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We discuss the effect of a secondary component of the superconducting order parameter on the superfluid
density in the cuprates. If we assume a main dx2−y2 gap, the most stable realization of a mixed order parameter
has a time-reversal breaking dx2−y2 + ıdxy symmetry. In this state the nodes are removed and the temperature
dependence of the superfluid density changes from the linear behavior of a pure d wave to a more rounded
shape at low temperature. The latter is compatible with the behavior experimentally observed in the in-plane
magnetic field penetration depth of optimally doped La2−xSrxCuO2 and YBa2Cu3O7−y.
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I. INTRODUCTION

The identification of the pairing mechanism behind high-
temperature superconductivity in copper oxides1 remains one
of the greatest challenges in solid state physics. A key ingre-
dient is the symmetry of the order parameter, which is ex-
pected to reflect that of the pairing interaction thus providing
information on the microscopic mechanism. The well-
established evidence of lines with vanishing amplitude in
the gap function of cuprates along the �-X direction of
the Brillouin zone �nodes� indicates a dominant dx2−y2

symmetry of the order parameter,2 hardly compatible with
the standard phonon pairing mechanism, which leads to
an isotropic s-wave order parameter. Anyway a small
secondary component of the order parameter can develop
either spontaneously or driven by external factors such as
magnetic field, doping or presence of magnetic impurities.3–5

The development of a mixed order parameter has been also
invoked to explain anomalies observed in the thermal con-
ductivity in magnetic field of Bi2Sr2CaCu2O8.6 Moreover
substantial deviation from the dx2−y2-wave symmetry has
been observed in YBa2Cu3O7−y �YBCO� both in tunneling
measurements7 and in laser angle-resolved photoemission re-
vealing nodeless bulk superconductivity.8 A series of low-
temperatures anomalies has been observed in the in-plane
magnetic field penetration depth in muon-spin rotation
��SR� experiments.9–12 Experiments in optimally doped
La2−xSrxCuO2 �LSCO� �Ref. 9� and YBCO �Refs. 10 and 12�
have shown a low-temperature bump in the penetration depth
superimposed to the linear temperature behavior associated
to d-wave superconductivity and to the presence of nodes.
These deviations from d-wave behavior have been associated
to a secondary component, which has been proposed to be
isotropic s wave in light of its vulnerability to a magnetic
field.9,10,13 Alternative proposals14,15 do not assume the pres-
ence of a mixed order parameter and they associate the low-
temperature feature either to a nonlocal response of the
d-wave superconductor, which modifies the magnetic field
distribution in the vortex state with respect to the standard
London model or to a particle-hole secondary gap associated
to spin-density wave ordering.16

Here we focus on the secondary superconducting gap in-
terpretation, and we show that a dx2−y2 + ıdxy mixed order
parameter can reasonably describe the �SR experimental
results. Under rather general assumptions, a previous
analysis17 has shown that, once a leading dx2−y2 symmetry is
assumed, this time-reversal breaking dx2−y2 + ıdxy symmetry is
the most stable realization of a mixed order parameter.

This work is organized as follows. In Sec. II we present
our model and approach. In Sec. III we discuss the general
behavior of the superfluid density with a mixed order param-
eter and presents the comparison with experiments. Section
IV contains our conclusions.

II. MODEL

In this section we briefly summarize the formalism used
in Ref. 17 to identify the conditions for a secondary compo-
nent to establish in the presence of a dominant dx2−y2 wave.
We consider a two-dimensional square lattice characterized
by the C4v point group and a single band with dispersion

�k = − 2t�cos kxa − cos kya� + 4t� cos kxa cos kya − � ,

�1�

where t and t� are the nearest and next-nearest hopping pa-
rameters, � is the chemical potential and a=1 is the lattice
spacing. Values of t and t� for different compounds have
been chosen according to density-functional theory calcula-
tions in the local-density approximation.18

The aim of the present analysis is the understanding of the
competition between the different components of a supercon-
ducting order parameter. Therefore we do not attempt a so-
lution of a microscopic model including different kind of
realistic interactions, and we simply consider an effective
low-energy interaction, whose strength in each symmetry
channel controls the corresponding instability. Moreover, we
will study the superconducting phase within the Bardeen-
Cooper-Schrieffer �BCS� mean-field approach, which fully
takes into account for the symmetry of the order parameter.
This approach is reasonably justified for instance by the rela-
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tively large doping of the samples of Refs. 9, 10, and 12
We now briefly recall some relevant aspects of the BCS

equations for a mixed order parameter, referring to Ref. 17
and references therein for more details. If we require the
invariance under the symmetry of the lattice of the modulus
of the order parameter, the latter has to transform either as an
irreducible representation or as a complex combination of
the form ��+ ı�� �with �� and �� transforming as two dif-
ferent irreducible representations� which breaks time-
reversal invariance. The development of each harmonic with
a given symmetry is controlled by a specific spatial compo-
nent of the pair potential. The isotropic s wave is associated
to the local component of the potential V0, the dx2−y2 and
extended-s �sx2+y2� are controlled by the nearest-neighbor
coupling V1 while the dxy and sxy �which are analogous to
dx2−y2 and sx2+y2 with lobes along the diagonal directions in
the plane� are related to the next-neighbor coupling V2. Here
we will simply assume that V0 is repulsive due to the local
Coulomb repulsion and that V1 and V2 are attractive. For the
sake of definiteness we report the equations for the dx2−y2

+ ıdxy mixed order parameter

�
1
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= − �

k
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2�k�
1
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Here �=1 /T is the inverse temperature, �d�k�=cos�kxa�
−cos�kya� and �d��k�=2 sin�kxa�sin�kya� are the harmonics
associated to dx2−y2 and dxy wave, respectively, �d and �d�
are the associated components of the gap and �k

=��k
2 +�d

2�d
2�k�+�d�

2 �d�
2 �k�. The superconducting gaps

�d, �d� and the chemical potential � are derived solving
self-consistently Eqs. �2�. An energy cutoff �0 is used in the
first two k sums.

For realistic dispersions, the dx2−y2 symmetry is the lead-
ing instability. When the main dx2−y2 order parameter appears
at Tc, for T	Tc the effective dispersion �k is gapped and any
secondary instability requires a minimum �critical� value for
the associated interaction strength, as opposed to the case of
an instability developing in a Fermi sea. The dxy component
turns out to be the best candidate for the secondary gap �i.e.,
it has the lowest critical value of the interaction� since it has
the largest contributions from the regions in which the main
gap has nodes. Since the onset of a secondary component is
essentially determined by the competition with the main gap,
one can favor a mixed state by reducing the dx2−y2 compo-
nent. The complementarity between dxy and dx2−y2 also im-
plies that the two components can exist simultaneously for a
wide range of parameters. A secondary order parameter with
a different symmetry can instead less efficiently exploit the
Fermi-surface portions in which the first gap has nodes.
Therefore, if we increase the associated coupling, we have an
abrupt change from a pure dx2−y2 to a pure order parameter of
different symmetry, and a very fine tuning is required to have

both order parameters. This is the case of a dx2−y2 + isxy,
which has the second smallest critical coupling but it rapidly
turns into a pure sxy as V2 is further increased. For example,
using V1=230 meV, t=200 meV, t� / t=0.25 the critical V2
for the isxy component is 1.15 times that of the idxy gap but
the mixed order parameter only exists in a tiny 0.02 meV
window, and it is rapidly replaced by a pure sxy wave which
is not relevant to experiments.

The focus of this paper is the effect of a secondary com-
ponent of the superconducting order parameter on the super-
fluid density 
s, which is directly related to the London pen-
etration depth by the relation �−2=4�e2
s /mc2, being m the
electron mass and c the speed of light. 
s is defined as


s = �


�2�k

�k2 	ck
† ck
 − lim

k→0
�

0

�

d�	j�k��j�− k0�
 , �3�

where the first term is the zero-temperature contribution
while the other is the current-current response. For BCS pair-
ing, in case of spin degeneracy, the previous expression then
reads


s = �
k

�2�k

�k2 �1 −
�k

�k
tanh���k

2
� + 2�

k
� ��k

�k
�2� f��k�

��k

�4�

being f��k�=1 / �e��k +1� the Fermi-distribution function for
the Bogoliubov quasiparticles.

III. SUPERFLUID DENSITY IN THE MIXED STATE

Before addressing the comparison with experimental data,
we consider the effect of the onset of the dx2−y2 + idxy mixed
order parameter in general terms. In Fig. 1�a� we plot the
temperature dependence of the superfluid density and of the
components of the superconducting gap, normalized to their
T=0 values �the parameters are reported in the figure cap-
tion�. Indeed the results show that the linear temperature be-
havior characteristic of the d-wave state,16 associated to the
presence of nodal quasi particles, is modified below a tem-
perature Tc� �see Fig. 1�a��. The low-temperature feature of
the superfluid density is clearly related to the development of
a dxy gap, which fills the nodes of the dx2−y2 component be-
low the secondary “critical temperature” Tc�. In this regime,
in which a dx2−y2 + ıdxy order parameter is stable, the shape of
the superfluid density is more similar to that of a usual
s-wave superconductor, reflecting the absence of low-energy
excitations. This shows that an “s-wavelike” behavior at low
temperatures does not automatically suggest an s-wave com-
ponent and that the dx2−y2 + idxy order parameter generates a
temperature behavior which reproduces the qualitative re-
sults of Refs. 9, 10, and 12.

We now briefly discuss how the shape of the superfluid
density depends the parameters of the system. A crucial pa-
rameter which varies in the different cuprates is the next-
neighbor hopping t� �Ref. 18� which controls the position of
the Van Hove singularity �VHS�.19 Therefore t� can push the
singularity close to the chemical potential, thereby favoring
the dx2−y2 at the expenses of the secondary gap. Indeed, as
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shown in Fig. 1�b� at fixed doping Tc� decreases as the chemi-
cal potential approaches the VHS. The same behavior holds
for the amplitude of the secondary gap as expected within
BCS. Similar results are naturally obtained by changing the
hole concentration instead of t� �see Fig. 1�c��, i.e., changing
the chemical potential and its position with respect to the
VHS. In practice the variation in t� in different materials can
be quite large, and it affects the symmetry of the order pa-
rameter much more than doping variations within the physi-
cally relevant regime. In some cases �e.g., in LSCO com-
pounds, where t� / t�0.15 �Ref. 18��, the chemical potential
can approach or cross the VHS in the relevant doping range.
On the other hand when t� is larger �e.g., in YBCO com-
pounds� and the singularity is far from the Fermi level, the
effect of doping becomes less important. Also orthorhombic
distortions or bilayer splitting reduce the dx2−y2 gap, allowing
for a larger secondary component.17 As a more technical
note, the value of the cutoff �0 plays a role in the stability of
the secondary component because it selects the portion of
density of states which contributes to the effective coupling,
i.e., a small cutoff makes the system more sensitive to the
details of the bandstructure.20 For the range of parameters of
interest this reflects in a stronger effect of the VHS, which
favors the main component at the expenses of the secondary
one.

We now turn to the experimental evidences discussed
above considering the specific cases of optimally doped
LSCO �Ref. 9� and YBCO.12 We use parameters �t
=200 meV and V1=0.55t, V2=1.10t, �0=0.25t, t�=0.135t
for LSCO and V1=1.10t, V2=1.275t, �0=0.25t, t�=0.35t for
YBCO� that reproduce the experimental dispersions and the
zero-temperature value of the gaps. The doping is ��1−n
=0.17 in both cases. As shown in Fig. 2, our simple theoret-
ical approach well reproduces the temperature behavior of 
s
for a wide range of temperature. The appearance of the sec-
ondary component is much more pronounced for LSCO, in
agreement with the above analysis about the role of t� / t. The
deviation between the BCS results and the experiments close
to Tc are obviously expected because of the relevance of
fluctuations for quasi two-dimensional strong-coupling su-
perconductors.

Our analysis shows that the experimental evidence of a
low-temperature “bump” on top of the linear temperature
dependence can be understood in terms of a dx2−y2 + idxy order
parameter without invoking an s-wave component. In our
calculations we can get an isotropic s-wave component only

if we relax the assumption of a repulsive V0. In this case we
obtain a mixed dx2−y2 + is for a sizeable local attraction V0.
This is hardly compatible with the strong local repulsion
responsible of the Mott state in cuprates.

As a final remark we focus our attention on the effect of
an external magnetic field, which seems to flatten out the
low-temperature behavior of the penetration depth in the ex-
perimental data.9,10 Several conflicting interpretations have
been proposed. Some of them14,16 relate the flattening to a
nonlocal response of the d-wave superconductor. Other stud-
ies identify the low-temperature feature with a second gap
being either spin-density wave15 or a different superconduct-
ing gap in the same spirit of the present analysis.13 In Ref.

FIG. 1. �Color online� �a� Typical behavior of 
s and superconducting gaps �x2−y2 and �xy as a function of T. The parameters are t
=200 meV, V1 / t=0.50, V2 / t=1.00, �0 / t=0.25, t� / t=0.25, and doping �=0.17. Each quantity has been normalized to its T=0 value in order
to better compare the curves. The low-energy feature is associated to the opening of the secondary gap. �b� Behavior of 
s for different values
of t� / t and �=0.17, and �c� Behavior of 
s for different dopings and t� / t=0.25. �In panels �b� and �c� t, V1, V2, and �0 are as in panel �a�.�
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FIG. 2. �Color online� Theoretical results for superfluid density
against experimental data for the �normalized� spin depolarization
rate on La1.83Sr0.17CuO4 �Ref. 9� and YBa2Cu3O6.95 �Ref. 12�
compounds.
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13, in particular, the fragility of the secondary component to
an external magnetic field has been advocated as a proof of
its s-wave nature. It is crucial to observe that the experimen-
tal magnetic fields �0.02, 0.1, and 0.64 T� �Ref. 9� are too
low to directly affect the secondary gap, whatever the
mechanism could be. In this sense, the effect of these small
fields can only be a minor indirect consequence, and it hardly
shed lights on the symmetry of the secondary component.
Within the second gap interpretation, we notice that the main
element for the stability of the secondary component is ac-
tually the size of the main gap, and that tiny variations in the
latter may completely suppress the former.

IV. CONCLUSIONS

In this paper we have analyzed the effect of a time-
reversal breaking order parameter dx2−y2 + idxy on the tem-
perature evolution of the superfluid density within a BCS
formalism. This combination turns out to be the most stable
mixed order parameter if the main component has dx2−y2

symmetry.17 Moreover, as opposed to the anisotropic isxy
component, it allows for a smooth evolution from a pure d
wave to a superconducting phase which displays a secondary

component at low temperature. The same smooth evolution
is mirrored in the temperature behavior of the superfluid den-
sity, in which a small bump is superimposed to the linear
behavior characteristic of a pure dx2−y2 wave.

We compared numerical results to experimental data on
two cuprates and showed that the low-temperature feature
observed in �SR measurements can be reproduced assuming
reasonable parameters for the system in such an unconven-
tional symmetry phase.

Our calculations show that the opening of a secondary
gap requires a fine tuning of the parameters. Therefore more
experimental confirmations are needed to assess this second-
ary order parameter as an intrinsic property of the cuprates.
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