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Quantitative description of atomic architecture in solid solutions:
A generalized theory for multicomponent short-range order
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This Brief Report introduces a short-range order parameter, called the generalized multicomponent short-
range order (GM-SRO) parameter. The application to Monte Carlo simulations is described for higher order
solid solutions. The results show the ability to create atomic-scale systems with a particular subset of the
GM-SRO parameters and the power of the GM-SRO expressions in determining the relationship between two

sets of atomic species.
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Sixty years ago Cowley proposed the definition of SRO as
an approximate description of the distribution of solute at-
oms within the matrix of a binary alloy. This theory, known
widely as the Warren-Cowley short-range order (WC-SRO)
parameter, is defined by
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where pY;, is the probability of finding an A-type matrix atom
in the mth shell of atoms surrounding a B-type solute atom,
given X, the overall concentration of A atoms in the system.
In the simplest case where m=1, this parameter describes the
probability of finding a certain type of nearest-neighbor
atomic bond in a binary alloy normalized against the nominal
concentration.! The definition may be extended for progres-
sively higher order crystallographic shells, measuring in-
creasingly longer range order with increasing m. The concept
of WC-SRO is an exceptional enabler in materials character-
ization for binary systems. Experimentally, x-ray diffraction
techniques facilitate SRO measurements without knowledge
of the exact positions of the atoms themselves, rather only
the atoms’ positions relative to each other.?

Unfortunately, after the experiment the calculations re-
quired to take advantage of the mathematical elegance of the
WC-SRO definition above can be prohibitive. This is due to
the technical infeasibility of stripping nonstructural informa-
tion from the diffracted intensities in ternary and higher or-
der systems although expressions up to quaternary systems
do exist.’ Hence, significant research has been directed to-
ward generating an expression for multicomponent systems,
including the use of Flinn operators,* multibody SRO,> and
microchemical inhomogeneity.®” Most notably, De Fontaine®
extended the Warren-Cowley definition to what we refer to
as the pairwise multicomponent short-range order (PM-SRO)
parameter. The PM-SRO is defined as
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where 8¢ equals one if B=C and zero otherwise, and p - is
the average probability of finding a C-type atom around a
B-type atom. This parameter is not only pertinent for multi-
component systems (i.e., ternary and higher order systems)
in that it examines pairs of atomic species; it also reduces to
the WC-SRO parameter in binary systems. However, each
PM-SRO parameter does not consider more than two atomic
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species at the same time, providing only an incomplete de-
scription of the system.

Nevertheless, PM-SRO is a powerful description of the
shell-based relationships and has facilitated new approaches
for predicting and measuring SRO in multicomponent sys-
tems. For example, using the calculation of phase diagrams
(cALPHAD) (Ref. 9) set of tools to enable the prediction of
phase diagrams from thermodynamic properties, Zhu et al.'”
derived an expression, based upon minimization of the
Gibbs free-energy equation, for the atomic pairwise prob-
abilities enabling an estimation of the system’s PM-SRO
values. This method does not simulate the atomic positions
directly; rather, it is a numerical approach predicting the
PM-SRO based on these equations, although a method
exists where the WC-SRO is measured from a simulated
system.'! Alternatively, atom probe microscopy (APM) is
emerging as a promising experimental approach for charac-
terizing SRO. APM provides three-dimensional atomic scale
spatial resolution combined with highly accurate chemical
information.'> Hence, it ought to be possible to derive PM-
SRO relationships from measurements of the atomic posi-
tions revealed by APM.!3 Such methods would provide the
means to predict and directly measure PM-SRO.

Here, we present a set of equations that provide a more
holistic description of the SRO of a multicomponent system
that is easier to interpret. Our generalized multicomponent
short-range order (GM-SRO) considers two sets of atomic
species for each coefficient, rather than just two individual
atomic species for each parameter, where a positive GM-
SRO indicates cosegregation. In this way, multiple species
may be investigated for ordering or coclustering, in terms of
the shell-based concentration. The GM-SRO incorporates
probability terms comprised of a linear combination of PM-
SRO probabilities. Based upon the principle of finding par-
ticular types of atoms around another atom, the GM-SRO
probability term is derived as
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This equation represents the probability of finding an atom of
any of the one or more species—denoted by B,—in the mth
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shell around an atom of any of the species denoted by B;.
Given this expression for the GM-SRO probability term, the
PM-SRO formula® can now be extended to consider two sets
of multiple species at any particular mth shell
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where 5{3 }k By, equals one if the two sets contain exactly
the same atomlc species and zero otherwise, and X{B %
=Xp + +Xp, is the combined concentration of the nelgh-
boring species. A simple example calculation is demon-
strated in Fig. 1. In terms of the number of these parameters,
whereas the number of PM-SRO equations is n? (the number
of combinations of pairs of atomic species), the number of
GM-SRO equations is the number of combinations of set B;
and set B, together, or the number of combinations of set B;
squared, [2;;1(;%)]2_ Indeed the PM-SRO expressions form a
subset of the GM-SRO, which is a more complete descrip-
tion of the system.

Having defined this metric for a quantitative characteriza-
tion of the atomic architecture in a multicomponent solid
where certain components may exhibit clustering or anticlus-
tering, the derivation of expressions for the standard devia-
tion complementary to each of the GM-SRO parameters is
key to the interpretation of the analysis. It enables quantita-
tive identification of significant SRO interactions, as com-
pared to the distribution of atoms in random data sets or as
compared to another system of interest. The GM-SRO stan-
dard deviation is based on the general propagation of error
calculation,'* the standard deviation of the concentration of
atomistic data,’® and the standard deviation of the PM-SRO
probability. For both the PM-SRO and GM-SRO parameters,
the variance, or standard deviation squared, can be written as
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where (TZ(X{B}u )= X{Bl}u (1- X{B}u )/N, and the variance of

cither the PM-SRO [Eq (6)] or the GM-SRO [Eq. (7)] is
used, depending on which SRO parameter is used. For the
PM-SRO parameter, the variance of the probability term is
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and for the GM-SRO parameter, the variance in the probabil-
ity term is
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(a) Collate the individual probabilities, e.g.

atom A has one out of its four neighbours as

type Black.

i PiBiackyxy(i)
A B 1/4 (x = Black)

D 0/4 (x = Black|Gray|White)
E,F 1/4 (x = Black)

E 1/4 (x = Gray)

F 1/4 (x = White)

(b) PM-SRO (first three rows) and GM-SRO

(fourth) calculation

Gens | (4120-5/49)/(44/49)
Qe | (1/20-1/49)/(-1/49)
aeer | (1/20-1/49)/(-1/49)
Oyplewy | -(6/20-7/49)(-7/49)

FIG. 1. (Color online) PM-SRO and GM-SRO calculation for
the first shell, for a quaternary system. The matrix atoms are in
small and blue while the three solute atom types are labeled A-G.
The first four shells are highlighted around solute atom E. The
PM-SRO probabilities are first determined through collecting the
probabilities for each atom, in this case in the first shell (m=1).
Based on the PM-SRO probabilities, the GM-SRO probability is
calculated, which is then used to generate the GM-SRO parameters.
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The equations presented here can be applied to calculate the
standard deviation of SRO when only a single data set is
available. Calculation of the standard deviation enables
quantitative identification of significant SRO interactions, as
compared to the distribution of atoms in random data sets or
as compared to another system of interest.

Having derived these expressions, the GM-SRO param-
eter is now demonstrated as applied to a model quaternary
system. For the reasons identified above, there is limited PM-
SRO experimental data describing multicomponent alloys
available in the literature. Hence to determine the effective-
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TABLE L. PM-SRO (Ref. 10) input to the Monte Carlo program.
The reference atom type is i and j is the first shell nearest-neighbor

type.

J
i Al Mg Cu Si
Al 6.4%x1073 0.0 1.1x1072 1.1x1072
Mg 0.0 —27%X107% -1.0x107" -1.2x10"!
Cu 1.1X1072 -1.0x107! 7.5%1073 -3.3x107!
Si 1.1x102  -1.6%x107!  -33%107! 22%x1073

ness of the GM-SRO equations derived above, we have cho-
sen to simulate the atomic configuration that corresponds to a
Al-1.75Cu-1.75 Mg-0.5Si (at. %) system defined by a set of
PM-SRO values predicted by Zhu et al.'® via CALPHAD cal-
culations, as presented in Table I. Monte Carlo (MC) meth-
ods have previously been used to simulate systems with a
particular SRO (Refs. 16 and 17) and these techniques offer
insights into atomic structure that can be experimentally dif-
ficult to discover. Unlike the CALPHAD method, which does
not provide atomic-scale information, the MC method recre-
ates the system, enabling further nanostructural analysis and
more intuitive interpretation offering insights that can be dif-
ficult to determine via experiments.

The approach developed in this study is based fundamen-
tally on the previously outlined MC algorithm!®!” for simu-
lating a system with a target set of WC-SRO defined for
multiple atomic shells. In this study PM-SRO definitions
were incorporated into the algorithm since WC-SRO is re-
stricted to binary systems and PM-SRO parameters are a
subset of the GM-SRO. Indeed, the pairwise subset of the
GM-SRO may also be used in lieu of the PM-SRO. A
target atomic configuration is defined by a set of target PM-
SRO, {@}} <=, Initially a distribution of atoms (most
likely random) of an n-component system was simulated on
the lattice with a corresponding set of PM-SRO parameters,
{d}}4. At each step in the simulation, this method identi-
fies the element within the set of current PM-SRO that is
furthest from its corresponding target, i.e., the maximal ik
pair: max{|a/;— &}, = 1=, A pair of atoms is chosen at ran-
dom, based on this maximal ik pair, and their respective
chemical identities are swapped. Swaps are accepted or re-
jected based upon the sum-squared residual,

n n
Agro = 2 E a?,i - &ik]z’

i=1 k=1

estimated by calculating the overall residual in terms of the
sum-squared differences between the target and the current
recalculated PM-SRO. If Agrq is decreased by the swap, the
move is accepted; otherwise, the move may be rejected with
respect to some user-defined probability, unrelated to the re-
sulting change in SRO. Further, the simulation incorporates
other features that were implemented such that the algorithm
was optimized to maintain accuracy in the case of the simu-
lation of small systems, yet efficient enough to generate very
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FIG. 2. (Color online) Clusters identified using the
3-dimensional Markov field (3DMF) algorithm of synthetic quater-
nary data (Al-1.75Cu-1.75Mg-0.05Si) with a volume of 20X 20
X 80 nm>. Atom map for clusters containing five atoms or more
in (a) random PM-SRO=0 data set and (b) with the PM-SRO in
Table I. (c) Cluster size distribution comparison between simulated
and random.

large systems with the prescribed PM-SRO within a reason-
able time. This included: periodic boundary conditions, effi-
cient calculation of Agrp and an automatic restart/backtrack
criterion to avoid the simulation becoming trapped in an im-
perfect configuration. The implemented program was run on
a 16-core server with 32 GB of RAM, with 32 million atoms
and for two different targets, that of PM-SRO=0 and the
PM-SRO given in Table I. The first target reached the re-
sidual tolerance level of 107® in 1.36 million steps and 37
min, and the second target ran for 7.1 million steps in 2.1 h.
The residual was in relative units.

In comparison to the original random distribution, the ef-
fect of the applied PM-SRO values on the atomic configura-
tion is subtle and hence difficult to ascertain visually. How-
ever, cluster-distribution analysis'3'®!° highlights significant
difference between the random and simulated data in terms
of cluster size distribution as shown in Fig. 2. The analysis
indicates more than expected solute clusters in the simulated
system, implying that on average solute atoms are expected
to be less likely to be found adjacent to one another. This
cluster distribution underscores the delicate balance required
in the atomic configuration required to meet all of the pre-
defined PM-SRO components. Indeed cluster morphology
analysis indicates the nanostructure is more likely to take on
a lathelike form in the simulated data set in comparison to
the random system.
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FIG. 3. (Color online) GM-SRO significance of the parameter
compared to GM-SRO=0. The red shades indicate a GM-SRO that
is greater than random and blue shades indicate a negative differ-
ence between simulated and random.

This point is underscored by the applied GM-SRO analy-
sis, which provides a complete description of the solute-
solute interactions in the simulated system, the significance
values of which are presented in Fig. 3, where a positive
significance indicates correlations. The GM-SRO provides a
significant advance in ease of interpretation, when compared
to the PM-SRO analysis given by Zhu et al.'® Despite the
differences in sign, the trends in cosegregation or antisegre-
gation analysis remain the same as in this previous publica-
tion, for example, with respect to the ajycymgy and pgysiy-
Figure 3 confirms significant correlations between specific
pairs of sets of solute species, as expected. For example,
{Mg|Si} atoms which have any solute type combination as a
first shell nearest-neighbor has higher GM-SRO than ran-
dom. However, it is interesting that although {Cu} has posi-
tive PM-SRO with respect to both {Mg} and {Si}, GM-SRO
indicates anticorrelations with the set of {Cu|Mg} and
{Cu|Si}. Nevertheless, for the most part the GM-SRO indi-
cates correlations between sets of atomic species. Such cor-

PHYSICAL REVIEW B 82, 132201 (2010)

relations between groups explain the increased incidence of
solute clustering observed in the simulated system in Fig. 2.
The results illustrate how the GM-SRO is necessary to com-
plete the picture of the solute interactions within multicom-
ponent alloys. Further, they are indicative of the fine balance
that must be struck in the course of the MC simulation to
create an atomic distribution that meets all of the target PM-
SRO criteria.

In conclusion, the generalized multicomponent SRO pro-
vides a physical interpretation of the nanostructure of mate-
rials. It is a generalization of the pairwise multicomponent
SRO equations, which in a binary system reduces to the
Warren-Cowley SRO parameter, thus allowing the calcula-
tion of the GM-SRO parameters from the PM-SRO values.
This parameter can identify more complex correlations be-
tween sets of atomic species, in a way that is not apparent
using the PM-SRO, and that is simpler to interpret. A Monte
Carlo algorithm provides the means to simulate a system
with a particular set of PM-SRO parameters with reasonable
time and memory requirements even for very large data sets.
These methods enable the investigation of nanoscale phe-
nomena such as solute clustering in a way that was not pos-
sible with PM-SRO predictions alone. There are two caveats
to the GM-SRO measure. First, the GM-SRO parameter is
not a unique identifier of a system rather, it summarizes the
atomic-scale relationships with respect to the random shell
concentration, making it a high-level descriptor. Thus, mul-
tiple chemical configurations are possible given a particular
set of GM-SRO parameters. Second, the interpretation of the
GM-SRO is as straightforward as reading a negative GM-
SRO parameter as being indicative of a system with fewer
clusters than random for those sets of atomic species; simi-
larly the positive GM-SRO parameter indicates more clus-
ters. In fact, as this particular study shows, the complete
GM-SRO parameters depict a fine balance in the chemical
configuration of the atomic scale data.
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