
zero and make PS,m�

LZ,i,n�m�=−5,−3,−1,1 ,3� change from 0 to
nonzero, even nearly reach 1 in the cases m�=1 and 3.

In order to elucidate the magnitude and distribution of the
dipolar fields, we address the time-dependent distributions of
SMMs that have dipolar fields �Bix

di ,Biy
di ,Biz

di� �here the con-
tinuous time variable is implied� or in short the distributions
of Bix

di, Biy
di, and Biz

di, in the following. In Fig. 6 we compare
the results from five different lattice dimensions: 20�20
�3, 12�12�8, 10�10�10, 9�9�14, and 3�3�100.
Here the time is when the field Bz is swept to 3.75 T, the
temperature T is 0.1 K, and the sweeping rate � equals 0.02
T/s. For all the five lattices, our results show that the distri-
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FIG. 6. �Color online� Distributions of dipolar fields Bix
di �dashed

line+circle�, Biy
di �dotted line+cross�, and Biz

di �solid line+square� for
the five lattice dimensions �a� 20�20�3, �b� 12�12�8, �c� 10
�10�10, �d� 9�9�14, and �e� 3�3�100 when the field Bz is
swept to 3.75 T. The temperature T is 0.1 K and the sweeping rate
� equals 0.02 T/s.
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bution of Bix
di always is approximately equivalent to that of

Biy
di and they are both symmetrical and peaked at zero. The

peak is sharper for the extremely slablike 20�20�3 lattice
and extremely rodlike 3�3�100 lattice. The peak of the Biz

di

distribution is wider than that of both Bix
di and Biy

di. It shifts
substantially away from zero when the lattice shape is either
extremely slablike or extremely rodlike. The leftward shift of
the Biz

di peak can be attributed to dipolar-interaction-induced
ferromagnetic orders in rodlike systems,51,52 and the similar
rightward shift to dipolar-interaction-induced antiferromag-
netic orders in slablike systems. Because dipolar interactions
are the only inter-SMM interactions in our model, the differ-
ences of distributions between the five lattices are caused by
the dipolar fields, or dipolar interactions in essence.

VI. CONCLUSION

In summary, we have combined the thermal effects with
the LZ quantum tunneling effects in a DMC framework by
using the giant spin approximation for spins of SMMs and
considering magnetic dipolar interactions for comparison
with experimental results. We consider ideal lattices of
SMMs consistent with experimental ones and assume that
there are no defects and axis misalignments therein. We cal-
culate spin-reversal probabilities from thermal-activated bar-
rier hurdling, direct LZ tunneling effect, and thermal-assisted
LZ tunneling effects in the presence of sweeping magnetic
fields. Taking the parameters of experimental Mn12 crystals,
we do systematical DMC simulations with various tempera-

tures and sweeping rates. Our results show that the step
structures can be clearly seen in the low-temperature magne-
tization curves, the thermally activated barrier hurdling be-
comes dominating at high temperature near 3 K, and the
thermal-assisted tunneling effects play important roles at the
intermediate temperature. These are consistent with corre-
sponding experimental results on good Mn12 samples �with
less disorders� in the presence of little misalignments be-
tween the easy axis and applied fields,15,16 and therefore our
magnetization curves are satisfactory.

Furthermore, our DMC results show that the magnetic
dipolar interactions, with the thermal effects, have important
effects on the LZ magnetization tunneling effects. Their lon-
gitudinal parts can partially break the resonance conditions
of the LZ tunnelings and their transverse parts can modify
the tunneling probabilities. They can clearly manifest them-
selves when the SMM crystal is extremely rodlike or slab-
like. However, both the magnetic dipolar interactions and the
LZ tunneling effects have little effects on the magnetization
curves when the temperature is near 3 K. This DMC ap-
proach can be applicable to other SMM systems, and could
be used to study other properties of SMM systems.
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