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Magnetic properties of R,Mn,0, pyrochlore rare-earth solid solutions
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Three (R,R’),Mn,0; ferromagnetic pyrochlore systems were studied to investigate the role of the R** ionic
size versus 4f moment on the magnetic properties of the Mn,O, sublattice. The Curie temperature 7
=18+ 1 K for R=Y and Lu remained nearly constant for (Y;_,Lu,),Mn,0 but the magnetization data show
characteristics of spin-glass behavior in low magnetic fields, and at 5 T, the magnetization fails to reach the
expected 3 up/Mn** found by 0.5 T in TI,Mn,0; and In,Mn,0,. A frustrated, minor antiferromagnetic
component apparently competes with the ferromagnetic component of the Mn*+-O-Mn** interactions to give a
minor antiferromagnetic component to the major ferromagnetic spin alignment of the Mn** ions. A T¢
=42*1 K for R=Dy and Yb remains nearly constant in the (Dy,_,Yb,),Mn,0; system and T increases
systematically from 19 to 42 K with Dy concentration in (Dy;_.Lu,),Mn,0;, which clearly shows that a
ferromagnetic interaction between the R**-ion and Mn**-ion spins favors ferromagnetic alignment of the
Mn**-ion spins to double the magnitude of 7. by relieving the frustration of the Mn,05 sublattice. The R3*-ion
size has little effect as the Mn-O-Mn bond angle changes by no more than ~1° with changing ionic radius of

the R3* jon.
DOI: 10.1103/PhysRevB.82.132407

I. INTRODUCTION

Crystals containing geometrically frustrated interacting
spins have attracted much attention for their variety of ex-
citing physical properties stemming from the competing
interactions that prevent the spin system from an ordering
that optimizes every interaction. Pyrochlore oxides with
the general formula A,B,0; (A=trivalent cation, B
=tetravalent cation) form one of the well-known examples
of such crystals.! In the cubic pyrochlore structure, the two
cation species, A and B, are independently arranged into
corner-sharing cation tetrahedra forming three-dimensional
mutually interpenetrating sublattices. Oxygen atoms are then
situated in such a way that each A cation is surrounded by
eight oxygen atoms and each B cation by six oxygen atoms.
Interesting magnetic and transport properties such as spin-
glass (SG),>* spin-ice*® and spin-liquid’ states, colossal
magnetoresistivity,®® an anomalous Hall effect,'” a metal-
insulator transition,> and superconductivity!' have been re-
vealed for the pyrochlore oxides.

The Mn-based pyrochlore oxides, A,Mn,O5, can be pre-
pared through high-pressure (HP) synthesis for small rare-
earth elements (R=Sc, Y, Dy-Lu) (Refs. 12 and 13) and also
for In and Tl (Refs. 8, 9, and 14) as the A constituent. The
pyrochlore T1,Mn,0; is metallic, whereas In,Mn,O; and
R,Mn,05 are semiconducting. All the A,Mn,0; phases are
ferromagnetic (FM) at low temperatures, the fact being well
explained by a dominant FM Mn-O-Mn superexchange in-
teraction for the peculiar Mn-O-Mn bond angle of about
130°.'* According to the Goodenough-Kanamori rules,':1®
an antiferromagnetic (AFM) 180° Mn-O-Mn superexchange
interaction changes to an FM interaction as the Mn-O-Mn
bond angle decreases to less than about 135°. However, an
AFM Mn-Mn superexchange is also present at smaller bond
angles and it dominates the 90° Mn-O-Mn interaction where
the Mn** octahedra share common edges in an oxide. With a
130° Mn-O-Mn bond angle, the larger Mn-Mn separation
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makes dominant the FM Mn-O-Mn interactions, but it is
clear that the strength of a net FM interaction between
octahedral-site Mn** ions depends sensitively on the Mn-
O-Mn bond angle. The bond angle changes progressively
with R3*-ion size in the RMOj perovskites but the bond
angle is not sensitive to the R>*-ion size in the R,Mn,0,
pyrochlore structure.'>!* The FM transition temperature T
is much higher for TI,Mn,0, and In,Mn,0; (over 120 K)
than for Lu,Mn,0; and Y,Mn,0; (below 20 K), which may
be attributed to strong hybridization of In(5s)/TI(6s) orbitals
with O(2p) and Mn(3d) orbitals enhancing the FM interac-
tion (and simultaneously the electrical conductivity).!*
Within the R,Mn,0 system, however, the 7 value deviates
from any systematic trend expected on the basis of the R**
constituent size, which implies that a magnetic R** constitu-
ent (or 4f moment) may give an additional contribution to
the magnetic behavior.!>!%!7-19 Apparently the R,Mn,0;
system differs in the nature of its magnetic phase transition
from other pyrochlore oxide systems such as R,M0,0; (Ref.
20) and R,Ru,0,.21"23 So far based on several complimen-
tary experimental techniques, it has been revealed that the
magnetism of R,Mn,O5 is of the reentrant-SG (RSG) type at
low temperatures.'”-18

A so-called magnetic dilution realized, for instance, by
gradually substituting nonmagnetic R** ions for magnetic
R3* ions>>*?3 is a highly useful approach to deepen our un-
derstanding of complex magnetic systems, including the
present R,Mn,O, system. However, as different R consti-
tuents in general are of different sizes, such a substi-
tution inevitably involves some local structural changes
that may affect the nature of the superexchange inter-
actions. For example, the R,Mo0,0; system was extensively
studied and shown to exhibit a universal dependence of 7
on the mean ionic radius of the constituent R3* ions,
r(R**).226-28 In the present study we investigate three differ-
ent pyrochlore manganese-oxide solid-solution systems, (i)
(Y 1 _XLux) 2Mn207 . (ll) (Dy 1 _bey) 2Mn207, and (lll)
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(Dy,_.Lu,)>Mn,05. In all the three systems (i)—(iii) the lat-
tice shrinks with increasing substitution level, i.e., with in-
creasing x, y, or z, suggesting a systematic increase in the
degree of chemical pressure on the Mn,O, array. The (i)
“nonmagnetic-R” system, (Y,Lu),Mn,0,, contains only
nonmagnetic R** ions whereas in the other two systems, (ii)
and (iii), the host R3* cation (=Dy>*) is magnetic. In the (ii)
“magnetic-moment-diluted” (Dy, Yb),Mn,O; system, not
only the host but also the substituent is magnetic, but with a
smaller magnetic moment compared to that of the host. In
the (iii) “magnetic-ion-diluted” (Dy,Lu),Mn,0, system, the
substituent is nonmagnetic. Additionally we synthesize and
characterize another type of magnetic-ion-diluted sample,
(Dyy5Y0.5),Mn,0-, in which the two R** cation constituents
are of nearly equal size.

II. EXPERIMENTAL

Essentially single-phase samples of (Y,_,Lu,),Mn,0; (x
=0.3, 0.5, 0.8, and 1.0), (Dy,_,Yb,),Mn,0; (y=0.0, 0.3, 0.5,
0.8, and 1.0), (Dy,_.Lu,),Mn,0; (z=0.0, 0.2, 0.5, 0.7, 0.9,
and 1.0), and (Dy5Y5),Mn,0, were synthesized by means
of an HP technique from stoichiometric ratios (in terms of
cation stoichiometry) of R,03; and Mn,03/MnCOj. Prior to
HP syntheses, raw-material powder mixtures were calcined
in air at 1300 °C for 24 h. The excess oxygen required for
stabilizing the Mn-based pyrochlore phases was provided
from KCIO; which was mixed with the precursor powder
before loading the calcined powder in a gold capsule. High-
pressure syntheses were then carried out with a cubic-anvil-
type HP apparatus at 5 GPa and 1000 °C for 30 min.
From the HP product, residual KCl was washed out with
distilled water. All the samples were then characterized for
phase purity by x-ray powder diffraction (XRD; Rigaku:
RINT2550VK/U equipped with a rotating Cu anode; Cu K«
radiation). The diffraction patterns were readily indexed with

cubic space group Fd3m expected for the Mn-based pyro-
chlore oxides.'>!° The lattice parameter a was determined
from the XRD data with the software JANA2000 (Ref. 29) in
the profile-fitting mode. The dc magnetization (M) was mea-
sured for the samples in a temperature range of 5-400 K in
both zero-field-cooled (ZFC) and field-cooled (FC) modes
with a superconducting quantum interference device magne-
tometer (Quantum Design: MPMS-XL5).

III. RESULTS AND DISCUSSION

Judging from the XRD patterns (not presented here), all
the samples were essentially single phase. The lattice param-
eters a calculated from the XRD data are plotted in Figs.
1(a)-1(c) for the three sample series, (i) (Y,_,Lu,),Mn,0O5,
(ii) (Dy,-,Yby),Mn,05, and (iii) (Dy,_,Lu,),Mn,0;, against
the tabulated average ionic radius, r(R’*) for eightfold
coordination.®® For the end members, i.e., R,Mn,0; with
single R constituents, the a values are in good agreement
with those previously reported.'>'*!° For solid-solution
compositions, the a value depends linearly on the average
ionic radius r(R*"). Therefore we may conclude that the
mean Mn-O bond length systematically decreases with de-
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FIG. 1. (Color online) Lattice parameter a plotted as a

function of the average ionic radius of the R cation(s), r(R>"),
for (a) (Yl—xLux)ZMn207’ (b) (DYI—bey)ZMHZO% and (C)
(Dy;_,Lu,),Mn,0;. Data for the R,Mn,0- phases (A; taken from
Ref. 31) are given for comparison.

creasing r(R**); however, the Mn-O-Mn bond angle changes
by no more than ~1°.!214

The magnetic susceptibility (x) versus temperature (7)
curves for the (i) nonmagnetic R (Y,_,Lu,),Mn,0; system
are presented in Fig. 2(a). All the samples show an FM tran-
sition around T-=17=*1 K; accordingly it is clear that 7T
does not depend significantly on r(R**). Magnetization data
for the (ii) magnetic-moment-diluted (Dy,_,Yb,),Mn,0- and
(iii) magnetic-ion-diluted (Dy,_.Lu,),Mn,0O; systems are
shown in Figs. 2(b) and 2(c), respectively. All the
(Dy,_,Yb,),Mn,0; samples show an FM transition at T
=42+ 1 K, whereas for the (Dy,_.Lu,),Mn,0; samples T
decreases from 42 K (for z=0.0) to 19 K (for z=1.0). Here
we should mention that for the ad hoc (Dyys5Ys5),Mn,0;
sample, the T value was determined at 35 K (not shown in
Fig. 2), which is close to the value (39 K) observed for
(Dyg sLug 5),Mn,05. To visualize the above findings, we plot
Tc against r(R**) in Fig. 3 for all the samples (i)—(iii) and
also include, for comparison, the 7 values of nondoped
R,Mn,05 phases with single R constituents as given in Ref.
31. From Fig. 3 it is clearly revealed that the T value does
not depend simply on r(R**) but increases with increasing
additional concentration of magnetic R** ions. It moreover
seems that the primary factor is not the average magnetic
moment [cf. the essentially constant T for the magnetic-
moment-diluted (Dy;_,Yb,),Mn,0; system] but the concen-
tration of magnetic ions in the rare-earth sublattice [cf. the
decreasing T in the magnetic-ion-diluted (Dy,_.Lu,),Mn,0;
system with z].

We also observe from Figs. 2(a)-2(c) that, in contrast to
the (Y,Lu),Mn,0, system, a clear branching of the magne-
tization curve between ZFC and FC modes is observed for
both the (Dy, Yb),Mn,05 and the (Dy,Lu),Mn,0 systems,
which is consistent with the presence of an RSG-like mag-
netic state.!’”-!° This is in accordance with the fact that be-
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sides the magnetic Mn** ions, there are magnetic R3* jons in
the latter two systems such that additional R**-R** and/or
R*-Mn*" magnetic interactions may exist.

Magnetization (M) data measured at 5 K with respect to
applied magnetic field (H) are shown in Figs. 4(a)-4(c).
Nearly complete saturation is seen for all the samples; the
slight but continuous rise of magnetization with increasing
magnetic field infers the presence of an SG-like state since
the orbital angular momentum on the Mn** ions is
quenched.'” For the (Y,_Lu,),Mn,0; samples, the esti-
mated magnetic moment per Mn** ion approaches but does
not reach the theoretical value of 3 uyg, see Fig. 4(a), con-
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FIG. 3. (Color online) T versus r(R>*) (=average ionic
radius of the R-site cations) for the present sample series
of (Y, Lu),Mn,0; (#), (Dy;_,Yby),Mn,0; (M), and
(Dy;_.Lu,);Mn,0; (O) and also in comparison for the R,Mn,0,
(A) phases (as given in Ref. 31). The value of T¢ is estimated from
the magnetic-susceptibility data.

sistent with a frustrated AFM spin component of the Mn
sublattice. As reported previously for R,Mn,0;(R=Ho,Yb)
(Ref. 18) and also revealed in our earlier study on
(Dy,Lu),Mn,0,," saturation of the Mn sublattice, which
couples ferromagnetically with the R sublattice, does not de-
pend significantly on the R composition. Hence we sub-
tracted the magnetization curve of Lu,Mn,0; from those for
(Dy;_,Yb,),Mn,0; and (Dy,_,Lu,),Mn,0; in Figs. 4(b) and
4(c), respectively, in order to reveal the magnetization con-
tribution purely from the magnetic rare-earth sublattice. Let
us discuss the M-H curves for the (Dy,_,Yb,),Mn,0; system
given in Fig. 4(b). The estimated saturation moment for the
(Dy,Yb) sublattice at y=0.0 (or the Dy sublattice) is close to
that previously reported for (Dy,Y),Ti,O; (Ref. 25) and
Dy,Nb,0,.%2 Then with increasing Yb-for-Dy substitution
level y, the saturation moment per R** cation gradually de-
creases such that at y=1.0 (Yb,Mn,05), the saturation mag-
netization for the Yb sublattice is close to the reported value
for other Yb-based pyrochlore oxides.>=> We conclude that
in high (5 T) magnetic fields, both the Mn and R sublattices
are FM and approach saturation; the FM R3**-Mn** spin-spin
interactions suppress the frustrated-AFM component on the
Mn*-ion array that is manifest at lower fields in
(Y,_,Lu,)Mn,0,. However, at lowest temperatures, R3*-R3*
interactions may introduce in zero magnetic field another
magnetic frustration that is amplified by a crystalline aniso-
tropy of the orientation of the rare-earth moment.

IV. CONCLUSIONS

We synthesized and characterized three types of
R,Mn,0, pyrochlore rare-earth solid-solution systems, i.e.,
(i) nonmagnetic R (Y,Lu),Mn,0,, (i) magnetic-moment-
diluted (Dy,Yb),Mn,0,, and (iii) magnetic-ion-diluted
(Dy,Lu),;Mn,0;. The saturation magnetization of the
(Y,Lu),Mn,05 system approaches, but does not reach by 5
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T, the 3 wg/Mn** that is attained with T1,Mn,O, and
In,Mn,O5, which indicates the presence of a minor, frus-
trated AFM component competing with the FM
Mn*-O-Mn** interactions in the (Y,Lu),Mn,0, system. In
low applied magnetic fields at low temperatures, the AFM
component of the interactions gives a magnetic susceptibility
characteristic of an RSG like. The systems containing a spin
on the R** ion exhibit a T that increases significantly with
the concentration of the R** ions having a spin. This obser-
vation shows that FM R**-Mn** interactions favor FM align-
ment of the Mn**-ion spins, thus reducing the net AFM frac-

tion of the interactions to relieve the frustration and raise 7¢
remarkably. The R3*-ion size has little effect on the magnetic
interactions; in the pyrochlore structure, the Mn-O-Mn bond
angle varies little with R3*-ion size.
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