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We present higher order conductivity spectra �3���� of different ion conducting glasses and glass ceramics,
which were taken over broad frequency ranges and at different temperatures. The �3���� spectra are character-
ized by a change in sign, namely from positive values in the dc regime to negative values in the dispersive
regime. In the dispersive regime, �3���� exhibits an approximate power-law-type frequency dependence, albeit
with a significantly larger exponent than the low-field conductivity �1����. The �3���� isotherms of an individual
glass or glass ceramic can be superimposed by using the Summerfield scaling. The resulting �3���� master
curves of different materials show strong shifts on the scaled frequency axis with respect to each other. This
implies strong differences between the materials regarding the nonlinearity of the dispersive conductivity. In
order to rationalize this effect, we calculate the nonlinear dispersive hopping conductivity in a double-well
potential approximation.
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I. INTRODUCTION

The demand for improved energy storage has increased
over the last years and will increase further in the future. One
possible solution is electrochemical energy storage in batter-
ies and supercapacitors.1–6 Current research focuses on the
enhancement of the energy and power densities of such de-
vices. Since the achievable power density is influenced by
the internal resistance of the cell, the solid or liquid electro-
lyte carrying the ionic current should have a low resistance.
This can be realized by taking materials with a high specific
ionic conductivity and by reducing the thickness of the elec-
trolyte layer. For instance, in state-of-the-art lithium micro-
batteries, glassy electrolyte films with thicknesses in the
range of 1–2 �m are currently being used.7,8 There are re-
search efforts to further reduce the thickness into the 100 nm
range.9,10 In such thin films, the high electric field strength
results in nonlinear ion transport, i.e., in a field dependence
of the ionic conductivity. For instance, if a voltage of 3 V
drops in a 100 nm electrolyte film, the electric field strength
is 300 kV/cm. This clearly exceeds the upper limit for linear
ion transport, which is in the range of 50–100 kV/cm. In the
nonlinear regime, the current density j can be expressed by a
power series of the electric field E

j = �1 · E + �3 · E3 + �5 · E5 + ¯ . �1�

Here, �1 denotes the low-field conductivity, while �3 ,�5,
etc., are higher order conductivity coefficients. Equation �1�
contains exclusively odd terms, since for isotropic ion con-
ductors, the function j�E� is odd. The nonlinearity has previ-
ously been studied using dc methods.11–14 It was found that
the effective dc conductivity �eff= jdc /Edc=�1+�3 ·Edc

2

+�5 ·Edc
4 +¯ increases with the field. This increase could

lead to an improved performance of thin electrolytes. How-
ever, with dc methods it is difficult to distinguish between an
intrinsic field dependence of the ion transport and Joule heat-
ing effects. Joule heating gives rise to an increase in tem-
perature and could thus be responsible for the observed in-
crease in conductivity. With ac impedance measurements it is

easier to distinguish between these effects. On the applica-
tion of a sinusoidal field E�t�=E0 sin��t�, Eq. �1� yields the
following relation for the current density being in phase with
the field:

j� = �1� · E0 sin��t� + �3� · E0
3 sin3��t� + �5� · E0

5 sin5��t� + ¯

= �1���� · E0 sin��t� +
3

4
�3���� · E0

3 sin��t�

−
1

4
�3��3�� · E0

3 sin�3�t� +
10

16
�5���� · E0

5 sin��t�

−
5

16
�5��3�� · E0

5 sin�3�t� +
1

16
�5��5�� · E0

5 sin�5�t�

+ ¯ . �2�

An equivalent equation can be derived for the current density
being out of phase with the field.15 As can be seen, the Fou-
rier component at 3� in Eq. �2� is related to the third-order
term in Eq. �1�, the 5� component to the fifth-order term and
so on. Joule heating increases the low-field conductivity
�1���� and produces also higher harmonic currents at 3�.
However, these 3� currents are proportional to �E0�2 �Ref.
16� so that they can be clearly distinguished from the higher
harmonic current term in Eq. �2�. Consequently, the higher
harmonic currents can be directly used to obtain the higher
order conductivity coefficients �3� ,�5�, etc.

The low-field conductivity spectra �1���� of many solid
electrolytes follow the time-temperature superposition prin-
ciple, i.e., in a log-log representation the spectral shape of
�1���� is independent of temperature. At low frequencies,
�1���� displays a dc conductivity plateau with the value �1,dc.
This plateau reflects the long-range ion transport in the
sample. Above an onset frequency �1

�, the low-field conduc-
tivity �1���� becomes dispersive and increases with increas-
ing frequency. This reflects subdiffusive ion transport, i.e.,
local hopping processes of the ions. In the dc regime and
over the first decades of the dispersive regime, �1���� can be
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described, in a first approximation, by a Jonscher power
law17

�1���� = �1,dc�1 + � �

�1
��p1� �3�

with an exponent p1, which is often in the range from 0.6–
0.7.

The time-temperature superposition principle implies that
the conductivity spectra taken at different temperatures can
be superimposed by an appropriate scaling formalism, result-
ing in a conductivity master curve for a given electrolyte
material. A common scaling formalism was established by
Summerfield,18,19 where �1���� /�1,dc is plotted versus
� / ��1,dc ·T�. The applicability of the Summerfield scaling for
a given electrolyte material implies that the mean square dis-
placement of the mobile ions at the crossover from subdiffu-
sive to diffusive dynamics, �r2�cr, is independent of tempera-
ture, thus pointing to a temperature-independent ion
transport mechanism.20 The Summerfield scaling can also be
used to obtain information about different transport mecha-
nisms in different materials. For instance, in the case of x
Na2O�1−x�GeO2 glasses with variable Na2O content x, it
was found that the rms displacement at the crossover from
subdiffusive to diffusive dynamics, 	�r2�cr decreases from
about 10 Å at x=0.005 to about 0.6 Å at x=0.4.20 This huge
difference in the spatial extent of the subdiffusive ion dy-
namics points to huge differences in the potential landscape
of the mobile ions.

In this paper, we carry out, an analysis of the spectral
shape of higher order conductivity spectra �3���� of several
ion conducting glasses and glass ceramics. To do this, we
have measured the �3���� spectra over broad frequency
ranges and at different temperatures. We show that the �3����
spectra of single alkali glasses are quite well described by a
Jonscher-type power-law equation while the equation fails to
describe the �3���� spectra of mixed alkali glasses and of
partially crystallized glass ceramics. Furthermore, we find
that for a given material, Summerfield scaling leads to a
superposition of the �3���� spectra. Remarkably, when we
compare the resulting Summerfield master curves of differ-
ent materials, we find strong shifts between the master curves
on the scaled frequency axis. These shifts are much stronger
than found for the �1���� Summerfield master curves. In order
to rationalize this effect, we calculate the nonlinear disper-
sive conductivity due to hopping transport in a double-well
potential approximation.

II. EXPERIMENTAL

For the nonlinear conductivity measurements, the follow-
ing alkali alumino silicates and sodium germanates were pre-
pared: �Li2O�1−x�Na2O�xAl2O3�SiO2�4 glasses with x=0.1
and 0.2 �LNASx�; Li2OAl2O3�SiO2�2 glass and glass ceram-
ics with 6% and 13% crystallinity �LAS, amorphous, “am,”
and x% crystallinity� and a �Na2O�0.15�GeO2�0.85 glass
�NG15�. For the chemical formulas, the compositional pa-
rameter x is given in the range from 0 and 1, whereas for the
abbreviations, x was multiplied by 100. The glasses were

prepared by the melt quenching technique. For the alkali
alumino silicates, appropriate mixtures of sodium carbonate,
lithium carbonate, alumina, and silica were first heated to
1100 °C in order to decompose the carbonates and then
heated to 1600 °C for 16 h before quenching the melt into a
brass mold. The sodium germanate glass was prepared ac-
cordingly from a mixture of sodium carbonate and germania
and quenched from 1400 °C. Chemicals of high purity were
used in order to avoid an unintentional mixed alkali effect.
However, we observed that the low-impurity level leads to
an increased tendency for crystallization so that rapid cool-
ing was important. Removal of stress caused by the quench-
ing had to be carried out carefully: relaxation was achieved
at temperatures 50–60 K below the glass transition tempera-
ture for at least 5 h and a cooling rate of 0.5 K/min. Crys-
tallization of the LAS samples was carried out according to
Ref. 21.

The glass samples were then cut into slices with an Ac-
cutom 5 �Struers�. The desired thickness of the samples was
obtained by high-precision lapping with a PM5 �Logitech�.
This way, thicknesses ranging from 80 to 200 �m were ob-
tained. The glasses were then attached to the sample holder
as described in Ref. 22. The liquid electrolyte was varied,
depending on the temperature range of the measurement. At
low temperatures from 223 to 303 K, a solution of lithium
nitrate in a mixture of propylene carbonate and propylene
glycol was used. At higher temperatures, these solvents start
to evaporate, and thus a different electrolyte is required.
Here, a saturated solution of sodium chloride in dried glyc-
erol was used. Due to the relatively high glass transition
temperature of glycerol, this electrolyte is, however, not suit-
able for measurements at low temperatures.

Impedance measurements were carried out with a Novo-
control Alpha-AK high-performance impedance analyzer
equipped with a high voltage booster and a high-voltage in-
terface. With the high voltage booster, ac voltages with a
maximum amplitude of 2000 V �1414 V rms� can be applied.
The sample temperature was controlled by the Novocontrol
Quatro cryosystem.

III. RESULTS AND DISCUSSION

As described in Ref. 20, the higher order conductivity
spectrum �3���� can be determined by considering the Fourier
components of the current density at 3� in Eq. �2�. Rear-
rangement yields

− 4j��3��
E0

= �3���� · E0
2 +

5

4
�5��3�� · E0

4 + ¯ . �4�

For calculating �3�, the data were plotted in the form:
−4j��3�� /E0 vs E0

2. If contributions from the Fourier compo-
nents at 5� are small, the second term on the right-hand side
of Eq. �4� is negligible, and the plot yields an approximately
straight line with a slope of �3����. This was indeed the case
at low frequencies in the dc conductivity regime, see Fig. 1.
At higher frequencies in the dispersive regime, a curvature in
the plots was observed, see Fig. 1. Therefore, the data were
fitted with a second-order polynomial, and �3� was derived
from the linear term.

H. STAESCHE AND B. ROLING PHYSICAL REVIEW B 82, 134202 �2010�

134202-2



Typical isotherms of the low-field conductivity spectra
�1���� and of the third-order conductivity spectrum �3���� for
a LNAS20 glass sample are shown in Fig. 2. At low frequen-
cies, both the �1���� spectra and the �3���� spectra are char-
acterized by dc plateaus. At higher frequencies, the �1����
spectra pass over in the well-known dispersive regime re-
flecting subdiffusive ion dynamics. In the same frequency
range, �3���� changes its sign from positive values in the dc
regime to negative values in the dispersive regime. Conse-
quently, in the log-log representation shown in Fig. 2, we
have plotted the modulus of �3����. In both the �1���� spectra
and the �3���� spectra, the transition from the dc regime to
the dispersive regime shifts to higher frequencies when the
temperature is increased. Remarkably, the slope in the dis-

persive part of the �3���� spectra, p3=
d log
�3����


d log � �0.85–0.9 is
considerably larger than the slope in the dispersive part of

the �1���� spectra, p1=
d log��1����

d log � �0.7.
These results indicate that both the �1���� spectra and the

�3���� spectra reflect bulk ion transport. Interfacial effects,

i.e., ion blocking at the solid/liquid electrolyte interface, do
not seem to have a significant influence on these spectra. As
we have discussed in Ref. 15, such interfacial effects can be
observed in the nonlinear capacitance spectra of solid ion
conductors. This is, however, not the subject of the present
paper.

For a further analysis, we tried to fit the �3���� spectra
with a Jonscher-type power-law expression

�3���� = �3,dc�1 − � �

�3
��p3� �5�

with an exponent p3. Note that in this expression, the
frequency-dependent part is negative, accounting for the
negative values of �3���� in the dispersive regime. We found
that the �3���� spectra of single alkali glasses are quite well
fitted by Eq. �5�, see Fig. 3�a� as an example. Less well fitted
are mixed alkali glasses and partially crystallized LAS glass
ceramics, see Fig. 3�b�. The reason for this is unclear at
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FIG. 1. Plot of −4j�3�� /E0 vs E0
2 for a LNAS20 glass at 273 K

and different frequencies. The full circles denote positive values and
the open squares negative values. Lines are second-order polyno-
mial fits.
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present. Comparison to hopping models should yield more
insight.23

The spectral shape of �3���� appears to be similar at dif-
ferent temperatures. Therefore, the question arises as to
whether the �3���� spectra obey the time-temperature super-
position principle and can be superimposed by an appropri-
ate scaling formalism. In Fig. 4, we show a Summerfield plot
of the conductivity isotherms of the LNAS20 glass, i.e., a
plot of �3���� /�3,dc versus � / ��3,dc ·T�. The third-order dc
conductivity �3,dc was determined from third-order complex
impedance plots.15 The errors in the �3���� spectra are, in
general, larger than in the �1���� spectra, especially close to
the change in sign, where the modulus 
�3����
 becomes very
small. Therefore, the scaled �3���� spectra in Fig. 4 exhibit
more scatter than the scaled �1���� spectra of the same glass.
However, for a given material and within the experimental
error, we observe no systematic deviations from superposi-
tion of the scaled �3���� isotherms. This was found for all

glasses and glass ceramics so that we could generate Sum-
merfield master curves for the individual materials.

In Fig. 5, we show the �3���� master curves for different
materials �right-hand side� and we plot in comparison the
�1���� master curves of the same materials �left-hand side�.
The master curves of the low-field conductivity �1���� show
only weak shifts on the scaled frequency axis. In compari-
son, the master plots of the higher order conductivity �3����
show much stronger shifts on the � / ��3,dc ·T� axis. Since the
ratios �3,dc /�1,dc are similar for all materials, a shift of the
�3���� master curve to higher � / ��3,dc ·T� values implies a
weaker nonlinearity of the dispersive conductivity. Thus, the
NG glass exhibits the strongest nonlinearity of the dispersive
conductivity, while the mixed alkali glasses LNAS10 and
LNAS20 exhibit the weakest nonlinearity. Partial crystalliza-
tion of the LAS glass leads to a weaker nonlinearity.

In the following, we will address mainly two questions:
�i� why is �3���� negative in the dispersive regime? �ii� Why
do some materials show a weaker nonlinearity in the disper-
sive regime than others?

We note that negative values for �3���� in the dispersive
regime have been observed in computer simulations of hop-
ping models.23 However, the origin of the negative values
has not been clarified up to now. Since a general theory for
the higher order conductivity �3���� does not yet exist, we
start with the simplest approximation for the description of
the dispersive hopping conductivity in disordered materials,
that is, hopping in double-well potentials �DWP� as sketched
in Fig. 6. We will first calculate the nonlinearity of the con-
ductivity in a symmetrical double well potential �Fig. 6�a�
and then in a strongly asymmetric double-well potential �Fig.
6�b�. We will show that the asymmetry of the double-well
potential exhibits a strong influence on the nonlinearity of
the dispersive conductivity. This is relevant for our disor-
dered materials since the potential landscape of the mobile
ions should be characterized by a broad distribution of site
energies.
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The calculation of the nonlinear conductivity in the
double-well potentials will be done in the time domain under
the influence of a constant electric field. On short time
scales, only few uncorrelated hops take place. In a
frequency-domain experiment, this corresponds to the high-
frequency plateau regime,24,25 which is not accessible in our
experiments. On longer time scales, the ion current drops and
eventually a constant electrical polarization is achieved. This
corresponds to the dispersive conductivity regime in our
frequency-domain experiments.

We start with the symmetric double-well potential with
two ion sites A and B. After switching on an electric field E
at time 0, we can write down the following master equation
for the time-dependent probability WB�t� to find an ion at site
B

dWB�t�
dt

= �+ − ��+ + �−�WB�t� �6�

with �+�t�=� exp� qaE
2kT � and �−�t�=� exp�− qaE

2kT � denoting the
hopping rate of the ion in field direction and against field
direction, respectively. � is the hopping rate without field, q
is the charge of the ion and a is the hopping distance �dis-
tance between the sites�.

The differential equation can be solved with the following
ansatz:

WB�t� = C + D exp�− t/�� . �7�

Inserting this ansatz into Eq. �6� yields

1/� = �+ + �− = 2� cosh�u� ,

C =
�+

�+ + �−
and D = 0.5 − C = − tanh�u� �8�

with u= qaE
2kT .

Without field, the center of ionic charge is at x=0. In the
limit of very large fields, the probability to find the ions at
site B approaches unity, corresponding to a dipole moment of
qa /2. Thus, the polarization in the long-time limit can be
written as

P� =
1

3
NVq

a

2
�W�t → �� − W�t = 0� =

1

3
NVq

a

2
�− D�

=
1

6
NVqa tanh�u� . �9�

On the other hand, the current density in the short-time limit
is given by

j0 =
1

3
NVq

a

2
limt→0�dWB�t�

dt
� =

1

3
NVq

a

2
�− D�

1

�

=
1

3
NVqa� sinh�u� �10�

Now we consider the field dependence of the quantities in
Eqs. �8�–�10�. The sinh�u� function in Eq. �10� implies that
the short-time current density j0 increases with the field in a
superlinear fashion: sinh�u�=u+ 1

6u3+¯. Thus, the effective
short-time conductivity �0�

j0

E �1+ 1
3u2 increases with the

field. On the other hand, the relaxation time � decreases with
increasing field according to: 1 /�=2� cosh�u�=2��1+ 1

2u2

+¯�. This is illustrated schematically in Fig. 7. Due to the
faster temporal drop of the current density at higher fields,
the long-time polarization increases with increasing field in a
sublinear fashion: P�� tanh�u�=u− 1

3u3+¯. The time-
dependent current density can be written as

j�t� =
1

3
NVq

a

2

dWB�t�
dt

=
1

3
NVq

a

2
�− D�

1

�
exp�− t/��

=
1

3
NVqa��u +

1

6
u3 + ¯�exp�− 2�t�exp�− �u2t� . . . .

�11�

The term exp�−�u2t� leads to a sublinear increase in the
current density with the field on time scales t	1 /�. Thus, on
these time scales, the effective conductivity ��t	1 /��= j�t
	1 /�� /E decreases with increasing field, as sketched in Fig.
7. In a frequency-domain experiment, this corresponds to a
decrease of �1���� with increasing field and to negative �3����
values in the dispersive regime.

Next, we consider an asymmetric double-well potential as
shown in Fig. 6�b�. The asymmetry is characterized by the

Γ+
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EA

∆V

electric field E

a
(b)(a)

site A site B site A site B

FIG. 6. Hopping dynamics of an ion in the presence of an elec-
tric field �a� in a symmetric double-well potential and �b� in an
asymmetric double-well potential; �+ is the hopping rate in the
direction of the field, and �− the hopping rate in the opposite direc-
tion; Ea is the barrier height, 
V the site energy difference and a the
hopping distance.

low field
high field

t

σ(t)

FIG. 7. Schematic illustration of the time-dependent effective
conductivity ��t� in a symmetric double-well potential at different
field strengths; the dashed line represents the effective conductivity
at low fields while the solid line represents the effective conductiv-
ity at higher fields.
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difference between the potential energies of sites A and B
relative to the thermal energy, 
V /kT. Now, it is important to
differentiate between two cases: �i� 
V�0, i.e., site A has a
lower potential minimum than site B and �ii� 
V�0, where
site B has the lower potential minimum.

In case �i� 
V�0, we define the jump rates as �+�t�
=� exp�− 
V

kT �exp�u� and �−�t�=� exp�−u�. Using the same
procedure as for the symmetric case we obtain the following
expression for the inverse relaxation time 1 /�:

1/� = �+ + �− = ��exp�−

V

kT
�exp�u� + exp�− u��

� � exp�− u� . �12�

The approximation in Eq. �12� holds for strong asymmetries

V	kT. In this case, the long-time polarization P� and the
short-time current density j0 are given by

P� =
1

6
NVqa exp�− 
V/kT��exp�2u� − 1 ,

j0 =
1

3
NVqa� exp�− 
V/kT�sinh�u� . �13�

Equations �12� and �13� imply that both the short-time cur-
rent and the long-time polarization increase with increasing
field and that the decay of j�t� becomes slower with increas-
ing field. Thus, in contrast to the symmetric DWP, the cur-
rent density j�t� increases superlinearly with increasing field
on all time scales, as illustrated in Fig. 8. Furthermore, it is
important to note that the factor exp�−
V /kT� implies
smaller current densities and polarizations than in the sym-
metric DWP.

In case �ii� 
V�0, we define the jump rates as �+�t�
=� exp�u� and �−�t�=� exp�− 

V


kT �exp�−u�. This results in

1/� = �+ + �− = ��exp�u� + exp�−


V

kT

�exp�− u��
� � exp�u� ,

P� =
1

6
NVqa exp�− 

V
/kT��1 − exp�− 2u� ,

j0 =
1

3
NVqa� exp�− 

V
/kT�sinh�u� . �14�

The short-time current is identical to case �i�, however in
contrast to case �i�, the exponential decay of j�t� becomes
faster with increasing field, see Fig. 8. This results in a de-
crease of the long-time current density j�t	1 /�� with in-
creasing field.

In a disordered potential landscape, one has to average
over the cases �i� and �ii�. This implies that the current den-
sity on longer time scales t	1 /� is determined by case �i�.
Thus, the averaged long-time effective conductivity in-
creases with increasing field. In addition, we have to average
over the distribution of site energies leading to a distribution
of 

V
 values in the DWP approximation. When 
V=0, the
long-time effective conductivity ��t	1 /�� is large and de-
creases with increasing field. When 

V
	kT, the long-time
effective conductivity ��t	1 /�� is much smaller, but it
increases with increasing field. Thus, we expect that the
averaged effective conductivity ���t	1 /��� is determined
by small 
V values and that accordingly, ���t	1 /��� de-
creases with increasing field. An increase of the width of the


V
 distribution leads to �a� lower values for the averaged
effective conductivity ���t	1 /��� and �b� to a less pro-
nounced decrease in ���t	1 /��� with increasing field. In a
frequency-domain experiment, a broader distribution of 
V
values should therefore lead to a weaker nonlinearity in the
dispersive conductivity. Thus, our experimental results sug-
gest that the potential landscape in the single alkali glass
NG15 is characterized by the narrowest distribution of site
energies while the site energy distribution is broadest in the
mixed alkali glasses LNAS10 and LNAS20. Partial crystal-
lization of the LAS glass leads to a broadening of the site
energy distribution.

Finally, we note that the present results for the nonlinear
dispersive conductivity obtained in the framework of a
double-well potential approximation should be compared to
results obtained in computer simulations of the nonlinear ion
dynamics in disordered potential landscapes. This will give
valuable insights into the range of applicability of the DWP
approximation for calculating nonlinear conductivity spectra.
Furthermore, it would be interesting to correlate the present
results for the nonlinear conductivity to other properties re-
lated to ion dynamics, in particular, to deviations of the lin-
ear dc conductivity from Arrhenius behavior and to features
in the nearly constant loss �NCL� observed at low tempera-
tures and/or high frequencies.26–29 It has been predicted theo-
retically that a distribution of ion site energies produces a
curvature in Arrhenius plots of the linear dc conductivity30

and that the asymmetry of DWPs influences the NCL.26,27 In
the present study, the temperature range is too narrow for a

increasing

field strength

∆V < 0

∆V > 0

low field
high field (∆V > 0)
high field (∆V < 0)

t

σ(t)

increasing

field

strength

FIG. 8. Schematic illustration of the time-dependent effective
conductivity ��t� in a strongly asymmetric double-well potential;
the dashed line represents the effective low-field conductivity, the
dotted line the high-field effective conductivity for 
V�0, and the
full line the high-field effective conductivity for 
V�0,
respectively.
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meaningful analysis of the curvature. Measurements in the
NCL regime were not possible since very high frequencies
and/or low temperatures cannot be realized with our special
experimental setup. Therefore, additional low-field conduc-
tivity measurements on the same glasses and glass ceramics
with ion-blocking metal electrodes will be necessary.

IV. CONCLUSIONS

We have measured nonlinear conductivity spectra of dif-
ferent glasses and glass ceramics over broad frequency
ranges and at different temperatures. At low frequencies, the
higher order conductivity �3���� is positive and exhibits a dc
plateau regime. At higher frequencies, there is a transition
into a dispersive regime where �3���� becomes negative. In
the dispersive regime, �3���� exhibits an approximate power-
law-type frequency dependence, however with a significantly

larger exponent p3=
d log
�3����


d log � �0.85–0.9 than found for the

low-field spectra, p1=
d log �1�
d log � �0.7. The �3���� spectra of

single alkali glasses are well described by a Jonscher-type
power-law equation while this equation fails to describe the

�3���� spectra of mixed alkali glasses and of partially crystal-
lized glass ceramics.

The �3���� spectra of all glasses and glass ceramics obey
the time-temperature superposition principle. Therefore, the
�3���� isotherms of an individual material could be superim-
posed by using the Summerfield scaling approach. The re-
sulting �3���� master curves of different materials were found
to exhibit a strong shift with respect to each other on the
scaled frequency axis. Remarkably, this shift is much stron-
ger than for the �1���� master curves of the same materials.
This implies strong differences between these materials re-
garding the nonlinearity of the dispersive conductivity. A cal-
culation of the nonlinear dispersive conductivity of hopping
ions in a double-well potential approximation suggests that
the origin of this effect is closely related to the distribution of
ionic site energies.
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