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A short survey is presented on spin-glass-like states characteristics in complex nonmagnetic systems. We
discuss the interplay of the interaction structure and symmetry with the classification of scenarios of the replica
symmetry breaking. It is shown that the kind of the transition to the nonergodic state depends not only on the
presence or absence of the reflection symmetry but on the number of interacting operators and their individual
characteristics.

DOI: 10.1103/PhysRevB.82.134208 PACS number�s�: 64.60.Cn, 75.50.Lk, 62.50.�p

I. INTRODUCTION

The reflection symmetry plays a crucial role defining the
character of phase transition in nonrandom mean-field �MF�
models.1 Generally speaking the presence of the terms with-
out reflection symmetry usually results in the first-order
phase transition while in the absence of such terms the tran-
sition is of the second order. In the case of random MF
systems the absence of reflection symmetry also leads to a
special form of the free-energy functional that differs from
the symmetrical case. As a consequence, the scenarios of
replica symmetry breaking �RSB� are different for these two
cases.

However, not only the symmetry determines the transition
to nonergodic state. Extending the class of models permits
considering the role of different factors in scenarios of ap-
pearance of spin-glass- �SG-� type states.

In this paper we try to use our recent results for different
models of spin-glass-like states in complex nonmagnetic sys-
tems �see Ref. 2 for a review� to investigate how the inter-
action type correlates with the SG behavior.

The theory of spin glasses has been developed as an at-
tempt to describe unordered equilibrium freezing of spins in
actual dilute magnetic systems with disorder and frustration.
This problem was soon solved at the mean-field level �Ed-
wards and Anderson,3 Sherrington and Kirkpatrick,4 Almeida
and Thouless,5 and Parisi6,7 �see Ref. 8 for a review��. The
Sherrington-Kirkpatrick �SK� approach to the spin-glass
theory starts with the Hamiltonian

H = −
1

2�
i�j

JijUiUj . �1�

It describes Ising spins U located on the lattice sites i. The
quenched interactions Jij are distributed with the Gaussian
probability

P�Jij� =
1

�2�J
exp�−

�Jij − J0�2

2J2 � , �2�

where J= J̃ /�N, J0= J̃0 /N, and N is the number of sites. To
perform averaging over disorder in this case one has to av-
erage the quenched free energy F rather than the partition
sum Z itself. Such averaging is usually performed using the

replica method. The free energy becomes the function of the
order parameters that depend on replica indices

F = F�x�,q��� , �3�

x� =
1

N
�
i=1

N

Ui
�, q�� =

1

N
�
i=1

N

Ui
�Ui

�. �4�

The free energy F�x� ,q��� has a stationary point for the RS
solution when all q�� are equal. However this state is un-
stable under RSB. Parisi6,7 proposed a method of performing
RSB step by step with the limit of so-called full RSB �FRSB�
when q�� becomes a continuous function of a parameter x.
This approach allowed to describe main results of experi-
ments on spin glasses. Namely, in the framework of the equi-
librium approach, the spin-glass phase with qualitatively cor-
rect boundaries was obtained and the difference in the
behavior of magnetic susceptibility in field-cooled and zero-
field-cooled cases was explained.

So, the problem of theoretical description of SG per se
was solved, in principle, on MF level. Ever since different
other models appeared without any connection to real experi-
ments and real physical systems. The main feature of these
models was the absence of reflection symmetry—in contrast
to the SK model. The most investigated models among those
are the p-spin models and the Potts models, considered, for
example, in Refs. 9–12. The spherical p-spin model �see,
e.g., Ref. 13� was for a long time believed to be a generic for
this class of models. From the point of view of RSB the main
feature of this model is the stability of the first step of RSB
�1RSB� down to zero temperature. Also, the order parameter
behaves stepwise. Although this model was not aimed to
describe any real glass it appeared to be very interesting
because its behavior gave a scenario for real liquid-glass
transition: two critical temperatures, the number of meta-
stable states similar to that obtained in numerical simula-
tions. It should be noted that the structure of the dynamical
equations for the correlation functions is identical for both
the supercooled liquids in the mode-coupling theory and for
the p-spin spherical SG model.10

Based mainly on investigations of these two models—SK
and p-spin spherical—a conclusion appears in the literature
attributing two classes of universality to models with and
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without reflection symmetry. In the disordered case a number
of attempts were made to formulate a kind of universality
rules based on the mean-field investigation of the model sys-
tems with random interactions.9,10

Looking now, in general, at the free-energy series over the
glass order parameter we see that the series contain explicitly
the terms which can be classified by the reflection symmetry.
In general case in addition to the reflection-symmetrical
part14

�Fs

NkT
= lim

n→0

1

n � �¯+ a3�q���q���q�� + a4���q���4

+ a4�q���q���q���q��
¯� �5�

there is a part without the reflection symmetry, namely, the
terms with odd number of identical replica indices

�Fns

NkT
= lim

n→0

1

n � �¯+ b3��q���3 + ¯

+ b4�q���q���q���q��
¯� . �6�

The coefficients ai contain only averages of even degrees of
the operator U while in each of bi enter some averages of the
odd ones. Thus, a natural question arises: whether there can
be made a general statement regarding the behavior of SG
models with and without reflection symmetry? Do all models
of the first-type behave in fact like the SK model and all
models of the second type like the p-spin spherical model? In
this paper we try to answer this question. We prove that for
arbitrary models with reflection symmetry the Parisi FRSB
always holds. In the absence of reflection symmetry the situ-
ation is not so definite and the behavior of the system de-
pends on some additional characteristics. In any case it is not
always similar to that of the p-spin spherical model, as it was
usually believed: we give the counterexamples that present a
generalization of p-spin model to three-quadrupole glasses
with momenta J=1,2.

II. GENERALIZED SK MODEL: FRSB

A. SK model with reflection symmetry

In this case it occurs to be possible to prove a kind of a
theorem. We consider a generalized model with reflection
symmetry defined by the Hamiltonian �1� with the interac-
tions distributed according to Eq. �2� and with arbitrary di-
agonal operators U. The reflection symmetry implies that for
any integer k

Tr�U�2k+1�� = 0. �7�

The saddle point conditions for the free energy averaged
over disorder define the glass order parameter

q�� = Tr�U�U� exp����/Tr�exp���� �8�

and the auxiliary order parameter

w� = Tr��U��2 exp����/Tr�exp���� . �9�

Here

� =
t2

2 �
�

w��U��2 + t2 �
�	�

q��U�U�, �10�

where t= J̃ /kT and we choose J0=0 for simplicity.
In the RS approximation we find the solution qRS that is

zero at high temperature. The bifurcation condition in this
case is

1 − tc
2wRS

2 �tc� = 0. �11�

This equation coincides with 
repl�RS�=0 �see, e.g., Ref. 8�. It
is zero high-temperature solution that bifurcates. At T�Tc
certain nontrivial 1RSB solutions appear but they are un-
stable.

Investigating 1RSB, 2RSB, 3RSB, …, nRSB, and so on,
we see that the equations for the glass order parameters al-
ways contain the quantity

Tr�U exp��nRSB��/Tr�exp��nRSB�� . �12�

Here �nRSB are the analogs of Eq. �10� for higher stages of
RSB �see Ref. 16 for details�. Therefore, one of the solutions
of these equations is trivial at each of the RSB steps and the
appearance of the nRSB solution can be regarded as the bi-
furcation of the trivial �n−1�RSB solution. In this case, the
equation 
nRSB=0 coincides with the corresponding branch-
ing condition in Eq. �11�. This means that in any case, the
nRSB solutions at different stages of the symmetry breaking
can exist at the temperature T�Tc determined by this bifur-
cation condition and so we always can look for FRSB solu-
tion. Writing the free energy as a series over �q�� near Tc �up
to the fourth order for so-called truncated model, see Refs. 8
and 15� we obtain q�x�=cx in the leading approximation �a
similar procedure was described in details in Ref. 16�. It is
important that it is the zero solution that bifurcates. This
enables one to obtain analytically the FRSB solution. It is
possible to write the free energy in the form of Parisi with
the only difference in the boundary conditions for the Parisi
function � that now reads

��1,y� = ln Tr	exp�tyU +
t2

2
�w − q�1��U2�
 . �13�

Thus we have shown that in the case of systems with reflec-
tion symmetry, the infinite FRSB holds at the very point at
which the RS solution becomes unstable. In particular, our
result means that magnetic systems of arbitrary spin with the
interaction between the z components behave in the same
way.

B. SK model without reflection symmetry

We consider below several models without reflection
symmetry. These models correspond to some real physical
systems. Let us note that it is easy to trace how the proof
given above fails using the model proposed in Ref. 17. Now
we have the same Hamiltonian �1� but without the condition
�7� for the operators U.

The difference between two cases is already manifested in
the RS approximation. In the case when the condition �7� is
not fulfilled for the Hamiltonian �1� the order parameters xRS

SCHELKACHEVA, TAREYEVA, AND CHTCHELKATCHEV PHYSICAL REVIEW B 82, 134208 �2010�

134208-2



and qRS are nonzero everywhere in temperature. The disorder
smears out the first-order phase transition which takes place
in regular systems without disorder. Hence, instead of a tran-
sition, there is a smooth increase in the order parameters
�both glass and regular� as the temperature decreases. This
situation is seen in experiments on orientational glass phase
in ortho-para-hydrogen mixed crystals and in Ar-N2.18 These
substances present mixtures of spherically symmetric mol-
ecules and momentum-bearing molecules. The correspond-
ing glass was investigated on the base of the Hamiltonian �1�
with U=Q, where Q=3Jz

2−2, J=1.19 The RSB solution
branches continuously and smoothly on cooling breaking the
RS results in a transition to the nonergodic phase of the
quadrupolar glass.

Another example of a SG-like phase in molecular crystal
is presented by pure para-H2 �or ortho-D2� under pressure.20

The possibility of orientational order in systems of initially
spherically symmetric molecule states is due to the involving
of higher order orbital moments J=2,4 , . . . in the physics
under pressure. With increasing density the anisotropic inter-
action potential and the crystal field grow rapidly and the
energy of the many-body system can be lowered taking ad-
vantage of the anisotropic interactions. The long-range ori-
entational order appears abruptly at some fixed value of pres-
sure through the first-order phase transition just as it takes
place in ortho-para mixtures when the concentration of
moment-bearing molecules achieves certain fixed value. In
the intermediate concentration range the frustration and dis-
order give the basis to the investigation of quadrupole glass
with J=2. Such a theory was constructed in Ref. 21. The
essential feature of the obtained intermediate phase is the
coexistence of orientational glass phase with long-range ori-
entational order as it is seen in the experiment.

Let us consider two more models describing SG-like
states in real complex nonmagnetic systems, namely, in sys-
tems of clusters. Although they are not mixtures of different
kinds of particles with different interactions, one can find
frustration and disorder, that is the background to consider
the systems in the spirit of SG theory. Now the operator U in
Eq. �1� is to be replaced with continuous functions of angles.

In Ref. 22 a model for low-temperature transition to the
orientational glass state in solid molecular C60 was devel-
oped. Although the molecules have nearly spherical shape, at
low temperature there are two pronounced minima in the
anisotropic part of intermolecular interaction energy. It is
possible to trace an analogy with the mixtures by studying
the role of mutual molecular orientations of different types.
As a result, a model is constructed where the role of spin is
played by certain combinations of cubic harmonics. The re-
sults agree well with the experimental data: the coexistence
of the glass state and the long-range orientational order and
the existence of a wide maximum on the curve for the ori-
entational part of the heat capacity. Moreover, the above
model permits considering the pressure dependence of orien-
tational transitions for small pressures.23

The other model we would like to mention is the SG-like
freezing of clusters of different symmetries in supercooled
liquids that gives a possible description of liquid-glass tran-
sition. In Ref. 24 we used a microscopic approach based on
equations for the distribution functions which in spirit of

Bogoliubov hierarchy gave us a possibility to analyze the
intercluster interaction. We show that there exists a region of
densities and temperatures where this interaction changes
sign as a function of the cluster radius generating therefore
the frustration in the system. This is the base to write a
Hamiltonian of the form �1� with different point group har-
monics for U and use standard methods of SG theory to
describe real glasses.

So, we have considered a set of models with two-particle
interaction where the absence of reflection symmetry is
caused by the characteristics of the operators U themselves.
In this case the RSB solution bifurcates from the RS solution
smoothly, without a jump, and the coexistence of glass order
with long-range regular order takes place.

III. GENERALIZED p-SPIN MODEL

Let us consider now a generalization of well-known
p-spin model12 of Ising spins to the case of arbitrary opera-
tors. The Hamiltonian has the form

H = − �
i1i2. . .ip

Ji1,. . .,ip
Ui1

Ui2
¯ Uip

, �14�

where i=1,2 , . . . ,N, p is the number of interacting particles
and U is an arbitrary traceless diagonal operator. This means
that U can take some k values U=U1 ,U2 , . . . ,Uk and the sum
Tr U��1

kUk=0. We do not specify its form here, in order to
use general formulas further. Independent interactions have
the Gaussian distribution

P�Ji1,. . .,ip
� =

�N�p−1�

�p!�J̃
exp�−

�Ji1,. . .,ip
�2N�p−1�

p!J̃2 � . �15�

Using the standard procedure of replica approach we ob-
tain the �effective� free energy and the equations for the or-
der parameters in Eqs. �8� and �9� but now with

� = p
t2

2 �
�	�

�q����p−1�U�U� + p
t2

4 �
�

�w���p−1��U��2.

�16�

We perform the first stage RSB �n replicas are divided
into n /m1 groups each containing m1 replicas� and obtain the
free energy in the form

F1RSB = − NkT�m1t2�p − 1�
r1

p

4
+ �1 − m1��p − 1�t2 �r1 + v1�p

4

− t2�p − 1�
w1

p

4

+
1

m1
� dzG ln� dsG�Tr exp �1RSB�m1� . �17�

Here q��=r1 if � and � are from different groups and q��

=r1+v1 otherwise
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�1RSB = zt�pr1
�p−1�

2
U + st�p��r1 + v1��p−1� − r1

�p−1��
2

U

+ t2 p�w1
�p−1� − �r1 + v1��p−1��

4
U2. �18�

We performed detailed calculations for two models with
p=3 and U being the quadrupolar moments for J=1 and for
J=2 cases. The results of calculations are illustrated in Fig. 1
�J=1� and Fig. 2 �J=2�. At the point Tbif the RS solution
bifurcates. In the case J=1 �Fig. 1� the new solution goes left
�with T�, m�Tbif��1 and the transition is continuous. In the
case J=2 �Fig. 2� m�Tbif�	1, the new solution goes right
and makes a loop giving rise to a jumpwise behavior of the
glass order parameter at m=1. The stability of the 1RSB
solution against further RSB was checked in the standard
way2,21 looking at the positive values of 
�1RSB�repl �defined
as the bifurcation point where the nonzero order parameter
v2 in 2RSB appears�


�1RSB�repl = 1 −
t2

2
p�p − 1��r1 + v1��p−2�

�� dzG� dsG�Tr exp �1RSB�m1

� 	Tr�U2 exp �1RSB�
Tr exp �1RSB

− �Tr�U exp �1RSB�
Tr exp �1RSB

�2
2

� 	� dsG�Tr exp �1RSB�m1
−1

. �19�

So, it turns out that in the case of the three-particle inter-
action between quadrupoles with J=2 as well as with J=1
the first stage RSB is stable only in a finite temperature re-
gion �as was first showed in Ref. 12 for p-spin model� and
not down to zero temperature. This is one of our key results.
As concerns the models with multiple interactions, this prop-
erty was investigated for the Potts model with three states in
Ref. 25 �see, also Ref. 26� and for more complicated models
with two interactions in Refs. 27–30.

IV. CONCLUSION

We have considered several examples of behavior of com-
plex spin-glass-like systems. The set of physical systems de-
scribed by such generalized models is very wide. On the
other hand, all of them can be divided into two classes de-
pending on whether reflection symmetry is present or not.

We have shown that in the case of systems with reflection
symmetry, the infinite FRSB in the sense of Parisi takes
place at the very point at which the RS solution becomes
unstable. Such behavior is well known for the SK spin
model. In particular, our result means that magnetic systems
of arbitrary spin with interaction between z spin components
behave in the same way.

If there is no reflection symmetry, then the situation is not
so definite. The behavior of a particular system depends on
some additional characteristics. An important factor in study-
ing such systems is the absence of a trivial RS solution. We
have considered a set of models with the two-particle inter-
action where the absence of reflection symmetry was caused
by the characteristics of the operators U themselves. In this
case the RSB solution bifurcates from the RS solution
smoothly, without a jump. The jump appears in the three-
quadrupole glass model with J=2. The coexistence of the
glass order with the long-range regular order takes place in
both cases.

The properties of the models considered in our paper are
not similar to those of the p-spin spherical model as follows
from the counterexamples �Figs. 1 and 2�. We have shown
that in these cases under certain additional conditions, there
exists a finite domain of stability for the 1RSB state. This
was apparently first shown for the simple nonspherical mod-
els in Refs. 2 and 21. Let us note that it is easy to trace how
the proof given above fails using the model proposed in Ref.
17. This effect was discovered for the Potts model with three
states in Ref. 25 earlier. We believe that the FRSB is attained
as a result of several successive transitions occurring as the
temperature decreases.

FIG. 1. �Color online� Temperature dependence of the glass or-
der parameters for the quadrupole glass with three particle interac-
tion for J=1. The RSB occurs at the temperature corresponding to
the condition 
�RS�repl=0.
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FIG. 2. �Color online� Temperature dependence of the order
parameters for the quadrupole glass with three particle interaction
for J=2. The transition RS-1RSB takes place at the point defined by
the condition m=1. The glass order parameter v1 has the jump at
this point. Here x is the regular orientational order parameter.
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