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The prewetting transition of Ar adsorbed on a planar structureless Li surface was investigated using the

density-functional theory, In the theoretical model, the renormalization-group transform and the three-body
intermolecular interactions were considered. To describe the thermodynamic properties of Ar, a reliable ab
initio potential was applied to model the interactions between Ar atoms and Li surface. The thin-film-thick-film
coexistence diagram for prewetting transition was calculated. The prewetting critical temperature (upper
boundary of prewetting transition) is found to be lower than those previous predictions. With the difference of
thickness between the thin and the thick films served as the order parameter, the predicted prewetting critical
exponent 3 is 0.175*=0.018. The value is close to the two-dimensional Ising value, demonstrating the pre-
dicted upper boundary is reliable. The wetting temperature (lower boundary of prewetting transition) was
determined by two different methods: extrapolation of the chemical difference and evaluation of the contact
angle via Young’s equation, and nearly the same results are obtained. The convergence of the two methods
further validates that the lower boundary is also correct. The wetting temperature is also found to be lower than

those previous predictions.
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I. INTRODUCTION

Fluids restricted to solid substrates exhibit a variety of
properties that differ substantially from those of bulk
fluids.!?> A deep understanding of the surface phenomena is
of considerable importance for scientific researches and in-
dustrial processes. Prewetting transition represents one of
these surface phenomena. The first sketches of prewetting
transition were brought forward simultaneously by Cahn?
and Ebner and Saam* in theoretical treatments. The phenom-
enon was investigated by experiment for some systems, such
as He on Cs,> H, on Rb,® and mercury on sapphire.” In the
last few decades, a large number of studies have been carried
out to achieve a better understanding of the phenomenon
using different theoretical and simulation techniques.®2! Al-
though considerable progress has been made,?>* the exact
region in which the prewetting transition for a given system
can be found is still in dispute, such as Ar on alkali-metal
surfaces.!* 1520

With a substrate potential of moderate strength, the
prewetting transition corresponds to a jump from a thin ad-
sorbed film to a thick adsorbed film at the surface when the
pressure P (or chemical potential ) is below the bulk vapor-
liquid saturation pressure P, (or chemical potential w,).
The boundary of the prewetting transition originates at a
first-order wetting transition at the wetting temperature T,
and terminates at the prewetting critical temperature 7.

Critical temperature is one of the most important charac-
teristics of confined fluids. Experiment revealed that the criti-
cal temperature of confined fluids differs substantially from
those of the corresponding bulk systems.?® Nakanishi and
Fisher?® conjectured that the prewetting critical point should
display two-dimensional (2D) Ising-type criticality on the
basis of Landau phenomenological theory. Nicolaides and
Evans?’ confirmed the conjecture via Monte Carlo simula-
tion of a three-dimensional lattice-gas model. The coarse-
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grained method, however, may not be appropriate for realis-
tic continuum fluids. Errington and Wilbert'® evaluated the
prewetting boundary tensions through a combination of
finite-size scaling and grand canonical Monte Carlo simula-
tion. They obtained a lower prewetting critical temperature
than that from the simulation without finite scaling.!”

On the other hand, Ancilotto and Toigo,14 Sartarelli and
Szybisz!'?2 have successively studied the adsorption of Ar
and Ne on planar substrates of alkali metals using a mean-
field density-functional theory (DFT). To reproduce the ex-
perimental phase coexistence curve as well as the critical
point of bulk fluids, Sartarelli and Szybisz employed three
adjustable parameters to describe the intermolecular interac-
tions. Although the theoretical model gives the correct criti-
cal point of bulk fluids, it might not be appropriate to be
extended to predict the critical prewetting temperature of
confined fluids since the two kinds of exponent law for bulk
and confined fluids are quite different. In other words, the
mean-field density-functional model cannot predict the 2D
Ising-type criticality of prewetting. Accordingly, the accu-
racy of those prewetting transition boundaries is question-
able. When temperature approaches the critical region, the
density distribution is increasingly inhomogeneous or the
density fluctuation wavelength is increasingly long ranged to
the critical point. This kind of density fluctuation needs to be
considered with a special treatment such as the
renormalization-group (RG) transform,?®? which has be-
come central to any discussion of critical phenomena.

In this work, we applied our recently developed density-
functional model to investigate the wetting and prewetting
transition of Ar adsorbing on a Li surface. The well ad-
dressed modified fundamental measurement theory3'3? was
adopted to describe the hard sphere reference term. For at-
tractive part, the free-energy functional was constructed in a
weighted density approximation,®® and the free energy asso-
ciated with the three-body interaction was included. Further-
more, the long-range density fluctuation near the critical re-
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gion was considered by the confined RG transform.’’ We
constructed our confined RG transform on the basis of the
density functional by sharing the same direct correlation
function (DCF), keeping the theoretical crossover in self-
consistency both inside and outside of the critical region.

II. THEORY

As a spherical symmetric fluid, Ar can be adequately de-
scribed by the two-body intermolecular potential together
with the three-body intermolecular potential. The two-body
interaction is given by the Lennard-Jones (LJ) potential

12 6
T R

where e/kg=119.4 K is the energy parameter, kg is the Bolt-
zmann constant, and 0=3.36 A is the soft diameter. The
split between the repulsion and attraction for the LJ potential

can be made with an effective hard-sphere diameter®>34
1+0.2977T* kgT
d= so, T'=——, (2)
1+0.33163T" +0.00104771T" e

where T is the absolute temperature. The effect of three-body
interaction can be described by the following potential:3

v(1+ 3 cos 6, cos 6, cos 6;)

(71’72’V3)3

@3(ry,1rp,13) = ) 3)
where ry, ry, 13, 61, 6,, and 6; are the sides and interior
angles of the triangle formed by the molecules 1, 2, 3 and v
is the interaction coefficient, which is known to be 73.2
X 1078 erg cm’ for Ar.

For adsorption of Ar on planar structureless substrates of
alkali metals, the interaction V,,, between Ar atoms and a
wall of Li separated by a distance z is given by the ab initio
potential of Chizmeshya et al.>®

CvdW
(z— ZVdW)3

(4)

where V,, is amplitude, « is an exponent, Cqw and z,qw are
the strength and reference plane position of the van der
Waals potential, respectively. f,(x)=1-e*(1+x+x%/2) is a
damping function which accounts for the effect of atom-
substrate wave function overlap on the van der Waals corre-
lation energy, B(z)=a’z/(1+az) is an alternative spatially
dependent damping parameter. The model parameters V, a,
Ciaws and z,4w for Ar interacting with Li can be found in
Table I of Ref. 36.

To describe the adsorption of Ar on the wall of Li, the
density distribution of Ar needs to be obtained. The DFT is
readily available to deal with this problem. For inhomoge-
neous fluids, the essential task of the DFT is to derive an
analytical expression for the grand potential Q[p(r)], or
equivalently, the intrinsic Helmholtz free energy F[p(r)],
Flp(r)]=fdrflp(r)], as a functional of density distribution.
Within the grand canonical ensemble, the grand potential re-
lates the intrinsic free energy by

Vext(2) = Vo(1 + az)e™ = fo[ B(2)(z = zyaw) ]
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Qlp(r)]=kgT j drp(r){In[p(r) A°] - 1} + Fo, [ p(r)]

+ Flple)] + Feclpu) + f dr{p(E)[Vu (1) - 1)

(5)

where p(r) denotes the density distribution with configura-
tion r, A=y2mmkgT/h? is the thermal de Broglie wave-
length, p,, is the average density of fluids restricted to sur-
face, which will be defined later, F,.,[p(r)] stands for the
hard-sphere reference system, F,[p(r)] accounts for the at-
tractive interactions, 6Fgg(p,y) represents the contribution
from the confined RG transform of the long-range density
fluctuations, V,,(r) is the potential of substrate, and w is the
chemical potential of bulk fluids.

The hard-sphere functional Fy.,[p(r)] can be described by

Freplp(r)]

:kBTf dr —ny ln(l —n3)+

367 (1 -nsy)? 3

2 3
n3 ny = 3nyny Ny,
b
n3

1
+ —{n3 In(1 —ns3) +

(6)

where ng,n,n,,n3 are the scalar-weighted densities and the
boldface symbols ny;,ny, are the vector-weighted densities.
They are defined by

ny(r) = f p(r" )W (r —r")dr’, (7)
where the weighted functions w?(r), a=0,1,2,3,V1,V2

are expressed in terms of the Heaviside step function H(r)
and the Dirac delta function &(r) by

w(r) = md*wO(r) = 2mdwV(r) = 8d/2 - r), (8)
w(r)=H(dI2 - r), 9)

w2 (r) = 2w V(r) = —S(dI2  r). (10)

For the attractive part, weighted density approximation®’
can be employed to account for attractive contribution. In
this case, Fy[p(r)] can be expressed as

Fatt[p(r)] = J P(r)aan[ﬁ(r)]dr, (11)
p(r) =fp(r’)wan(|r—r'|)dr’, (12)
waa() = =<2 (13)

J Can(r)dr

in which a,, is the free energy per particle from attractive
contribution, p(r) is the weighted density, w,(r) is the
weight function, and c,(r) is the DCF of the bulk fluids
from attractive contribution. Similar to Lee and Barker,® the

125452-2



BOUNDARY OF PREWETTING TRANSITION OF Ar ON A...

free energy from attractive contribution a,, can be given by a
sum of perturbation terms for bulk fluids

Ay =4ap +ap, (14)

a1=27TPf g(r@y(r)ridr, (15)

2
az=%f j @3(r1,72,73)8(r1)g(r2)g(r3)drpdrs,  (16)
vJv

where g(r) is the radial distribution function (RDF) for bulk
fluids. Recently, a satisfactory analytical solution for RDF of

(1-9*
Qz(zl) n=0

rg (r) = Bek,

> (1+n)(=129)"D(6,n,n+2,2,,r —n— 1) — Bek,
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LJ fluids was given by the first-order mean spherical ap-
proximation (FMSA).* The accurate RDF for LJ fluids can
be further improved by combining FMSA with the simplified
exponential approximation340

g(r) = go(r)exple ()] (17)

and

rgo(r)=2> (= 129)"C(L,n+ Ln+ 1,r—=n—1), (18)
n=0

(1—77)4§ | 2D(6 5 |
QZ(ZZ) n=0( +n)(— 7]) (,n,n+ =N — )’

(19)

where B=1/kgT, n:%pwd3 is the packing factor, the coefficients k,, k,, 71, 22, 1/Q*(z), C(n;,ny,n5,r), and D(n;,ny,n5,2,7)
are well documented.’*3%40 In Eq. (13), the DCF of the bulk fluids from attractive contribution c,,(r) is defined as the
difference between the total DCF and the hard sphere DCF, c,,(r)=c(r)—cps(r), with c,(r) given by*!

n(1+2n)° , 651+ n+7/4)

1+2mn)?
( 7]) r<l1

=1 20-p*"

07

While the total DCF c(r) relates to the total correlation func-
tion A(r), or the RDF g(r)=h(r)+1 through the Ornstein-
Zernike equation

h(k) = &(k) + ph(k)é(k), (21)

where circumflex stands for the Fourier transform. Thus, the
total DCF ¢(r) can be obtained using the RDF from Eq. (17)
as input. The superiority of the improved DCF has been
stated in our recent paper.*?

(1-n?*

Ta-gpt (20)
r>1.

For prewetting transition, it has been well addressed?®?’
that the prewetting critical point is a 2D Ising critical point as
prewetting is in analogous to a vapor-liquid phase transition
in 2D. Therefore, it is necessary to consider the 2D density
fluctuation near the prewetting critical point. This long-range
density fluctuation can be remedied with our confined RG
transform3°

fn(pav) =fn—1 (pav) + 5fRG,n(pav) 9f()(pav) =fref(pav) s (22)

Pay
J dx eXP{— An[ﬂfn—l,D(pav’x) + 27TC4,attx2ki - ché,attxzkft]}
1 0

5fRG,n(pav) =———In

0

fn—l?D(pav’x) — fn—](pav +)C) ;f"—](pav _ )C)

_fn—l(pav)’ (24)

o0

1
Chan(r) = Dt fo Can(r)r"dr. (25)

The average area of the fluctuation plane A, used in Eq. (23)
are chosen to be a function of wavelength A,=(\,)? with
\,=3""'\,. The initial wavelength \, is assumed to be 4¢. In

ﬂAn Pav )
dx eXP{— An[Bfn—],D(pavsx) + 277C2,attx ]}

. (23)

later transforms, the fluctuation magnitude in the density
wave planes is increased by k,=k,/3"! with k;=27/\,. In
Eqs. (22)—(24), p,y, is the reference density for the RG trans-
form, which employs the value of the average density of
fluids restricted to surface

Pav = (l/ls) fzm P(Z)dZ, (26)
0

where [;=z,,dz, z,, is the end point of the integration range.
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The point can be selected by the following procedure: span
the density profile from right to left, mark the point (+)
whose second order derivative of p(z) with respect to z
equals zero, as shown in Fig. 1. This is because the point is
the inflection point to distinguish the surface from bulk ar-
eas. It is the surface fluid rather than the bulk fluid need the
RG transform.

The reference free-energy density fi.r iS given by fi.¢
=pao(aig+ans+ay,). The free energy per particle of ideal part
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a,g=In(p, A*)—1. The free energy per particle from hard-
sphere contribution is ay,=(47—-37?)/(1- 7). The attractive
term a,, is the same as in Eq. (14). After several times of
iteration, the free energy due to long-range density fluctua-
tion can be incorporated into the short-range contribution,
and the density profile can be obtained.

Combining DFT with the confined RG transform, we can
calculate the final density distribution by minimizing the
grand potential

5{Fhs[p(r)] + Fatt[p(r)]} _ 5[5FRG(paV)]

exp(ﬁ,u -B Sp(r)
p(l‘) = 5{Fhs[p(l')] + Fatt[p(r)]}
exp| Bu—p p(r)

In Eq. (27), one can find that the confined RG transform is
only added in the range near to the surface (z<<z,). The
local-density distribution p(r) can be calculated with an it-
eration procedure. The initial local-density profiles and the
average densities can be calculated without the confined RG
transform. Based on the average densities, the confined RG
recursions can be performed and added, and the next density
profiles are recalculated with the DFT with confined RG
transform. The iterations are performed until the grand po-
tential achieves a minimum.

To investigate the lower boundary of prewetting transi-
tion, the wetting temperature of the system needs to be de-
termined. Young’s equation provides a simple description of
wetting transition in terms of the surface tensions of different
interfaces. This kind of transition has been studied exten-

2.0
15| —— ,—— Thick film
—————— Thin film
N
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Q
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0 2 4 6 8 10

FIG. 1. (Color online) Equilibrium density profiles at 7"
=0.920. The blue (without the markers) and red (with the markers)
lines correspond to the density profiles obtained with and without
the confined RG transform, respectively. The markers + represent
the end points of the range in which the density profile is averaged
to obtain p,,.

- ﬂvext(r)> , < Zm
OPay

(27)
- ﬁVext(r)> P

2> Zny-

sively to evaluate the contact angle for fluid-wall system*
via Young’s equation

Yvw ~ Nw
Y '

cos 6= (28)
where 6 is the contact angle, y,;, Y., and 7y, denote the
surface tension of the vapor-liquid, vapor-wall, and liquid-
wall interface, respectively. For fluid wetting on the substrate
with the given potential V.,(z), ¥1» Yww» and 7y, are calcu-
lated under the vapor-liquid saturation pressure P,

Yoi = f [flp(2)] = p(2) prga + Piarldz (29)
0

and

Yvw,lw = f U[P(Z)] - P(Z)Msat + P(Z) Vexl(z) + Psat]dz-
0

(30)

At different temperatures, the contact angle can vary from
complete drying (cos #=-1) to partial wetting (cos 6<1),
and finally to complete wetting at the wetting temperature
T, at which cos 6=1 is first realized.

III. RESULTS AND DISCUSSION

As a typical example, the system of Ar adsorption on a Li
surface was studied. A series of calculations were performed
to determine the wetting and prewetting properties such as
wetting temperature, prewetting critical temperature, and
prewetting critical exponent. Throughout the whole calcula-
tions, no adjustable parameter was adopted.

Prewetting transition is usually characterized by the coex-
istence between thin and thick substrate films at a constant
pressure (chemical potential). To draw the thin-film-thick-
film coexistence diagram, it is necessary to get equilibrium
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1.10

\ - - -Without RG transformation
—— With RG transformation

FIG. 2. Prewetting coexistence curve. The solid and dash lines
represent the results with and without the confined RG transform,
respectively.

density profiles at different temperatures. The numerical
implements were performed via Eq. (27). To illustrate the
role of the RG transform, two sets of the density profiles
were calculated using the DFT without and with the RG
transform, respectively. Examples of the density profiles of
the thin and the thick films at 7°=0.920 are displayed in Fig.
1, without and with the RG transform. The difference be-
tween the two sets of profiles is quite obvious. For density
profile corresponding to the thick film obtained without the
RG transform, there are four peaks whose maximum value is
higher than the bulk density of liquid Ar p*=0.6998 at T~
=0.920. With the RG transform, the number of the peaks
decreases to three. As for the thin film, both the density
profiles in Fig. 1 do not extend beyond a couple of molecular
diameters from the surface. The density of the first peak with
the RG transform, however, is higher than the one without
the RG transform. It is shown that the RG transform makes
the difference between the thin and the thick films smaller at
a given temperature, which means that the original phase
diagram given by the DFT without the RG transform is sup-
pressed. The smaller phase loop finally leads to a lower
prewetting critical temperature or the upper boundary of the
prewetting transition. Accordingly, density profiles at various
temperatures were calculated. The coverage of either the thin
film or the thick film at the substrate surface can be obtained
from the density p(z) via

I= f [p(2) - p,)dz, (31)
0

where p, is the density of the vapor phase coexisting with the
adsorbed fluid. The thin-film-thick-film coexistence curve for
prewetting transition is depicted in Fig. 2. Without the RG
transform, the prewetting critical temperature is T:WC
=1.087, corresponding to the real temperature Ty,
=129.788 K. This value is nearly the same as that predicted
by Ancilotto and Toigo'* with T},,.=130 K. In their DFT
calculation, there are two parameters need to be set down to

reproduce the experimental values of the bulk liquid and
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vapor densities at coexistence, and the values of the param-
eters vary with the temperatures. Later, Sartarelli and
Szybisz?® introduced a third free parameter to account for
residual interactions near the critical point and obtained a
lower prewetting critical temperature T}, =119 K. Due to a
better reproduction of critical point of bulk Ar,? the result is
better than those given by Ancilotto and Toigo.'* The lower
T,y comes from the three adjustable parameters.?’ The
mean-field nature of the model, however, cannot describe the
2D density fluctuations since the 2D characteristic of the
prewetting critical point are not included in their approach. It
was well addressed®®?’ that the prewetting critical point is in
dimension d-1 (d is the bulk dimensionality), so the 2D den-
sity fluctuations should be of considerable influence on de-
termination of the prewetting critical temperature. By intro-
ducing the RG transform, we recalculated the prewetting
coexistence and obtained a lower prewetting critical tem-
perature T;WC:O.%I, corresponding to the real temperature
T,w.=111.161 K. As shown in Fig. 2, the exaggerated criti-
cal loop given by DFT without the RG transform is success-
fully suppressed by the DFT with the RG transform. Figure 2
also shows that, when the temperature decreases gradually
from the prewetting critical temperature, the coexistence
curve obtained with the RG transform recovers to the data
obtained without the RG transform. This recovery indicates
that the RG transform has little effect if the temperature is far
from the prewetting critical temperature. Hence, the theoret-
ical crossover is self-consistent. To further validate the reli-
ability of the prewetting critical temperature obtained with
the RG transform, the criticality of prewetting transition was
analyzed and the critical exponent was derived. In this case,
the difference of thickness between the thin and the thick
films is served as the order parameter which vanishes at T;WC.
The jump in thickness relates to the temperature with the
scaling law

oc(T‘<

pwc

-, (32)

where S is the critical exponent. Figures 3 and 4 present the
order parameter and the fitting lines for prewetting curves
without and with the RG transform, respectively. The slopes
of the plots denote the values of 8. It can be found from the
two figures that the order parameter obey the scaling law if
the temperature is not far from 7, .. Far from T, , the order
parameter gradually deviate the fitting lines. This phenom-
enon is foreseeable since the thickness of the thick film will
diverge if the temperature is down to the wetting tempera-
ture, indicating that the wetting transition has an influence on
the prewetting criticality, and that the scaling law for prewet-
ting criticality should limit to a finite range. Therefore, we
determined the exponent for prewetting curves without and
with the RG transform in the range of 7, ~7"=0.1 and
T;WC—T*:O.O2, respectively. For the curve without the RG
transform, the critical exponent is 8=0.542 %+ 0.011, close to
1/2 of mean-field prediction. In contrast, the exponent with
the RG transform is $=0.175%0.018. This value slightly
deviates from the 1/8 of the 2D Ising model. The deviation
may come from the gradually enlarged order parameter or
the gradually enlarged film thickness. Nevertheless, the re-
sult show that the 2D Ising-type criticality can be traced by
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0.01 0.1
T *T*

pwc

FIG. 3. Determination of the critical exponent S for prewetting
without the confined RG transform. The symbols are the calculated
results, and the solid lines are the best linear regressions of the first
six points counting from the left side.

applying the confined RG transform to the DFT model.
Another characteristic of the system is the wetting tem-
perature or the lower boundary of the prewetting transition.
The wetting temperature can be determined with two differ-
ent methods. First, it can be identified if the difference be-
tween the bulk and prewetting saturation chemical potentials
Ap'=puy—p,, goes to zero. More over, Ancilotto and
Toigo'# suggested that the difference should scale as Au*
o (T*~T,,)¥? if the tail of the surface potential has a van der

Cuaw

Waals tail, i.e., et Figure 5 shows Au™ as a function of
temperature obtained with the RG transform. A fit to the
function generates an estimate of 73:0.797, or the real tem-
perature T,,=95.162 K. On the other hand, the wetting tem-
perature can be obtained by evaluating the contact angle for

the given surface field with Young’s equation, which is

10 | .

1E-3

0.01 0.1
T *T*
c

pwi

FIG. 4. Determination of the critical exponent S for prewetting
with the confined RG transform. The symbols are the calculated
results, and the solid lines are the best linear regressions of the first
six points counting from the left side.
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FIG. 5. Temperature dependence of the chemical potential dif-
ference Ap*=pup— ,u,;W. The solid line represents extrapolation to
the wetting temperature.

known to very accurate when used to predict the contact
angle in the case of wall-fluid systems.** The contact angle is
determined by the surface tension balance and goes to zero
as the wetting temperature is approached. Figure 6 presents
the contact angle as a function of the temperature. The cal-
culated results can be fitted with a line, showing a distinctive
first-order wetting transition. The wetting temperature deter-
mined with cos #=1 is T,,=0.805, corresponding to a real
temperature 7,,=96.117 K. Combining the results given by
the two different methods, one can find that the agreement is
quite accurate. The small discrepancy may be due to the
influence of system size effects, which has been discussed by
Grzelak and Errington recently.* In contrast, the DFT study
by Sartarelli and Szybisz? obtained a higher wetting tem-
perature with 7,,,=110 K. The quantitative difference can be
attributed to the different treatment of attractive interactions.
They used a mean-field approximation while we used an
accurate direct correlation function*? to account for the inho-
mogeneity.

cos ¢

0.8 |-

0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82

™

FIG. 6. Calculated contact angles as a function of temperature,
where the wetting temperature T, corresponds to cos #=1. The
solid line is a linear fitting of the symbols.
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IV. CONCLUSIONS

In this work, the DFT was integrated with the RG theory
to describe the behavior of Ar adsorbed on a planar struc-
tureless Li surface. The density profiles corresponding to the
thin and thick films at prewetting coexistence were calcu-
lated. Unlike previous studies that ignore the 2D density
fluctuations, we accounted for this issue by adopting the con-
fined RG transform. Our calculation shows the thermody-
namic consistency outside and inside the critical region. With
the RG transform, the prewetting critical temperature is
found to be lower than that of without the RG transform. By
reproducing the critical exponent of 2D Ising universality,
the method is validated to capture the features of prewetting
transition within the critical region. The wetting temperature

PHYSICAL REVIEW B 82, 125452 (2010)

calculated by extrapolation of the chemical difference is in
good agreement with the temperature from evaluation the
contact angle via Young’s equation. On the basis of the
analysis of the prewetting critical temperature and the wet-
ting temperature, we can conclude that the upper and lower
boundaries of the prewetting transition of Ar on Li surface
are reliable.
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