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A combined analytical and numerical study is performed of the mapping between strongly interacting
fermions and weakly interacting spins, in the framework of the Hubbard, t-J, and Heisenberg models. While for
spatially homogeneous models in the thermodynamic limit the mapping is thoroughly understood, we here
focus on aspects that become relevant in spatially inhomogeneous situations, such as the effect of boundaries,
impurities, superlattices, and interfaces. We consider parameter regimes that are relevant for traditional appli-
cations of these models, such as electrons in cuprates and manganites, and for more recent applications to
atoms in optical lattices. The rate of the mapping as a function of the interaction strength is determined from
the Bethe-Ansatz for infinite systems and from numerical diagonalization for finite systems. We show analyti-
cally that if translational symmetry is broken through the presence of impurities, the mapping persists and is,
in a certain sense, as local as possible, provided the spin-spin interaction between two sites of the Heisenberg
model is calculated from the harmonic mean of the onsite Coulomb interaction on adjacent sites of the
Hubbard model. Numerical calculations corroborate these findings also in interfaces and superlattices, where

analytical calculations are more complicated.
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I. INTRODUCTION

Strongly interacting fermions are part of some of today’s
most studied physical systems. In cuprate and manganite sys-
tems, for example, strongly correlated electrons are held re-
sponsible for high-temperature superconductivity and colos-
sal magnetoresistance, respectively.! Systems of strongly
interacting fermionic atoms can be realized in optical lat-
tices, and are currently under intense investigation due to the
possibility to use them as quantum simulators for under-
standing phenomena of condensed-matter physics.*~¢

Since the seminal works of Wigner on the low-density
electron crystal’” and of Mott on the metal-insulator
transition® it is known that strong repulsive particle-particle
interactions suppress itineracy and favor localization.’ In the
localized state, the repulsive interaction is minimized, and
charge degrees of freedom are frozen out. The dominating
interactions in this state are magnetic.

Mathematically, strongly interacting fermions are fre-
quently described by the Hubbard model, which in one di-
mension is defined by the Hamiltonian

AP = — 17 (6] 1oy o+ Hee) + U iy 1
. i

o

where ¢] and ¢, are fermionic creation and destruction op-
erators, ﬁw:éjaéi(, is the particle-density operator, U the on-
site interaction, and ¢ the hopping parameter.

For sufficiently strong interactions, the Hubbard model
can be expanded in powers of ¢/ U. (Below we quantify what
interactions can be considered ‘“sufficiently strong.”) The
leading term of this expansion is the t-J model,
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where § ; is the spin one-half vector operator at each site. This
model is frequently taken to be the starting point in investi-
gations of doped cuprates.

For a half-filled system, in which the number of fermions
N equals the number of lattice sites L, the average density
n=N/L is unity. Since there are no empty sites, hopping is
suppressed, and the t-J model reduces to the antiferromag-
netic Heisenberg model

A z = 1
HHetS=JZ |:Si'Si+1_ Z:|’ (3)

where J=412/U and charge fluctuations are completely fro-
zen out. The original system of strongly interacting itinerant
fermions (U/t>1) has thus been mapped on a system of
localized spins with weak antiferromagnetic interactions (0
=J/t<1).

The mathematics and the physics of this mapping are very
well understood and discussed in the textbook literature.'%-!!
The mapping of strongly interacting itinerant fermions on
weakly interacting localized spins is a standard concept of
condensed-matter physics, routinely used in the interpreta-
tion of experiments on strongly correlated solids. Recently,
however, three important classes of systems have been dis-
covered or created that call for a reconsideration and more
detailed investigation of this mapping.

It is well known that many strongly correlated systems are
characterized by nanoscale spatial inhomogeneity. Such in-
homogeneity can take the form of irregular spatial variations
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in system properties, such as observed by scanning-tunneling
microscope techniques in many cuprates and similar
materials,!>~1¢ or the form of regular spatial variations such
as in naturally occurring or manmade superlattice
structures.!’~2! In the presence of either type of inhomogene-
ity, the parameters characterizing the model Hamiltonian be-
come site dependent. In the simplest case, with which we are
mostly concerned here, the above homogeneous Hubbard
model is replaced by an inhomogeneous model of the form

 yHubb AT A A A
Db = — 12 Cir .o+ Hee) + 2 Uiy, (4)
io i

in which the onsite interaction U; varies from site to site.

A second class of systems we are concerned with here are
nanoscale devices. In the modeling of such devices inhomo-
geneities in the model parameters occur simply because on
the nanoscale the effect of the surface can no longer be ne-
glected, and also because a typical device combines more
than one material, with the resulting interface automatically
implying the existence of spatial variations in the system
parameters.

Finally, in still another line of research, ultracold atom
gases have been trapped optically and arranged in optical
lattices.*>?? In optical traps the system parameters can be
controlled and varied in ways not possible in solid-state situ-
ations. In particular, the onsite interaction U, can attain val-
ues U/t~ 100 or larger. Such values are way beyond what is
considered “strongly correlated” in solid-state physics.

Motivated by all these systems, we present, in the present
paper, a combined analytical and numerical study of the
mapping from the Hubbard model to the Heisenberg model
in the presence of spatial inhomogeneity. In Sec. II we in-
vestigate the rate of the mapping, as measured by the differ-
ence in ground-state (GS) energies of the Hamiltonians. We
allow the interaction strength to go beyond its typical solid-
state values and to enter the ultrastrong regime attainable for
cold atoms.

In Sec. III we turn to our main subject, the inhomoge-
neous Hubbard model of Eq. (4). In Sec. IIT A we investigate
analytically the case of a single impurity, described as one
site with a value of U differing from all others, and show that
the Hubbard-to-Heisenberg mapping is preserved essentially
in its homogeneous form, provided the effective J is calcu-
lated from the harmonic mean of the values of U on the sites
connected by J. We illustrate this finding numerically, by
contrasting, for an impurity system, results obtained from the
harmonic mean with results obtained from the arithmetic,
geometric, and quadratic means. In Sec. IIl B we show that
the harmonic mean allows to extend the Hubbard-to-
Heisenberg mapping to systems with more complicated types
of spatial inhomogeneity, such as superlattices, disordered
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FIG. 1. (Color online) Per-site GS energy as a function of inter-
action in the thermodynamic limit. Comparison between the
Heisenberg with J=4¢>/U and the half-filled Hubbard chain. The
main figure includes values of U that can be realized in systems of
trapped cold atoms while the inset displays results for values of U
typical of weakly and strongly correlated solids.

systems and interfaces between different materials. Section
IV contains our conclusions.

II. RATE OF THE MAPPING FOR TRANSLATIONALLY
INVARIANT SYSTEMS

In a first step, to provide the background for the later
investigations, we consider spatially homogeneous infinite
Hubbard and Heisenberg chains, and investigate the rate of
the approach of the ground-state energies of both models as a
function of U. This allows us to quantify the rate at which
charge fluctuations are frozen out.

The per-site GS energy of the Heisenberg chain in the
thermodynamic limit is

Heis
eHei.Y(J) = lim 3 =—J 111(2) (5)

L—x

The per-site GS energy of infinite half-filled (n=1) Hubbard
chain at U/t—® is

EH ubb 4 t2

U
eHubh(n =12 - oo) = lim =——1In(2). (6)
1 L—x L U

Both expressions become identical for J=4¢2/U. In order to
quantitatively investigate the mapping at finite U/t, we cal-
culate ef*’(n=1,U) by numerically solving the Bethe-
Ansatz integral equations®>** as a function of U and compare
the result to the energy of the Heisenberg model at the cor-
responding value of J, i.e., e/®“(J=4¢2/U). The result is
displayed® in Fig. 1.

In Table I we show the relative percentage deviation be-
tween the GS energies,

TABLE I. Relative percentage deviation of the per-site GS energies for values of U typical of weakly
correlated solids (U=1), strongly correlated solids (U=6), and values that are attainable for atoms in optical

traps.
U 1 6 10 20 50 100 200
D (%) —-166.50 -10.01 -3.78 -0.97 -0.16 —-0.04 -0.01
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Hubb _ eHeis
D(%) = lOOW, (7)
for various representative values of U. This comparison be-
tween both models becomes trivial, once the Bethe-Ansatz
solution is available, but already leads to a first somewhat
unexpected conclusion. Frequently, the Heisenberg model is
taken to be the starting point for a description of undoped
antiferromagnetic insulating parent compounds of high-
temperature superconductors. The effect of doping is ac-
counted for by going from the Heisenberg to the t-J model,
arguing that the latter should be a reasonable approximation
to the Hubbard model for the involved large values of U.

What the comparison in Fig. 1 and Table I shows is that
for values of U that are representative of cuprate materials
the t-J or Heisenberg models provide at best a semiquantita-
tive approximation to the Hubbard model. At U=6 the dif-
ference between both ground-state energies is approximately
10%. Charge fluctuations are thus not yet frozen out for such
U, even at half filling. The rather large deviation observed
shows that the mapping of strongly interacting fermions onto
weakly interacting spins is not quantitatively reliable for,
e.g., cuprate systems at realistic values of U. There is no
doubt, of course, that the t-J model captures the correct phys-
ics of the large-U Hubbard model—the above questioning
only refers to the accuracy to which one needs to obtain a
solution of the former, given that in the parameter regime
typical of strongly correlated solids it is itself only a moder-
ately accurate representation of the latter.

We note that this analysis is based on GS energies. An
alternative comparison between both Hamiltonians would
proceed in terms of the overlap of their wave functions, in-
stead of the difference of their energies. Our main interest in
this initial investigation is to investigate for which values of
U the mapping breaks down, and for this it is enough to find
one quantity that is not properly reproduced. Thus, if we use
our analysis to indicate when the mapping does not hold, we
are on the safe side by using energies. Still another, and
indeed more fundamental, mode of analysis proceeds by di-
rectly comparing the Hamiltonians. We use this procedure in
Sec. III A, where our interest is not only in when the map-
ping breaks down but also in how it can be restored.

III. MAPPING IN THE PRESENCE OF SPATIAL
INHOMOGENEITY

Among the most common cases of spatial inhomogeneity
are surfaces, which we model by finite-size systems with
open boundary conditions. To investigate the effect of sur-
faces and finite size on the Hubbard-to-Heisenberg mapping
we perform numerically exact (Lanczos) calculations of the
deviation D, defined in Eq. (7), as a function of system size
L, for 4=L=12 and various values of U. The deviation D
between the ground-state energies of both models turns out
to depend only very weakly on these parameters: D(L=4)
and D(L=12) differ by about 1%, regardless of the value of
U. This weak dependence of the mapping on the system size
persists even in the extreme cases L=2 and L— %, where the
energies can be evaluated analytically. In fact, D(L=2) and
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FIG. 2. (Color online) Illustration of the inhomogeneous Hub-
bard model with a single impurity U’ # U, and its putative relation
to an inhomogeneous Heisenberg model with two bond defects J'
#J.

D(L— ) differ by =3% at U=2 and by =7% at U=1. The
size dependence is stronger for weaker interactions due to
the weaker charge localization in this regime (in which the
basic mapping is less precise to begin with).

This weak dependence of the quality of the mapping on L
suggests that finite-size effects and the presence of surfaces
influence both models in the same way, and therefore do not
have a strong impact on the mapping from one onto the
other. The fundamental physics of the mapping is that of
freezing out of the charge degrees of freedom, which is not
significantly affected by the presence of surfaces.

We now turn to systems where the inhomogeneity occurs
not only at the surface but also in the bulk. A typical case is
that of a localized impurity or defect, modeled by one site
with onsite interaction differing from that of all the others.
We take this simple system as representative of Hubbard
models with broken translational symmetry, and focus most
of our analysis on it. The extension of our conclusions to
interfaces and superlattices is discussed in Sec. III B.

Intuitively, one would expect that a localized perturbation
of the homogeneous Hubbard model should only produce a
similarly localized perturbation of the homogeneous Heisen-
berg model. However, the relation between both models in-
volves a projection on the subspace with no double occupa-
tion, together with an expansion in inverse powers of U,!*!!
and it is not clear from the outset to what extent these op-
erations preserve the above naive expectation of locality.

In fact, there is one sense in which the mapping, if it
continues to exist, cannot be local: U is defined on one site
while J connects two adjacent sites. While this difference is
almost irrelevant in the homogeneous case where all sites are
equivalent and translational symmetry rules, it becomes im-
portant in the inhomogeneous case, where any change in the
onsite U on the Hubbard model must affect the correspond-
ing intersite J for at least two sites of the Heisenberg model.
This is illustrated in Fig. 2.

The questions to address are thus (i) whether the mapping
still exists in the absence of translational symmetry, (ii) how
to calculate the Heisenberg J from the Hubbard U in inho-
mogeneous systems, and (iii) if the mapping is as local as
possible, i.e., involves only sites adjacent to the impurity site
or requires a higher degree of nonlocality. In next sections
we address these questions analytical and numerically.

A. A single impurity

We start with the one-dimensional Hubbard model in the
presence of a single impurity at site k with onsite interaction
U’ differing from the background value U on all other sites
i#+k,

134405-3



VIVIAN V. FRANCA AND KLAUS CAPELLE

Y yHubb AT A A A A A
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(8)
The standard proof of the mapping from the Hubbard to the

t-J model'®!! can be repeated for this Hamiltonian and leads
to the inhomogeneous t-J model with Hamiltonian

: T ar’ A
o =~ > (CA,IUCAi+1,U+ He)+—, [571 . §i+1 _ _“}
io U izk 4
472 = = ﬁkﬁk+1
A L 9
U’[ k" Okt 1 9)

where we assumed that both U and U’ are much larger than
t. We rewrite this Hamiltonian by extracting one term from
the sum over i # k to obtain

A 472 z oz nian;
t] AT A it
Hth—tE (C}LGC5+1,U+H.C.)+ 2 Si'Si+l_
io U i#k,l 4

4|z = g | 40] 2 2 Ay
B R PP o
U [ k k+1 4 U, 1 I+1 4

(10)

Now we take the average density n=N/L=1. A priori this
average can be obtained from many different distributions ;.
However, since we are already in the limit U, U’ >t, the total
interaction energy on the background and the impurity sites
is minimized by the particular distribution n;=1 for all i.
Deviations from this are due to hopping processes that be-
come increasingly suppressed as U and U’ grow. Thus
Hamiltonian (11) at n=1 reduces to

A 4¢ 1 I 1
Hiy(n=1)=+ U > [57'1 : §i+1 - _} +4l2(_ + _>

i#k 4 vou

2 = 1
X 51'51+1—Z,

where we chose [ as a neighbor site of k, k=/+1, such that

(11)

R R R =
S;-S141=Sk Sk4+1- This, in turn, can be written as

. 1 1
HZZLS:J 2 |:§i.§l.+l——:|+2J/|:§1'§]+1__:|’
i#11+1 4 4
(12)

which has the form of a spatially inhomogeneous Heisenberg
model with background interaction J=4¢*/U and two bond

defects J' =472/ UH, where U is the harmonic mean of U
and U’,
a 20U’

Ut = .
U+U’

(13)

This derivation tells us that the Hubbard model with a
single impurity can indeed be mapped onto a Heisenberg
model with two bond defects, provided the impurity site and
the background sites both have repulsive interactions that are
much larger than ¢, and that the J connecting the impurity
site with its neighbors to the left and to the right is calculated

PHYSICAL REVIEW B 82, 134405 (2010)

ok
— 40}
X
~
c - =
S 80
©
— O harmonic
q>_) -120 O geometric
=) A\ arithmetic
</ quadratic
-160 | homogeneous
L L L L L
0 2 4 6 8 10
U
2
() v Vv VvV vV Vv v
1r v oA A A A A A
v &4 5 o o o o o
’(? 0o AN O O-—8—F—Ht
= Yo
AN
S 'ro
=
8 2k O harmonic
5 v O geometric
(=) A arithmetic
-3 </ quadratic
homogeneous
4 L L L L L
20 40 60 80 100
U

FIG. 3. (Color online) Relative percentage deviation between
the GS energies of the single-impurity Hubbard chain and the two-
defect Heisenberg chain, obtained from numerical diagonalization,
adopting J' =J(U) with four different choices for the average U: (a)
values of U that are typical of solids and (b) values of U that are
attainable in systems of optically trapped atoms. System param-
eters: L=8 sites, N=8 fermions, open boundary conditions, and
impurity strength U'=3U/2.

from the harmonic mean of the two onsite interactions. The
mapping then still exists and is seen to be as local as pos-
sible, in the sense explained above.

In order to investigate the rate of the mapping in inhomo-
geneous systems, we now perform a numerical investigation
of both models. For illustration we also include in these cal-
culations the quadratic, arithmetic, and geometric means,

_ U2+U12
Ul=+/—7, (14)
2
_. U+U
UA_ s (15)
2
Ue=\uu'. (16)

Both the inhomogeneous Hubbard model with n=1 and one
U' # U and the inhomogeneous Heisenberg model with two
J' #J are diagonalized numerically, and compared by means
of the deviation between their GS energies. We use the same
method of analysis as in Sec. I, this time, however, applied
to impurity systems.

Our key result is contained in Fig. 3, which displays the
relative percentage deviation between the inhomogeneous
Hubbard and the inhomogeneous Heisenberg models with

J'=J(U) for each of the four averages. The solid line repre-
sents the corresponding deviation obtained for the impurity-
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free Hubbard and Heisenberg models, where U and J
=412/ U are the same across the system.

Figure 3(a) demonstrates clearly that if the background U
is so small that the mapping is not quantitatively reliable
even in the homogeneous system (this includes the values
found in cuprates), then it is also not reliable in inhomoge-
neous systems, regardless of the choice made for relating the
bond defect to the impurity size. On the other hand, Fig. 3(b)
makes a different statement: once the background U is large
enough to permit the basic Hubbard-to-Heisenberg mapping
to function, all four averages lead to values of J’ =472/ U that
are equal (U) or different (U*,U°, and U?) than obtained
in the homogeneous system.

This is unequivocal numerical evidence that the mapping
of strongly interacting fermions on weakly interacting spins
survives in the presence of impurities and defects. In order to
probe the locality of the mapping we have also performed
numerical experiments with averages over more than two
neighboring sites, calculating J'(U) from, e.g., a weighted
average of the interactions at the sites connected by U and
their nearest-neighbor sites. No improvement (and frequently
even worse results) with regard to the simple two-site aver-
ages was obtained, indicating that the mapping is indeed lo-
cal.

At first sight more surprising is that the alternative aver-
aging procedures produce even smaller deviations for some
values of U, Fig. 3(b). However, for still larger values of U
and U’ (where the mapping should as a matter of principle
get better and better) all these alternative averages produce
deviations that continue to grow and yield D>0 while the
harmonic mean correctly approaches the limit D=0 as
U,U' — . This shows that only the harmonic mean has a
chance to correctly describe the fermion-to-spins mapping in
inhomogeneous systems while the lower deviations of the
other averages for some parameter regimes only occur be-
cause the curves are monotonous so that there is always a
range of values for which they are close to zero.

We note that in Fig. 3 the ratio of U and U’ was held
fixed, such as to guarantee that for all values of U, U’ was
always substantially different from U (U’'=3U/2). In Fig. 4
we present the complementary analysis in which the back-
ground U is held fixed and the impurity interaction is varied
from U’ < U to U' > U. For this comparison we consistently
adopted the harmonic mean. A first feature that jumps to the
eye is that a single site with U’ <U is enough to substan-
tially deteriorate the mapping. By contrast, a single site with
U’ > U leads only to a slight reduction in the deviation be-
tween GS energies, much less than the deterioration ob-
served for U’ <U.

This behavior arises from the hopping terms. Both at U’
> U (more repulsive impurity site) and at U’ < U (less repul-
sive site) the onsite density at the impurity site slightly de-
viates from that at the background sites, as long as U and U’
are both finite. In the latter case, however, hopping processes
involving the impurity site increase as U’ is reduced, and the
Hubbard-to-Heisenberg mapping becomes correspondingly
worse, while in the former case hopping continues to be
strongly suppressed. The behavior displayed by Fig. 4 is thus
consistent with what one would expect on the basis of the
derivation leading from Eq. (8) to Eq. (12).
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FIG. 4. Deviation of GS energies of the half-filled Hubbard
model and the corresponding Heisenberg model as a function of
impurity strength, obtained from the harmonic mean. At U'=U=6
the system is homogeneous (except for the presence of the bound-
ary) and the deviation is the same obtained in Sec. IL

Independently of, but in agreement with, our previous
analytical derivation we thus find that the harmonic mean
solves the problem exactly for a single impurity and for suf-
ficiently large interactions while the other possible averages
do not. However there is still one question concerning this
result and it is addressed in next section: is the harmonic
mean able to recover the mapping in more complex inhomo-
geneities?

B. More complex inhomogeneities

In view of our initial discussion of naturally occurring or
manmade inhomogeneity in strongly correlated systems, it
becomes important to extend our analysis to more complex
inhomogeneities than boundaries or single impurities. We
here briefly describe our findings on three of these: inter-
faces, superlattices, and disordered systems.

Interfaces and superlattices can be described in the Hub-
bard and Heisenberg models as shown schematically in Fig.
5. While the description of superlattices by means of periodic
spatial variations in U is the standard choice,'” which we
here also adopt, it has been pointed out that a periodic modu-
lation of local electric potentials can bring about a much
larger change in the system properties.'®192¢ Here, however,
we are interested in the Hubbard-to-Heisenberg transition,
which is driven by the interaction and not by local potentials,
and therefore we follow the usual prescription to ignore pos-
sible local electric fields in the superlattice structure.

We note that in the superlattice and the interface geometry

Hubbard Heisenberg

J J Sy g Jdd
interface

wlofulofulufu]y] «—p
superlattice

lelelole]elefefy] «——>

JoJJoS I

FIG. 5. (Color online) Illustration of simple interface and super-
lattice structures in the Hubbard model, and their counterparts in the
Heisenberg model.
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FIG. 6. (Color online) Relative percentage deviation between
the GS energies of the Hubbard and the Heisenberg model for a
superlattice structure, an interface, a single-impurity system and a
system that is spatially homogeneous (except for the surface). In the
superlattice and the interface system the number of sites with U and
U’ is the same, respectively, the only difference being in their geo-
metric distribution. System parameters: L=8, U'=3U/2, J'
=472/U', and J*=47*/U, where U is calculated from the harmonic
mean of U and U’.

we now have three different spin-spin interactions, one, J,
being calculated from U, another, J’, from U’ and the last,
J*, from U and U’, as indicated in Fig. 5. Figure 6 shows that
for large U and U’ the GS energies of the Heisenberg model,
when calculated from the harmonic mean, become identical
to those of the corresponding Hubbard model, for all inves-
tigated geometries. In this sense, the mapping continues to
work and to be as local as possible. Note that this would not
be true for the arithmetic, geometric, and quadratic means,
whose deviations increase for large U and U’.

The fact that the Hubbard-Heisenberg deviation for the
superlattice is larger than that for the interface can be under-
stood on purely geometric grounds, as a consequence of the
locality of the mapping and the nature of the harmonic mean:
by comparing the distribution of J values, Fig. 5, we see that
in going from the interface to the superlattice the number of
interactions J and J' is reduced by the same amount while
that of interactions J* increases. Since J' <J*<J, a reduc-
tion in the number of sites with J' worsens the mapping
while a reduction in the number of sites with J improves it.
To see what the net effect is we must take into account the
interaction J*, which replaces J and J'. This interaction is

calculated from U, the harmonic mean of U and U’. The
harmonic mean of any two positive numbers is less or equal

their arithmetic mean so that U is closer to U than to U’ and
J* is closer to J than to J'. The substitution of an equal
number of J and J' by J* thus has the effect of effectively
increasing the number of “bad” sites, and therefore to dete-
riorate the quality of the mapping. This is what the data
show: the deviation for the superlattice is larger than that for
the interfaces, if all other parameters are chosen the same.

This analysis shows that the harmonic-mean prescription
continues to be usable for these more complex geometries
and that the effect of the geometrical distribution of U and
U’ sites across the system can be understood and analyzed
essentially on a site-by-site basis. This is a direct conse-
quence of the locality of the mapping.
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Disordered systems can be modeled by considering ran-
dom distributions of U; and the resulting set of J;. A com-
plete quantitative investigation of disorder requires statistical
analysis of data from many realizations of disorder. How-
ever, our above finding that the mapping is local means that
its main aspects should be sensitive only to the immediate
vicinity of each impurity, and not to the particular distribu-
tion of impurities in each realization of the disordered sys-
tem. This expectation is confirmed by numerical analysis of a
few representative cases, in which we find that for a disor-
dered Hubbard model the corresponding disordered Heisen-
berg model can be constructed by means of the harmonic-
mean prescription, in just the same way as for a single
impurity. The quality of the mapping can also be analyzed in
the same way.

Specifically, we find that if all impurities have U’ >U a
higher concentration of impurities reduces the deviation be-
tween the GS energies. Keeping the concentration fixed and
increasing U’/ U also reduces the deviation but to a much
smaller degree. On the other hand, if all impurities have
U' < U the agreement is naturally worsened. However, in the
U’ <U case the decisive factor is not so much the concen-
tration of impurities but their strength, as measured by U’/ U.
This inversion in the effect of concentration and strength of
the impurities can be understood on the basis of Fig. 4,
which shows that for a single impurity with U’ <U the de-
viation rapidly increases as U’ becomes more different from
U while for U’ > U it decreases only very slowly and almost
saturates as the impurity sites effectively drop out of the
system.

This discussion shows that it is possible to control the
degree of the fermion-spin mapping by means of the intro-
duction of a suitable concentration of impurities of suitable
strength. This possibility may be useful in the design of
nanoscale devices based on strongly correlated systems,
whose properties can be tailored from electronlike to spinlike
by introducing suitable disorder. We note in passing that this
is a strong-interaction effect, completely different from the
itinerant-to-localized transition resulting from disorder in
Anderson localization.

IV. CONCLUSIONS

In the homogeneous situation, in which all sites are
equivalent, the mapping is characterized by the behavior of
the system as a function of the onsite interaction U. Not
unexpectedly, the Heisenberg model is found to be a good
approximation to the t-J and the Hubbard model at n=1.
Somewhat more unexpected is that the Heisenberg model is
rather a bad approximation to the Hubbard model at n=1
even for values of U that are considered strongly correlated
in solid-state applications. Only at U near 20 has the devia-
tion dropped to about 1%. The standard mapping thus only
becomes quantitatively reliable for values of U that are hard
to reach in the solid state but have already been demon-
strated in cold-atom systems.

In inhomogeneous situations, translational symmetry is
broken. An analytical calculation for the simple case of a
single impurity suggests that the mapping can be preserved
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in terms of the harmonic mean. Moreover, in terms of this
mean the mapping is as local as possible, i.e., the value of
the Heisenberg J between two sites is only determined from
the value of the Hubbard U at these two sites. Numerical
calculations illustrate and corroborate this finding. This is
more than a mathematical, or numerical, result: it means that
the physics of the mapping, i.e., the gradual freezing out of
the charge degrees of freedom and the localization arising
from the concomitant suppression of double occupation, is
essentially the same regardless of the geometry and the pres-
ence or absence of translational symmetry.

The harmonic-mean prescription can be used easily and
reliably for a wide variety of spatial inhomogeneities. Once
the basic mapping is understood, the harmonic-mean pre-

PHYSICAL REVIEW B 82, 134405 (2010)

scription allows one to interpret and even to predict the be-
havior of much more complicated systems, without going
through detailed analytical or computationally expensive nu-
merical calculations.
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