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A peculiar manifestation of the Aharonov-Bohm effect in Mott insulators, presents as a versatile scheme to
manipulate the intriguing ground-state spin chirality, such as, tune the magnitude continuously, switch an
abrupt jump, or even reverse its sign from a para-chiral phase to a dia-chiral phase. Such an unusual mecha-
nism is due to the coupling between multiple-spin ring exchanges and magnetic flux, and the competition
between spin chirality and magnetism, and is demonstrated explicitly in both quasi-one-dimensional ladders
and two-dimensional lattices with triangles as elementary plaquettes.
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I. INTRODUCTION

An elusive but probable noncoplaner spin ordering, spin
chirality, has intrigued physicists for decades, and been dis-
cussed in various contexts, ranging from spin glass to frus-
trated quantum magnetism, and from superconductivity to
anomalous Hall effect.1–5 Of particular interest, the states
with spin chirality may have exotic transport3,6 and magne-
toelectric properties.7 For instance, conduction electrons
propagating through a chiral spin texture in a frustrated mag-
net, may experience an effective Berry phase and thus ex-
hibit anomalous Hall effect.3 And if this spin ordering opens
a charge excitation gap, even spontaneous quantum-Hall ef-
fect will occur.6

Given the tremendous interest in spin chirality and its
unusual effects, it is desirable to find simple and realistic
examples with tunable spin chirality. A possible route is to
study Mott insulators �MIs� with multiple-spin ring ex-
changes �REs� modulated by a magnetic flux. The simplest
three-spin RE �3SRE� includes a linear coupling between
spin chirality and magnetic flux in MIs.7–9 And a magnetic
flux might induce competing Aharonov-Bohm �AB� effects
on different RE paths.10,11 Such various REs have been found
to be essential in solid 3He systems,12–15 electron Wigner
crystals,10,16–18 an organic compound �-�ET�2Cu2�CN�3,8,19 a
cuprate La2CuO4,20,21 and cold atoms in optical lattices.22

Despite these encouraging advances, one still has no quanti-
tative understanding that how can we quantitatively tune the
spin chirality and switch it on or off in MIs, it is both of
interest and timely to address this problem.

Here we conduct a study of a frustrated quantum spin-1/2
system with 3SRE and four-spin RE �4SRE� modulated by a
magnetic flux. Employing exact diagonalization �ED� of fi-
nite systems, we consider both a �two-leg� triangular ladder
and a two-dimensional �2D� triangular lattice geometry with
periodic boundary conditions �PBCs�, which are the simplest
systems on which both 3SRE and 4SRE are possible. Be-
yond the weak-magnetic-flux regime, we explore the large
parameter space systematically, and demonstrate that: vary-
ing the magnetic flux strength with competitive responses of
3SRE and 4SRE interactions, gives a versatile scheme to
manipulate the spin chirality in MIs quantitatively, especially

near the phase boundaries of a para-chiral �PC� phase and a
dia-chiral �DC� phase.

II. MODEL HAMILTONIAN

With the nearest-neighbor �NN� Heisenberg antiferromag-
netic �AFM� coupling, the 3SRE and 4SRE terms modulated
by a uniform magnetic flux, the spin-1/2 model Hamiltonian
in a triangular ladder/lattice reads

H = J�
�ij�

Si · S j − K3 �
ijk��

�ei�Pijk + e−i�Pijk
−1�

+ K4 �
ijkl��

�ei2�Pijkl + e−i2�Pijkl
−1 � , �1�

where Si is the spin operator on site i. Pijk which defined as
P123: ��1 ,�2 ,�3�→ ��3 ,�1 ,�2�, is the cyclic permutation of
the three spins sitting on a triangular plaquette, and satisfies
P123

−1 = P123
† = P321. And similarly P1234: ��1 ,�2 ,�3 ,�4�

→ ��4 ,�1 ,�2 ,�3� for four spins sitting on a rhombus consist-
ing of two elementary triangles. Contrary to 3He systems in
which the 3He atoms are neutral, and similar to electron
Wigner crystals,10,11 a magnetic flux through the exchange
path can change the nature of the REs in MIs, owing to the
AB effect. � is the magnetic flux threading a triangular
plaquette, in units of �0 /2� ��0=hc /e is the flux quantum�.
We focus here on the parameter space with J ,K3�0 and
K4�0, and vary the ratio J /K3 and K4 /K3 with the setting
K3=1 �as an energy unit�.

For our spin-1/2 case, Pijk satisfies i�P123− P321�
=−4S1 ·S2�S3	−4�123, where �ijk represents the local spin
chirality.1 Given a small �, since ei�P123+e−i�P321
= cos ��P123+ P321� − 4 sin ��S1 ·S2�S3� 
 �P123+ P321�
−4��123, the magnetic flux couples linearly to the spin
chirality in the low-� limit,7–9 and therefore could probably
induce a nonzero chirality density. Here we are concerned
with the large parameter space of �� �0,�� and hence con-
sider the many-body AB effect induced by a strong magnetic
flux.

III. TRIANGULAR LADDERS

We first consider the ladder geometry. We study the
ground state �GS� averaged �local� spin chirality
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�0	−��ijk�0 �here a negative sign is added for convenience�
by varying �, J, and K4. The typical ED results for a trian-
gular ladder of the size 8�2 are shown in Fig. 1.

In the absence of 4SRE �K4=0�, �0 is non-negative in the
parameter region �� �0,��, as shown in Fig. 1�a�. Note that
�0 has the symmetry �0���=−�0�−��=−�0�2�−��, which
has been numerically confirmed. The whole �-J parameter
space is roughly separated into two regions: the bottom left
corner �J	2.4, � /2�	0.17, and uniformly colored� with
�0=0 and saturated ferromagnetic �FM� �Stot=Smax�, and
larger region with �0�0 and spin-singlet GSs�Stot=0�. We
call the �0�0 state as a PC phase since it can come from the
linear coupling between chirality and magnetic flux. The
quantum critical line between these two regions has also
been verified through tracking the nonanalyticities in the GS
energy function E0�� ,J�.

For the triangular ladders with PBCs, because of
the identity P123+ P321=2S1 ·S2+2S2 ·S3+2S3 ·S1+1 /2,
the Hamiltonian with K4=0 will reduce to H=−N cos �

+ J̃1��ij�
interSi ·S j + J̃2��ij�

intraSi ·S j +4 sin ��ijk��Si ·S j �Sk with

J̃1=J−4 cos � and J̃2=J−2 cos �, where the superscript
“inter” �intra� corresponds to the effective interchain �intra-

chain� two-spin coupling J̃1�J̃2�. At the left boundary line of
Fig. 1�a� with �=0, there is a quantum-critical point

J�2.4 corresponding to J̃2 / J̃1=−0.25 which separates the
saturated FM phase23 and the dimer phase.24 And at the right
boundary line of Fig. 1�a� with �=�, the GS is also the

dimer phase since J�0 and �=� gives J̃2 / J̃1�0.5.25

In the presence of 4SREs, there are even more interesting
behaviors of �0, as shown in Figs. 1�b�–1�f� with five typical
K4’s respectively. At K4=0.2 �Fig. 1�b��, the saturated FM
region shrinks in the J direction while expand a little in the �
direction. At K4=0.4 and K4=0.6 �Figs. 1�c� and 1�d��, at the
center of saturated FM region, there appears a negative-�0
region in which the GSs are spin singlets �Stot=0�. We call
such a negative-�0 state as a DC phase, in contrast to the PC

phase. When K4 is further increased to 0.8 �Fig. 1�e�� and 1.0
�Fig. 1�f��, the DC region continues to expand and occupies
a significant portion in the �-J parameter space.

An intuitive analysis for K4�0 is much more difficult,
than that in the simpler case of K4=0. However, it should be
noted that the 4SRE operators satisfy P1234− P4321

= 1
2 �P123+ P234+ P341+ P412−H.c.�=2i��123+�234+�341+�412�.

Therefore, ei2�P1234+e−i2�P4321=cos 2��P1234+ P4321�
−2 sin 2���123+�234+�341+�412�. Due to the opposite signs
and the different AB periods of 3SRE and 4SRE terms, the
low-�-limit coupling coefficient and the portion of DC re-
gion depend on the competitions between them.

In order to address the effects of ladder sizes, we compare
two sizes of 8�2 and 12�2. The mainly considered quan-
tities are �0 and the GS energy per site E0 /N. From
Figs. 2�a�, 2�c�, and 2�e�, we can see that at the same J and
K4, the E0��� /N curves coincide well with each other for
both two ladder sizes. And the �0��� curves �Figs. 2�b�, 2�d�,
and 2�f�� also tell that the effects of sizes are already quite
small. All these results indicate that in the thermodynamic
limit �N→
�, at given J and K4, both E0��� /N and �0���
will not deviate obviously from these finite-size results.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

φ/2π

J

(a) K4=0.0

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

PC

FM

DM DM

φ/2π

J

(b) K4=0.2

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

PC

FM

DM DM

φ/2π

J

(c) K4=0.4

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

PC

FM

DM DM

φ/2π

J

(d) K4=0.6

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

PC

FM

DM DM

DC

φ/2π

J

(e) K4=0.8

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

PC

FM

DM DM

DC

φ/2π

J

(f) K4=1.0

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

PC

FM

DM DM

DC

FIG. 1. �Color online� Intensity plots of the GS spin chirality �0

in the �-J parameter space �setting K3=1� of the 8�2 triangular
ladder at various fixed 4SRE strengths K4’s. Four typical phases are
labeled: FM, dimer �DM�, PC, and DC.

-2.5

-2

-1.5

-1

-0.5

0 0.1 0.2 0.3 0.4 0.5
φ/2π

(a) E0(φ)/N at J=1.0

-3

-2.5

-2

-1.5

-1

-0.5

0 0.1 0.2 0.3 0.4 0.5
φ/2π

(c) E0(φ)/N at J=2.0

-4

-3.5

-3

-2.5

-2

-1.5

-1

0 0.1 0.2 0.3 0.4 0.5
φ/2π

(e) E0(φ)/N at J=4.0

-0.2

-0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5
φ/2π

(b) χ0(φ) at J=1.0

16,K4=0.0
16,K4=0.2
16,K4=0.4
16,K4=0.6
16,K4=0.8
16,K4=1.0
24,K4=0.0
24,K4=0.2
24,K4=0.4
24,K4=0.6
24,K4=0.8
24,K4=1.0

-0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5
φ/2π

(d) χ0(φ) at J=2.0

-0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5
φ/2π

(f) χ0(φ) at J=4.0

FIG. 2. �Color online� Triangular ladders: GS energy per site
E0 /N �left� and GS spin chirality �0 �right� versus �, for various
J’s, K4’s, and two ladder sizes N’s.
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IV. TRIANGULAR LATTICES

For the 2D triangular lattices, we focus on two cases with
the sizes of 5�4 and 6�4 �Fig. 3�. In the absence of 4SRE
terms �K4=0�, similar to the previous case of ladders, the
Hamiltonian of a 2D triangular lattice with PBCs will reduce
to H=−N cos �+ �J−4 cos ����ij�Si ·S j +4 sin ��ijk��Si ·S j
�Sk. From Fig. 3, we can see that E0��� /N and �0��� dis-
play quite similar behaviors resulting from the competitions
between 3SRE and 4SRE terms as the ladders, such as the
sign changes and abrupt jumps of �0. We should note that the
finite size effects of �0 are obvious at some parameter re-
gions; however, the finite size effects of E0 are always much
less significant.

V. LONG-RANGE CORRELATIONS

We now turn to three kinds of correlation functions �CFs�
in ladders. The first is the spin-spin CF, defined as C�r�
= �Si ·Si+r�, where r is the range �in units of the lattice con-
stant� between two sites along the chain direction and takes
integer �half-integer� values for intrachain �interchain� spin-
spin CF C1�r��C2�r��. The other two CFs are defined as
follows.15,19 The dimer operator on a bond �i , j� is defined by

dij = �1− Pij� /2 �where P12: ��1 ,�2�→ ��2 ,�1��. The dimer-
dimer CF between two bonds is D�r�= �dijdkl�− �dij��dkl� and
D1�r��D2�r�� for two parallel �nonparallel� rung bonds be-
tween two chains. The chiral-chiral CF between two tri-
angles is defined as X�r�= ��ijk�lmn� and X1�r� for two up-
triangles �or equivalently two down-triangles� while X2�r�
for an up-triangle and a down-triangle.

Now we take the 12�2 triangular ladder as an example
and first consider the simpler cases with only 3SREs �Fig. 4
with K4=0�. For J=1.0, tuning � /2� across an FM quantum
critical point at 0.125 �Fig. 4�a��, both C1�r� and C2�r� ex-
hibit that the GS consists of two-period FM domains with
opposite magnetization, which is a remnant signature of
long-range FM ordering in the FM region; tuning � /2� fur-
ther to 0.22 �Fig. 4�b�� at which �0��� takes a maximum,
C1�r��C2�r�� shows weak FM �AFM� correlations, and both
X1�r� and X2�r� reveal nondecaying long-range correlations;
when � is increased to � �Fig. 4�c��, C�r�’s and X�r�’s show
fast decaying behaviors, while D�r�’s reveal the long-range
dimer ordering. For J=3.0, �=0 �Fig. 4�d��, C1�r��C2�r��
shows strong �weak� AFM correlations because of J̃2� J̃1,
and D�r�’s also show slowly decaying correlations; tuning
� /2� to make �0��� take a maximum �Fig. 4�e�� and then to
0.5 �Fig. 4�f��, three kinds of CFs resemble the J=1.0 cases.

Next, we progress to more interesting cases with 4SREs.
For �J ,K4�= �1.0,0.6�, at �=0 �Fig. 4�g��, the nonzero K4
makes the long-range FM correlations destroyed, C�r�’s and
D�r�’s exhibit nondecaying fluctuations although X�r�’s show
fast decaying behaviors; tuning � /2� to 0.08 �Fig. 4�h��, at
which �0��� takes a negative minimum, the C�r�’s exhibit
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FIG. 3. �Color online� Triangular lattices: E0 /N �left� and �0

�right� versus �, for various J’s, K4’s, and two lattice sizes.
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FIG. 4. �Color online� Various GS correlation functions �see
text� versus the range r of the 12�2 triangular ladders at various
J’s, �’s, and K4=0,0.6.
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FM domains and X�r�’s reveal long-range correlations; then
tuning � /2� to 0.20 �Fig. 4�i��, at which �0��� jumps to a
large positive value, X�r�’s show long-range correlations.

VI. EFFECTS OF ZEEMAN TERM

In the Hamiltonian model Eq. �1�, we have neglected the
Zeeman term HZ=hZStot

z =g�Stot
z . In a real experiment of ap-

plying perpendicular magnetic field, the Zeeman term is not
negligible. Now we address how our main results might be
modified by including a Zeeman term. We take the 8�2
triangular ladder at K4=0.8 as an example, from Figs. 5�a�
and 5�b�, we can see that a small g does not modify the GS
chirality density appreciably; while for a larger g in Fig. 5�c�,
the DC region shrinks and the FM regions expands, and the
overall structure of phase diagram remains almost un-
changed. And we can expect an even larger g will align spins

along z direction, thus, in principle, might suppress both DC
and PC phases, while favors FM phase.

VII. SUMMARY AND DISCUSSION

For a spin-1/2 system in a triangular ladder/lattice with
NN AFM coupling, 3SRE and 4SRE, and a uniform mag-
netic flux �, we can effectively manipulate the GS spin
chirality �0, such as tune continuously the magnitude of �0
by varying �, switch an abrupt jump near an FM phase
boundary, or even reverse its sign near a transition from a PC
to DC phase. The DC phase with negative chirality found
here are due to the competition between 3SRE and 4SRE.
Various CFs discover the characteristic long-range correla-
tions accompanying the tuned or switched spin chirality.

Such an unusual and versatile manipulation of spin chiral-
ity presents a peculiar manifestation of the AB effect on
quasilocalized spins in MIs. The experimental observation of
these effects is a challenging task, but is probable in 2D
organic compound �-�ET�2Cu2�CN�3, quasi-one-dimensional
and 2D Wigner crystals, and cold atoms in optical lattices
with REs. For application to Wigner crystals, the phases ap-
pearing Eq. �1� are not in general � and 2�, and might be of
the order of 2� and 3� for electrons at low densities where
3SRE and 4SRE are comparable.17
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FIG. 5. �Color online� GS spin chirality �0 in the �-J parameter
space of the 8�2 triangular ladder at K4=0.8 and various effective
Zeeman couplings: �a� g=0.5; �b�g=2.0; and �c� g=6.0. Four typi-
cal phases are labeled as Fig. 1.
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