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Localized mode interactions in 0-77 Josephson junctions
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A long Josephson junction containing regions with a phase shift of 7 is considered. By exploiting the defect
modes due to the discontinuities present in the system, it is shown that Josephson junctions with phase shift can
be an ideal setting for studying localized mode interactions. A phase-shift configuration acting as a double-well
potential is considered and shown to admit mode tunnelings between the wells. When the phase-shift configu-
ration is periodic, it is shown that localized excitations forming bright and dark solitons can be created.
Multimode approximations are derived confirming the numerical results.
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Introduction. A Josephson junction is a system consisting
of two layers of superconductors separated by a nonsuper-
conducting barrier. Electrons forming so-called Cooper pairs
can tunnel across the resistive barrier even when there is no
applied voltage difference. Theoretically predicted by
Josephson' and first observed experimentally in Ref. 2, the
only requirement for the occurrence of Josephson tunneling
is a weak coupling of the wave functions of the two super-
conductors. The supercurrent (/) is proportional to the sine
of the electron phase difference across the insulator (u), i.e.,
I~ sin u.

Bulaevskii et al.>* proposed that a shift of 7 can be in-
troduced in the phase difference u of a Josephson junction by
installing magnetic impurities, which has been confirmed
recently.’ Present technological advances can also impose a
m-phase shift in a long Josephson junction using various
means, including multilayer junctions with controlled thick-
nesses over the insulating barrier,” pairs of current
injectors,® and junctions with unconventional order-
parameter symmetry.”!!

Distinct phenomena may occur when a junction with
phase shifts is connected to a normal junction, i.e., 0-7 Jo-
sephson junctions. These include the presence of a half mag-
netic flux quantum induced by spontaneously created super-
current circulating in a loop. Such unique characteristics
offer promising future device applications, such as novel cir-
cuits for information storage and processing in both classical
and quantum limits'? and artificial crystals for simulating and
studying energy levels and band structures in large systems
of spins'? (see also Ref. 14 and references therein). Here, we
demonstrate that Josephson junctions with phase shifts is an
ideal setting for showcasing many interesting features of lo-
calized mode interactions. Arguably the dynamics of the su-
perconductor phase difference can be seen to be analogs to
that of atomic wave functions of Bose-Einstein condensates
(BECs) (Refs. 15-19) in an external potential. In particular,
we consider Josephson junctions with phase-shift configura-
tions acting as a double-well and a periodic potential.

The interesting phenomenon of mode tunneling in BECs
in a double-well potential was predicted by Smerzi et al.,?%*!
followed by experimental observations.’>>} Here, we will
show that defect modes due to the presence of phase discon-
tinuities in 0-7 Josephson junctions can be exploited to ob-
serve a similar mode tunneling, which can also be viewed as
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Rabi oscillations of two interacting modes.?* Periodic defects
exhibiting mode self-trapping analogs to BECs in optical
lattices®® will also be discussed.

Double-well potential. A 0-7r Josephson junction with the
superconductor phase difference u at position x and time ¢ is
described by the sine-Gordon equation

Uy — Uy =— O(x)sin u, (1)

where x and r have been normalized to the Josephson pen-
etration depth \; and the inverse plasma frequency ', re-
spectively. The function 6(x) is piecewise constant represent-
ing the presence of 7 junctions. A double-well potential with
two 7 junctions of length a separated by a O junction with
length 2L is described by

-1 L<|x|<L+a,

6(x) = 2)

1 elsewhere.

At the points of discontinuities, the boundary conditions are

lim u(x,t) = lim u(x,1),
x—*{L,L +a}* x—+{L,L+a}”
lim u(x,1) = lim u,(x,1). 3)
x—*{L,L +a}* x—+{L,L+a}”

If ¢ solves Eq. (1), the linear stability of the solution can
be analyzed by substituting the spectral ansatz u=d¢
+v(x)eM and linearizing about ||v||., small to yield the eigen-
value problem v,,—\?v= 6 cos(¢p)v.

Equation (1) has two constant solutions (mod 27r), u=0
and u = . The solution = 7 has unstable continuous spec-
trum and hence is always unstable.?® The solution #=0 has
stable continuous spectrum A><<—1 and the discrete spec-
trum (eigenvalues) can be calculated analytically.?® Indeed,
the largest two eigenvalues A . of u=0 solve the equation

V1-A2 —
— =t A, F eI, (4)
tan(N'1 — A2q) B

The corresponding eigenmodes ®.(x) of A are
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e—\s“1+At(x—L—a) x>L+a,
b, =ycos[VlI-A.(x—L-a)]+Csin[yl -A.(x—L-a)] L<x<L+a, (5)
K, cosh(V1 + A.x) + K_sinh(V1 + A.x) 0<x<L,

T AL gin(VT=A =
where C=— % and Kizze+—i(2;lm
ization operator is a Sturm-Liouville operator and even in x,
the eigenmodes are simple and the eigenfunction ®, is an
even function and ®_ is odd. The two eigenvalues A are
depicted as a function of a for fixed L=2 (to the left of the
vertical dashed line).

It is clear that u=0 has a stability window. The change in
stability occurs at a critical distance a. when the critical ei-
genvalue crosses the horizontal axis A=0. Using the expres-
sion in Eq. (4), it follows that the critical length a.(L) is a,
=arctan(e?b).

In the instability region, a nonuniform time-independent
sign-definite ground state *u, (x) bifurcates. Its expression
can be written in terms of Jacobian elliptic functions’®?’ as

. As the linear-

4 arctan(e™**"0) x>L+a,
u,.=\ 2arcsinlm; sn(x—-x;,m;)] L<x<L+a,
a+ 2 arcsin[m, sn(x — x,,m,)]  0<x<L.

(6)
The parameters m; and m, are linked to the lengths a and L
by
a=2K(m;) —am™(m/4,m,)
—am ™~ Yarcsin[V2(1 + m% - m%)/Zml],ml},

L= K(my) — am™Yarcsin[V2(1 + m3 — m3)/2my],my}.

The translations x; are determined by the boundary condi-
tions in Eq. (3). The nonuniform ground state and its eigen-
values are presented in Fig. 1 (to the right of the vertical

FIG. 1. (Color online) The eigenvalues of the ground state as a
function of a for L=2. The dashed vertical line indicates the bifur-
cation point of the nonuniform ground state, where on the left and
on the right of the vertical line #=0 is stable and unstable, respec-
tively. The dashed lines show the eigenvalues of the uniform solu-
tion in its instability region. The inset presents a ground state when
L=2 and a=1.65.

dashed line).

Mode tunneling. In the following, let us first consider L
=2a=2. For those parameter values, #=0 is a stable ground
state. The numerically obtained time dynamics of an initially
localized excitation in the left well is presented in the top
panels of Fig. 2, clearly showing mode tunneling. Compare it
with the time dynamics of BECs reported in Refs. 20-23.

Next, we consider a parameter combination of L=2 and
a=1.65, i.e., u=0 is unstable. In the instability region of the
constant solution, excitations will oscillate on a nonzero
background u,. [Eq. (6)]. The oscillation amplitude in both
wells as a function of time is presented in panel (c) of Fig. 2.
When the initial oscillation amplitude is large enough, we
interestingly obtain chaotic oscillations (not shown here).

Two-mode approximations. We will explain the observed
mode tunneling using a two-mode approximation. Looking
for the solution of the time-dependent Eq. (1) of the form

u(x,t) = ug + A(t)®, + B(t)P_, (7)

where u,, is the ground state of the system, i.e., u,,=0 and
Ug=u,. when a is, respectively, on the left and right of the
vertical line in Fig. 1, substituting the ansatz Eq. (7) into Eq.
(1), and projecting the equation onto ®. will yield up to
O(A"B*™), n=0,....,4,
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FIG. 2. (Color online) Panel (a) shows the time dynamics of an
initially localized excitation in the left well with L=2 and a=1. In
panel (b), the oscillation amplitudes of the dynamics presented in
panel (a) are plotted against time. Panel (c) depicts the oscillation
amplitude on top of a nonzero background with a small initial am-
plitude for a double well with L=2 and a=1.65. Coupling coeffi-
cients appearing in Eq. (8) as functions of a for L=2 are shown in
panel (d). In calculating the coefficients, the eigenfunctions have
been normalized to ||®|..=1. Approximations obtained from the
two-mode Eq. (8) are shown as (red) dashed curves in panels (b)
and (c).
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A=AA+(CA%+ C,B?) + (C3,A° + CLAB?),

B=A_B+(C;_B*+C,_A’B) (8)
with
K o]
Clzjf Bsin(ugs)(l)idx, 9)
c,= X ’ 0'si O, D%d 10
2= 2 Sln(ugs) FH_ax, ( )
K.
C3+:?f Hcos(ugx)d)idx, (11)
C K 6 O2D%d. 12
= cos(u,,) D D dx, (12)

and K. =(f qu)zidx)‘]. The constants C; are plotted against a
in panel (d) of Fig. 2. The internal oscillation amplitude
u[*(L+a/2),t] is, respectively, approximated by u
+[A(r) = B(1)]/2.

For the uniform ground state (u,,=0), we have solved Eq.
(8) numerically and compared it with the oscillation ampli-
tude of the original equation in panel (b) of Fig. 2. One can
observe that quantitative agreements are obtained. An agree-
ment is also obtained for mode tunneling on a nonuniform
background, as shown in panel (c) of Fig. 2, provided that
the tunneling mode amplitude is small enough.

When A(0) and B(0) are large, it is interesting to note that
even though our two-mode approximation does not quantita-
tively capture the dynamics of the chaotic tunnelings it cap-
tures the qualitative transition to chaotic behavior.

Periodic defects. One can also include more phase shifts
and derive a multimode approximation. Below we consider
the case of periodic shifts alternating 7 junctions of length a
with O junctions of length L, i.e.,

8s

a
-1 xek(L+a)+<— ,—), kel,
2 (13)

NSRS

0=

1 elsewhere.

It is known that in the limit L—o (i.e., one well), u=0 is
stable for a < /4 and unstable otherwise.?® The eigenfunc-
tion corresponding to the critical eigenvalue A, of the
ground state u,, in the limit L — o will be denoted by ®(x).
For a<m/4 and u,=0,

() cos(V1 - Aoa)e‘\"TAo(IX\—a/Z) x| > al2,
X)= —_—

0 cos(V1 = Agx) x| < al2.
(14)

When L> 1, a tight-binding approximation can be used to
describe the interaction of the defect modes in the system
with periodic defects. We write
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u(x,0) =g+ 2 AP, (x), (15)

n=—0o

where ®,(x)=®,[x—n(a+L)]. Performing the same proce-
dure as before, one will obtain the lattice equation

A, = AoA, + KA + KA
- KA, 1. (16)

n+j

+ > Cl(Ky ;= A)A,y— KA,

n+j
Jj==*1

where

Cy =K(O)fw q)o(x)(b:l(x)d)h

—oo

K+ = C?_,1K<O)f (1)0()6)((9)2( — 6 cos u, )P (x)dx,

—00

oo 1 .
K,= K(O)j Esm(ugx)(l)g(x)dx,

1
K;= K(O)J gcos(ugs)d)g(x)dx,

and K= (, ®3dx)"". Neglecting the nonlinear couplings to
the neighboring sites (CK,,CKj;), the discrete equation
above becomes the lattice equation considered by Kivshar,?
admitting many types of localized excitations. In the follow-
ing, we consider the special type, namely, unstaggered bright
and staggered dark lattice solitons. In particular, we will
show that the lattice Eq. (16) can predict the stability of the
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FIG. 3. (Color online) The left panels show the profile of nu-
merically exact bright and dark lattice solitons obtained from the
lattice Eq. (16). The insets depict the Floquet multipliers of the
solution. The right panels present the corresponding time dynamics
of Eq. (1) using the initial condition (15) with A,(0) shown in the
adjacent left panel. All panels have L=10, the upper two have a
=0.5 and the lower a=1.6.
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solitons in the original Eq. (1), provided that L is large
enough. In doing so, we first solve Eq. (16) numerically for
localized modes using a shooting method and correspond-
ingly study their stability (see, e.g., the review Ref. 29) and
then use the ansatz Eq. (15) at r=0 as an initial condition for
the governing Eq. (1). In the following, periodic boundary
conditions are used, which are relevant experimentally.>® Ex-
amples are shown in Fig. 3. Presented in the left and right
panels are numerically exact solutions obtained from the lat-
tice Eq. (16) and their corresponding time evolution in the
original Eq. (1). The insets on the left panels depict the cor-
responding Floquet multipliers, where the instability is indi-
cated by the presence of eigenvalues lying outside the unit
circle (dashed-dotted line).

First, we consider the parameter values L=10 and a=0.5,
representing the case of stable constant solution #=0. Shown
in the first and the second row are numerically exact bright
and dark solitons with the oscillation period P=7.08 (Ay=
—0.8) and their dynamics. According to the lattice Eq. (16),
the bright soliton is stable and the dark one unstable. One
can note from the right panels that the prediction provided by
the lattice is in agreement with the dynamics in the original
system. The instability of the dark soliton manifests in the
form of the destruction of the configuration.

Next, we consider the parameter values L=10 and a
=1.6, which represent the case of nonuniform ground state.
The localized mode will then oscillate on a nonzero back-
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ground. Shown in the third and fourth row are numerically
exact bright and dark lattice solitons with the oscillation pe-
riod P=30 (A;=-0.0527).

According to the lattice Eq. (16), the bright soliton has the
same stability as the case on stable uniform ground state,
which is confirmed by the time dynamics of the original
equation. The stability of the soliton for the chosen param-
eter values is not surprising as the sites are rather uncoupled.

As for the dark soliton, it is interesting to note that in the
present case it is stable, which is also confirmed by the dy-
namics of the full equation. This implies that a nonzero back-
ground may act as a stabilizer. Moreover, it is also important
to note that the modes in different lattices have different
oscillation frequencies. The multifrequency breathers dis-
cussed in Refs. 31 and 32 may therefore be potentially ob-
served in experiments.

Conclusions. We have considered Josephson junctions
with phase shifts of 7. By exploiting the defect modes
present due to the phase discontinuities, the system has been
shown to be an ideal setting for studying mode interactions.
In particular, we have shown that mode tunneling in a
double-well potential can be implemented in the system and
presented the existence and stability of bright and dark soli-
tons in a periodic potential. We have shown that the analysis
proved by a multimode approximation gives a quantitative
agreement with dynamics of the original system.
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