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We study phonon-mediated temporary trapping of an electron in polarization-induced external surface states
�image states� of a dielectric surface. Our approach is based on a quantum-kinetic equation for the occupancy
of the image states. It allows us to distinguish between prompt and kinetic sticking. Because the depth of the
image potential is much larger than the Debye energy multiphonon processes are important. Taking two-
phonon processes into account in cases where one-phonon processes yield a vanishing transition probability, as
it is applicable, for instance, to graphite, we analyze the adsorption scenario as a function of potential depth and
surface temperature and calculate prompt and kinetic sticking coefficients. We find rather small sticking
coefficients, at most on the order of 10−3, and a significant suppression of the kinetic sticking coefficient due
to a relaxation bottleneck inhibiting thermalization of the electron with the surface at short time scales.
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I. INTRODUCTION

A complete kinetic modeling of atmospheric,1

interstellar,2–4 or man-made bounded plasmas5–12 requires
boundary conditions for the distribution functions of the rel-
evant plasma species �electrons, ions, neutrals�, that is, a
quantitative microscopic understanding of the elementary
processes at the plasma boundary. Of particular importance
is the buildup of a quasistationary negative surface charge,
which not only depletes the electron density in front of the
boundary �sheath formation� but also acts as an electron res-
ervoir for surface-supported electron-ion recombination and
secondary electron emission which in turn affect the charge
balance in the bulk of the plasma.13 Despite its unquestioned
importance, little is quantitatively known about the micro-
physics of electrons at plasma boundaries. It is only until
recently that we proposed that the charging of plasma bound-
aries can be perhaps microscopically understood in terms of
an electron physisorption process.14,15

The physisorption scenario applies to a plasma electron
approaching a metallic or a dielectric boundary provided its
kinetic energy is large enough to overcome the Coulomb
barrier due to the charges already residing on the boundary
but small enough to make the surface appear as having a
negative electron affinity. If the electron can convert its en-
ergy into internal energy of the boundary, via exciting el-
ementary excitations of the solid, it may get stuck �adsorbed�
at the boundary. Later it may desorb again if it gains enough
energy from the boundary.

Like physisorption of neutral particles16–31 physisorption
of electrons is the polarization-induced temporary binding to
a surface. It can be characterized by a desorption time and a
sticking coefficient. At first glance physisorption of electrons
seems to be not much different from physisorption of neutral
particles. There are however important qualitative differ-
ences which warrant a separate theoretical investigation.

First, albeit not in the focus of our investigation, the long-
range 1 /z tail of the image potential leads to a finite-electron
sticking coefficient at vanishing electron energy and surface
temperature.27,32 This is in contrast to the quantum reflection,
that is, the vanishing sticking coefficient, one finds in this

limit for the short-ranged surface potentials typical for phy-
sisorption of neutral particles.24,31

Second, the surface potential in which physisorption of
electrons occurs, in particular, at plasma boundaries, consists
of a polarization-induced attractive part and a repulsive Cou-
lomb part due to electrons already adsorbed on the surface.
The limit of vanishing coverage, very often adopted in the
theoretical description of physisorption of neutral particles,
is thus only applicable to the very first �last� electron ap-
proaching �leaving� the boundary.

Third, in contrast to physisorption of neutral particles,
physisorption of electrons has to be always described quan-
tum mechanically because the image potential varies on a
scale comparable to the thermal de Broglie wavelength of the
electron.14 This is also the case for physisorption of
positronium.33–35

Finally, and this will be the theme of our investigation, the
polarization-induced image potential supports deep states, in
addition to shallow ones. Direct transitions from the con-
tinuum to deep bound states are very unlikely. Hence, a mod-
eling in terms of a quantum-kinetic rate equation for the
occupancy of the bound surface states,21,22 and Brenig’s dis-
tinction between prompt and kinetic sticking,21 is vital for a
correct description of electron physisorption. For phonon-
controlled adsorption and desorption, as it occurs at dielec-
tric surfaces, deep states also imply that multiphonon pro-
cesses have to be taken into account in the calculation of
state-to-state transition probabilities. This can be done either
via an expansion of the energy-dependent T matrix,16,18,26 the
method we are using,36 or via a Magnus-type resummation of
the time-dependent scattering operator.37–41

In the following we investigate adsorption of an electron
to a dielectric surface at finite temperature assuming an
acoustic longitudinal bulk phonon controlling electron en-
ergy relaxation at the surface. To avoid complications due to
finite coverage we focus on the first approaching electron.
Using the quantum-kinetic rate equation for the occupancy
of the image states of our previous work36 �thereafter re-
ferred to as I�, where we studied desorption of an image-
bound electron from a dielectric surface, we calculate prompt
and kinetic sticking coefficients. Compared to semiclassical
estimates42 they turn out to be extremely small. Instead on
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the order of 10−1 we find them to be at most on the order of
10−3. We also analyze in detail the adsorption scenario as a
function of surface temperature and potential depth. Most
notable, our results reveal an energy relaxation bottleneck
prohibiting, on a short time scale, thermalization of the elec-
tron with the surface, that is, the trickling through of the
electron from upper to deep states. The reduced accessibility
of deep states makes the kinetic sticking coefficient much
smaller than the prompt sticking coefficient in contrast to
what is usually found in physisorption of neutral particles.29

The remaining paper is structured as follows. In Sec. II,
we specify the quantum-kinetic approach of our previous
work concerning desorption �paper I �Ref. 36�� to the situa-
tion of adsorption and introduce prompt and kinetic sticking
coefficients. We then briefly recall in Sec. III the calculation
of the state-to-state transition probabilities based on a micro-
scopic model for the electron-surface interaction and an ex-
pansion of the T matrix for the dynamic part of that interac-
tion. Mathematical details not given can be found in I.
Finally, in Sec. IV, we present and discuss our results before
we conclude in Sec. V.

II. ELECTRON KINETICS

The probability for an approaching electron in the con-
tinuum state k to make a transition to any of the bound states
n of the polarization-induced image potential is given by the
prompt energy-resolved sticking coefficient,22

se,k
prompt = �t�

n

Wnk, �1�

where �t=2L /vz is the traveling time through the surface
potential of width L which, in the limit L→�, can be ab-
sorbed into the transition probability per unit time from the
continuum state k to the bound state n, Wnk. If the incident
unit electron flux �we consider only a single electron imping-
ing on the surface� is stationary and corresponds to an elec-
tron with Boltzmann distributed kinetic energies, the prompt
energy-averaged sticking coefficient is given by22

se
prompt =

�
k

se,k
promptke−�eEk

�
k

ke−�eEk
, �2�

where �e
−1=kBTe is the mean electron energy.

Prompt sticking coefficients are properly weighted sums
over state-to-state transition probabilities from continuum to
bound surface states. They give the probability for initial
trapping, which, according to Iche and Noziéres17 and
Brenig,21 is the first out of three stages of physisorption. The
second stage encompasses relaxation of the bound-state oc-
cupancy and the third stage is the desorption of the tempo-
rarily bound particle.

The second stage, which also includes transitions back to
the continuum, cannot be captured by simple state-to-state
transition probabilities. Instead, a quantum-kinetic rate equa-
tion for the time-dependent occupancy of the bound surface
states nn�t� has to be employed18,21 This equation describes

processes on a time scale much longer than the lifetime of
the individual surface states but shorter than the desorption
time.18,21,22 Following Gortel and co-workers,18,22

d

dt
nn�t� = �

n�

�Wnn�nn��t� − Wn�nnn�t��

− �
k

Wknnn�t� + �
k

�tWnkjk�t� , �3�

where Wn�n is the probability per unit time for a transition
from a bound state n to another bound state n�, Wkn and Wnk
are the probabilities per unit time, respectively, for a transi-
tion from a bound state n to a continuum state k and vice
versa, and

jk�t� = nk�t��t
−1 �4�

is the incident electron flux which, in principle, can be non-
stationary.

The solution to Eq. �3� can be obtained from the solution
of the corresponding homogeneous equation,

d

dt
nn�t� = �

n�

�Wnn�nn��t� − Wn�nnn�t�� − �
k

Wknnn�t�

= �
n�

Tnn�nn��t� , �5�

where the matrix T is defined implicitly by Eq. �5� and treat-
ing the electron flux jk�t� as an externally specified
quantity.21,22 In the simplest case, which is also the basis of
Eq. �2�, jk�t� is the stationary flux corresponding to a single
electron whose energy is Boltzmann distributed over the con-
tinuum states k with a mean electron energy kBTe, that is,
jk�t�� jk�ke−�eEk.

To solve Eq. �5� amounts to solving the eigenvalue prob-
lem for the matrix T.21,22 For the particular case of an elec-
tron physisorbing at a dielectric surface this has been already
done in I. If the transitions between bound states are much
faster than the transitions to the continuum, so that the ad-
sorbed electron escapes very slowly, one eigenvalue, −�0,
turns out to be considerably smaller than all the other eigen-
values −��. The equilibrium occupation of the bound states,
nn

eq, is then to a very good approximation the right eigenvec-
tor to −�0, which can be thus identified with the negative of
the inverse of the desorption time, that is, �0=�e

−1.
The kinetic sticking coefficient, which takes into account

not only the initial capture but also the subsequent relaxation
of the occupancy of the bound surface states, can be obtained
as follows.22 The solution of Eq. �3� is split according to

nn�t� = nn
s�t� + nn

f �t� , �6�

where

nn
s�t� = e−�0t�

−�

t

dt�e�0t�en
�0��

k,l
ẽl

�0��tWlkjk�t�� �7�

is the slowly and
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nn
f �t� = �

��0
e−��t�

−�

t

dt�e��t�en
����

k,l
ẽl

����tWlkjk�t�� , �8�

the quickly varying part of nn�t�. The quantities en
��� and ẽn

���

are, respectively, the components of the right and left eigen-
vectors of the matrix T to the eigenvalue −��. The probabil-
ity of the electron remaining in the surface states for times on
the order of the desorption time is given by the slowly vary-
ing part only, that is, ns�t�=�nnn

s�t�. Differentiating ns�t� with
respect to time,

d

dt
ns�t� = �

k

se,k
kineticjk�t� − �0ns�t� , �9�

enables us, following Brenig,21 to identify the kinetic-
energy-resolved sticking coefficient,

se,k
kinetic = �t�

n,l
en

�0�ẽl
�0�Wlk, �10�

which gives the probability for the electron being trapped
even after the energy relaxation of the second stage of phy-
sisorption. In analogy to Eq. �2� the energy-averaged kinetic
sticking coefficient reads for a stationary Boltzmannian elec-
tron flux,

se
kinetic =

�
k

se,k
kineticke−�eEk

�
k

ke−�eEk
. �11�

III. TRANSITION PROBABILITIES

The transition probabilities per unit time Wqq�, where q
and q� stand either for k or n, are the fundamental building
blocks of the foregoing analysis. They have to be calculated
from a microscopic model for the electron-surface interac-
tion. The necessary steps have been described in I.

In short, for a dielectric surface, the main source, leaving
interband electronic excitations aside, which primarily affect
the dielectric constant, of the attractive static electron-surface
potential is the coupling of the electron to a dipole-active
surface phonon.43,44 Far from the surface the surface poten-
tial merges with the classical image potential and thus �1 /z.
Close to the surface, however, it is strongly modified by the
recoil energy resulting from the momentum transfer parallel
to the surface when the electron absorbs or emits a surface
phonon. Taking this effect into account leads to a recoil-
corrected image potential �1 / �z+zc� with zc a cut-off pa-
rameter defined in I.

Transitions between the eigenstates of the recoil-corrected
image potential are due to dynamic perturbations of the sur-
face potential. The surface potential is very steep near the
surface. A particularly strong perturbation arises therefore
from the longitudinal-acoustic phonon perpendicular to the
surface which causes the surface plane to oscillate. Hence,
this should be a stronger perturbation than, for instance, the
residual dynamical interaction with the dipole-active surface
phonon. In the following we consider therefore only the dy-

namical interaction with the longitudinal-acoustic phonon.
The Hamiltonian from which we calculated the transition

probabilities was introduced in I where all quantities entering
the Hamiltonian are explicitly defined. It is given by36

H = He
static + Hph + He-ph

dyn , �12�

where

He
static = �

q

Eqcq
†cq �13�

describes the electron in the recoil-corrected image potential,
which thus accounts for the coupling of the electron to the
dipole-active surface phonon,

Hph = �
Q

��QbQ
† bQ, �14�

describes the free dynamics of the acoustic bulk phonon re-
sponsible for transitions between surface states, and

He-ph
dyn = �

q,q�

	q�
Vp�u,z�
q�cq�
† cq �15�

denotes the dynamic coupling of the electron to the bulk
phonon. Expanding Vp�u ,z� with respect to the displacement
field,

u = �
Q

� �

2	�QNs
�bQ + b−Q

† � , �16�

allows us to classify the dynamic interaction according to the
number of exchanged bulk phonons.

As in I we use for calculational convenience a bulk Debye
model for the longitudinal-acoustic phonon, although it is
less justified for the high-energy part of the phonon spectrum
which also enters our calculation. Sums over phonon mo-
menta are thus replaced by

�
Q

¯ =
3Ns

�D
3 � d��2

¯ . �17�

Measuring energies in units of the Debye energy ��D
=kBTD, important dimensionless energy parameters charac-
terizing Eq. �12� are


n =
En

��D
and �nn� =

En − En�

��D
, �18�

where En�0 is the energy of the nth bound state. We call the
surface potential shallow if the lowest bound state is at most
one Debye energy beneath the continuum, that is, 
1−1,
one-phonon deep if the energy difference between the lowest
two bound states does not exceed one Debye energy, that is,
�12−1, two-phonon deep if the energy difference between
the lowest two bound states is between one and two Debye
energies, that is, −1�12−2, and so forth.

Because of the strong interaction between the electron and
the dipole-active surface phonon, physisorption of an elec-
tron typically takes place in an at least two-phonon deep
image potential �see Table I�. Hence, physisorption of an
electron controlled by a bulk acoustic phonon, as anticipated
in Eq. �12� and in fact applicable to dielectric surfaces, where
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large energy gaps block electronic relaxation channels due to
internal electron-hole pairs and/or plasmons, has to involve
the exchange of many bulk phonons.

The transition probability per unit time from an electronic
state q to an electronic state q� is given by16

R�q�,q� =
2�

�
�
s,s�

e−�sEs

�
s�

e−�Es�

	s�,q�
T
s,q�
2

���Es − Es� + Eq − Eq�� , �19�

where T is the on-shell T matrix corresponding to He-ph
dyn and

�s= �kBTs�−1 with Ts the surface temperature; 
s� and 
s�� are
initial and final phonon states, which are averaged over.

Multiphonon processes have two possible origins.16,39

They arise from the expansion of He-ph
dyn with respect to u,

He-ph
dyn = V1 + V2 + V3 + O�u4� �20�

and from the multiple action of this perturbation. Defining
the free electron-phonon resolvent,

G0 = �E − He
static − Hph + i
�−1, �21�

the latter is encoded in the T-matrix equation,

T = He-ph
dyn + He-ph

dyn G0T . �22�

Using the short-hand notation introduced in I, the one-
phonon process, proportional to u2, is accounted for by

	s�,q�
V1
s,q�	s,q
V1
�
s�,q�� . �23�

It leads to the standard golden rule approximation for the
transition probability.

Two-phonon processes are proportional to u4 and thus less
likely than one-phonon processes. Most of them renormalize
only the one-phonon transition probability and can thus be
neglected in a first approximation. There are however two-
phonon processes which induce transitions absent in the one-
phonon approximation and hence have to be included in the
calculation of the transition probabilities. In our short-hand
notation the processes in question are

	s�,q�
V2
s,q�	s,q
V2
�
s�,q�� , �24�

	s�,q�
V2
s,q�	s,q
V1
�G0

�V1
�
s�,q�� , �25�

	s�,q�
V1G0V1
s,q�	s,q
V2
�
s�,q�� , �26�

	s�,q�
V1G0V1
s,q�	s,q
V1
�G0

�V1
�
s�,q�� . �27�

It is shown in I how these processes can be included in the
calculation of the transition probabilities Wqq� entering the
rate equation �3�. Singularities appearing in some of the two-
phonon transition probabilities have been regularized by tak-
ing a finite phonon lifetime into account �see I and Ref. 45
for details�.

The electronic matrix elements entering the transition
probabilities have been also calculated in I using bound and
unbound wave functions of the recoil-corrected image poten-
tial. Hence, not only bound states but also continuum states
belong to the static surface potential.36 Our approach is thus
on par with Armand and Manson’s calculation of the sticking
coefficient for light neutral particles.26

IV. RESULTS

The material parameters chosen for the numerical calcu-
lations are, unless specified otherwise, given in Table II.
They correspond to graphite. For some calculations we use
however the Debye temperature as a tunable parameter to
realize different potential depths which is the main focus of
this investigation.

A. One-phonon deep potentials

First, we present results for shallow and one-phonon deep
surface potentials. In leading order, only one-phonon pro-
cesses are involved and the one-phonon approximation for
the transition probabilities is sufficient. Because the electron
thermalizes then very quickly with the surface the prompt
and kinetic sticking coefficients are almost identical. In this
section we show therefore only results for the prompt stick-
ing coefficient.

Figure 1 compares se
prompt for a shallow and a one-phonon

deep potential. The sketches in the upper part of the figure
illustrate the main difference between the two potentials. For
a shallow potential the lowest bound state is less than one
Debye energy below the continuum so that a low-lying elec-
tron from the continuum can be directly trapped in the lowest
bound state, n=1, by a one-phonon transition. In the case of
a one-phonon deep potential, one-phonon processes can only
lead to trapping in one of the upper bound states n1.

The middle panels of Fig. 1 show the prompt energy-
resolved sticking coefficient as a function of the energy of
the incident electron. Apart from discontinuities the sticking
coefficient depends linearly on the electron energy. As ex-
plained in Sec. III the one-phonon transition probability is
proportional to u2. From Eq. �16� we have u2�1 /� so that

TABLE I. Dielectric constant 
s, Debye energy ��D, energy
difference of the lowest two bound states of the recoil-corrected
image potential �E12, and the corresponding potential depth param-
eter �12 for graphite, silicon dioxide, and gallium arsenide.


s

��D

�eV�
�E12

�eV� �12

Graphite 13.5 0.215 0.233 1.06

SiO2 3.8 0.041 0.105 2.59

GaAs 13 0.030 0.152 5.13

TABLE II. Material parameters for the numerical results.

Debye temperature TD 2500 K

Dielectric constant 
s 13.5

TO phonon mode frequency ��T 170 meV

Grüneisen parameter �G 1.7

Shear modulus 	 5 GPa
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in conjunction with the Debye model, Eq. �17�, the transition
probability per unit time is proportional to � which translates
due to energy conservation to a proportionality to the elec-
tron energy. The phonon spectrum is thus reflected in the
�one-phonon� energy-resolved sticking coefficient, as it is,
for instance, also in the cross section for �one-phonon� in-
elastic particle-surface scattering.38

Steep jumps in the energy-resolved sticking coefficient
reflect the level accessibility. When the energy difference
between the electron and a bound state exceeds the Debye
energy, one-phonon transitions are no longer possible and the
electron can no longer directly reach that level. For a shallow
potential, the first drop reflects therefore the accessibility of
the first bound state, whereas for a one-phonon deep poten-
tial, where this bound state cannot be directly reached, the
first drop reflects the accessibility of the second bound state.
As energy differences between successive bound states of the
image potential decrease toward the ionization threshold,
that is, with increasing n �see upper panels of Fig. 1�, more
such steps are found near the maximum electron energy al-
lowing for trapping, which is the Debye energy.

The contribution of the nth bound state to the sticking
coefficient, reflected in the height of the corresponding ac-
cessibility threshold, decreases for higher bound states. The
reason for this lies in the electronic matrix element appearing

in first-order perturbation theory, 	n
1 / �z+zc�2
k�. This ma-
trix element is smaller for higher bound states because higher
bound states have less weight near the surface where the
perturbation is strongest. Of considerable importance is
hence the lowest bound state, which, if available, yields a
particularly large contribution. The decreasing electronic ma-
trix element also implies that neglecting all but a few, say,
seven, of the infinitely many bound states suffices for the
calculation of the sticking coefficient.

The prompt energy-averaged sticking coefficient is shown
in the lower panels of Fig. 1 as function of the mean electron
energy. Due to thermal averaging the sticking coefficient
does no longer exhibit characteristics of the phonon spec-
trum and level accessibility, making it thus more robust
against changes in the phonon model. It does however reflect
the importance of the lowest bound state for shallow poten-
tials. Note also, due to the long-range tail of the recoil-
corrected image potential �1 / �z+zc� the energy-resolved
and the energy-averaged electron sticking coefficients are fi-
nite for vanishing electron energy and electron temperature,
irrespective of the surface temperature, as it should be.27,32

B. Two-phonon deep potentials

We now turn our attention to two-phonon deep potentials.
Under the assumption that the true one-phonon process

0 0.1 0.2 0.3
Ee [eV]

0

0.001

0.002

0.003

s e,
k

0 0.1 0.2
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s e,
k

0 0.2 0.4
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0
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FIG. 1. �Color online� Left panel: Sketch of a shallow �top� and one-phonon deep �bottom� potential. The gray shaded areas show the
energy range of sticking by one-phonon processes. Middle panel: Energy-resolved prompt sticking coefficient as a function of the electron
energy for a shallow potential �TD=4100 K� at Ts=410 K �top� and for a one-phonon deep potential �TD=3000 K� at Ts=300 K �bottom�.
Right panel: Energy-averaged prompt sticking coefficient as a function of the mean electron energy for a shallow potential �TD=4100 K� at
Ts=205 K �top� and a one-phonon deep potential �TD=3000 K� at Ts=150 K �bottom�.
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dominates the corrections coming from two-phonon pro-
cesses, the latter are only taken into account for transitions
where one-phonon processes alone would yield no transition
probability.

Two-phonon processes affect in a two-phonon deep po-
tential sticking in two ways. They enable prompt trapping
from higher-lying continuum states, outside the one-phonon
trapping range, and they control the energy relaxation of the
trapped electron and thus the formation of the quasistation-
ary bound-state occupancy from which desorption occurs.
There are thus two questions to be answered: how significant
are two-phonon processes for prompt sticking and how does
the relaxation thereafter depend on the type of phonon pro-
cesses available.

To address the first question we show in Fig. 2 the con-
tributions to the prompt energy-resolved sticking coefficient
arising from, respectively, one- and two-phonon processes. If
available, one-phonon processes provide for much larger
sticking coefficients than two-phonon processes. Figure 2
also confirms that the sticking coefficient saturates quickly
with the number of bound states included into the calcula-
tion. The vanishing of the two-phonon contributions to the
sticking coefficient in a narrow energy range just below 0.1
eV is an artifact of our approximation, which neglects two-
phonon corrections to transitions already enabled by a one-
phonon process, and thus calculates two-phonon sticking co-
efficients only for levels which cannot be reached by a one-
phonon process. Had we included two-phonon corrections to
one-phonon transition rates the two-phonon contributions to
the sticking coefficient would be also finite around 0.1 eV.

To investigate the relative importance of the various two-
phonon processes arising, respectively, from the expansion
of the dynamical perturbation and the T matrix we plot in the
inset of Fig. 2 the partial contributions to the prompt sticking
coefficient arising from the various two-phonon processes
which trigger transition to the second bound state. A two-
phonon process can be simultaneous, as encoded in V2, or
successive, as described by V1G0V1. Hence, the total two-

phonon transition probability contains a contribution without
virtual intermediate states, symbolically denoted by V2

2 �see
Eq. �24�� and two contributions with virtual intermediate
states, symbolically denoted by �V1�2V2 and �V1�4 �see Eqs.
�25�–�27��. The prompt energy-resolved sticking coefficient
calculated with either V2

2, �V1�2V2, or V1
4 only is shown in the

inset of Fig. 2. In accordance to what we found in our cal-
culation of the desorption time of an image-bound electron
�paper I� and to what Gumhalter and Šiber found in their
calculation of the cross section for inelastic particle-surface
scattering,39–41 the direct two phonon process V2

2 is domi-
nated by the processes V1

2V2 and �V1�4.
From the dominance of one-phonon processes over two-

phonon processes we can also infer the validity of the trun-
cation of the T matrix, which of course is only justified if the
dynamic interaction is weak enough. The weakness of the
dynamic interaction also guarantees that the unavoidable vio-
lation of the unitarity of the transition probabilities resulting
from the truncation of the T matrix has no practical physical
consequences. Indeed, a significant violation of unitarity
would be indicated by a sticking coefficient 1.22,23 The
sticking coefficients we obtain are on the order of 10−3, rul-
ing out a breach of unitarity and justifying the truncation of
the T matrix.

Having clarified that two-phonon processes lead to a
much smaller prompt sticking coefficient than one-phonon
processes we now move on to study the effect of two-phonon
transitions on the relaxation of the bound-state occupancy.
For a two-phonon deep potential the energy difference be-
tween the lowest two bound states exceeds one Debye en-
ergy. Hence, the relaxation of an electron trapped in one of
the upper bound states to the quasistationary occupancy can
only occur via two-phonon processes. Since the kinetic stick-
ing coefficient gives the probability for the incident electron
making not only a transition to a bound state but also a
subsequent relaxation to the quasistationary occupancy of
these states, the importance of two-phonon processes should
be signaled by the amount the kinetic sticking coefficient
deviates from the prompt sticking coefficient.

Figure 3 shows that for a two-phonon deep potential the
kinetic-energy-resolved sticking coefficient is for intermedi-
ate electron energies considerably smaller than the prompt
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FIG. 2. �Color online� Energy-resolved prompt sticking coeffi-
cient for a two-phonon deep potential �TD=2500 K and Ts

=500 K� calculated with different numbers of bound states N. Full
lines denote the one-phonon contribution, dashed lines the two-
phonon contribution. Inset: contribution of the second bound state.
One-phonon contribution �for Ee�0.1 eV, red�, two-phonon contri-
bution �for Ee0.1 eV, blue� broken down into the processes
�V2�2V2, �V1�2V2, and �V1�4.
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phonon contribution, dashed lines two-phonon contribution.
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energy-resolved sticking coefficient. This is due to the fact
that the two-phonon transition to the lowest bound state,
where the major part of the quasistationary occupancy re-
sides, is very unlikely and thus very slow. Only for small
energies, the first hump of the two-phonon contribution to
the sticking coefficient, due to trapping in the lowest bound
state, are prompt and kinetic sticking coefficients identical
because no trickling through is needed. The artificial vanish-
ing of the two-phonon contribution to the sticking coefficient
around 0.1 eV is again a consequence of our approximation
�see discussion of Fig. 2 above�.

The weak coupling between the lowest two bound states
in a two-phonon deep surface potential leads to a relaxation
bottleneck for the electron if it is initially trapped in one of
the upper states. In Figs. 4 and 5 we analyze the relaxation
bottleneck in more detail as a function of the Debye tempera-
ture TD �to realize different potential depths� and the surface
temperature Ts. The upper panel shows the desorption time
from the lowest bound state, that is, the desorption time for
an electron capable to fall to the lowest bound state, and the
desorption time from the upper bound states, that is, the de-
sorption time for an electron not capable to fall to the lowest
bound state. The probability for the electron initially trapped
in the upper bound states to fall down to the lowest bound
states and the probability to desorb to the continuum without
ever passing through the lowest bound state are shown in the
middle panel and the lower panel shows the prompt and the
kinetic sticking coefficient.

Before we discuss Figs. 4 and 5, we say a few words
about the way we calculated the quantities shown in the up-
per and middle panels. The desorption time from the lowest
bound state is the desorption time for an electron equilibrated

with the surface, the quantity we calculated in I, because the
quasistationary occupancy and the equilibrium occupancy
coincide and both reside moreover, for the considered sur-
face temperatures, mainly on the lowest level. The desorp-
tion time from the upper bound states we simply calculated
from Eq. �5� with the lowest bound state excluded.

The probabilities shown in the middle panels we obtained
from the following consideration. Whether an electron
trapped in the upper bound states passes through to the low-
est bound state or not depends on how large the transition
probabilities from the upper bound states to the lowest bound
state are in comparison to the transition probabilities to the
continuum. Hence, the second stage of physisorption, that is,
the time evolution of the occupancy after the initial trapping,
can be captured by a rate equation for the occupancy of the
upper bound states �n=2,3 , . . .�, similar to Eq. �5�, but with a
loss term to both the continuum and the lowest bound state,

d

dt
nn = �

n

�Wnn�nn��t� − Wn�nnn�t�� − �
k

Wknnn�t� − W1nnn�t�

= �
n�

Dnn�nn��t� , �28�

where the matrix D is defined implicitly by Eq. �28� and
where n and n� run over the upper image states. Solving Eq.
�28� with the initial condition,

nl�0� =

�
k

Wlkjk

�
l,k

Wlkjk

, �29�

which is the �conditional� probability that the electron is
trapped in the lth image state under the condition that it is
trapped in any of the bound states, we deduce for the prob-
ability for an electron trapped in one of the upper bound
states to fall either to the lowest bound state �f =1� or to
desorb without falling to the lowest bound state �f =c�,
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FIG. 4. �Color online� Upper panel: inverse desorption time
from the lowest level �dashed blue line� and the upper levels �full
red line�. Middle panel: probability for an electron initially trapped
in one of the upper levels of the surface potential �n=2,3 ,4 , . . .�
either to fall to the lowest bound state �dashed blue line� or to
desorb without ever reaching the lowest bound state �full red line�.
Lower panel: prompt �full red line� and kinetic �dashed blue line�
energy-resolved sticking coefficient. In all three panels, Ee

=0.1 eV and Ts /TD=0.2 �to keep the level of phonon excitation
constant we set TD /Ts constant �Ref. 36��. For TD�2707 K the
surface potential is two-phonon deep, for 2707�TD�4029 K it is
one-phonon deep, and for TD4029 K it is shallow.
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FIG. 5. �Color online� The three panels show, as a function of
the surface temperature, the quantities of Fig. 4 for TD=2500 K,
that is, graphite, and Ee=0.09 eV.
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pf = nf�t → �� = �
n,�

Wfn
1

��

dn
����

l

d̃l
���nl�0� , �30�

where, dn
��� and d̃n

��� are the components of the right and left
eigenvectors of the matrix D.

We now turn our attention to Fig. 4. It shows the effect of
different potential depths realized by tuning the Debye tem-
perature. For a shallow potential �TD4029 K� desorption
from the lowest level is mainly due to direct one-phonon
transitions to the continuum; the same type of transition
emptying the upper bound states. Hence, the desorption time
from the lowest bound state and the upper bound states, re-
spectively, differ not too much for shallow potentials. For
one-phonon deep potentials �2707�TD�4029 K�, however,
the cascade of two one-phonon processes via the second
level yields much larger desorption times from the lowest
level compared to the desorption time form the upper levels.
For a two-phonon deep potential �TD�2707 K�, finally, the
first leg of the cascade, the transition to the second bound
state, is a two-phonon transition, which increases the desorp-
tion time compared to a one-phonon deep potential.

The second level is the link between the upper bound
states and the lowest bound state. The ratio of the transition
probabilities from the second bound state to the lowest
bound state, W12, and from the second bound state to the
continuum, Wc2, determines if the electron trickles through
after initial trapping or not, that is, whether it thermalizes
with the surface or not. For a one-phonon deep potential both
W12 and Wc2 are due to one-phonon processes, in this case
W12Wc2. For a two-phonon deep potential, however, the
transition from the second to the lowest bound state is en-
abled by a two-phonon process only. In this case, and for
moderate surface temperatures, W12�Wc2 so that the elec-
tron is more likely to desorb before relaxing to the lowest
bound state. As the kinetic sticking coefficient gives the
probability of the trapped electron to relax to the quasista-
tionary occupancy, the drop in the probability for reaching
the lowest level at TD=2707 K, which is the one-phonon/
two-phonon threshold, translates into the abrupt reduction in
the kinetic sticking coefficient at TD=2707 K �see middle
and lower panels of Fig. 4�.

Figure 5 shows the quantities of Fig. 4 as a function of the
surface temperature. The Debye temperature is fixed to the
value for graphite. At low surface temperatures the kinetic
sticking coefficient is only slightly smaller than the prompt
sticking coefficient, yet for high surface temperatures their
difference increases significantly as a consequence of the in-
hibited thermalization. This can be understood as follows:
the transition from the second to the first bound state entails
the emission of two phonons and the transition from the
second bound state to the continuum requires only the ab-
sorption of a single phonon. However, at low enough surface
temperatures it is nevertheless possible that the electron
drops to the lowest bound state because the likelihood of
phonon emission is proportional to 1+nB while the likeli-
hood of phonon absorption is proportional to nB. Hence, for
sufficiently low surface temperatures, W12Wc2, even when
W12 entails a two-phonon and Wc2 a one-phonon process, so

that the electron has a good chance to trickle through. In-
creasing the surface temperature benefits however Wc2 more
than W12 so that W12�Wc2, prohibiting the trickling through
and leading to a considerable reduction in the kinetic sticking
coefficient at high surface temperatures.

From the discussion of Figs. 4 and 5 we conclude that a
pronounced relaxation bottleneck inhibiting thermalization
can only occur for at least two-phonon deep potentials and
sufficiently high surface temperatures. The question arises
then on what time scale does the relaxation bottleneck affect
physisorption. To answer this question we analyze, respec-
tively, the time evolution of the occupancy of the lowest
level and the occupancy of the upper levels of the surface
potential under the assumption that initially all bound states
were empty and that for t0 a stationary unit flux of a
Boltzmannian electron fills the levels. Accordingly, the occu-
pancy of the lowest state �n=1� and the upper states �n
�2� can be determined from Eq. �6� setting jk�t�=0 for t
�0 and jk�t�= jk�ke−�eEk for t�0 with �kjk=1.

The results of this calculation are shown in Fig. 6 for low
�upper two panels� and high �lower two panels� surface tem-
perature. Clearly, for times on the order of the desorption
time, �e=�0

−1, indicated by the vertical dashed line in the left
panels, the upper levels are basically empty indicating that a
thermalized electron desorbs; for TD=2500 K and Ts
=500 K the quasistationary occupancy deviates from the
equilibrium occupancy less than 3%. The upper levels are
more populated than the lower one only for very short time
scales, set by �1

−1, indicated by the vertical dashed line in the
right panels. Since �1

−1��0
−1, the relaxation bottleneck does

not affect desorption, which still occurs from the equilibrium
occupancy. It does thus only affect the kinetic sticking coef-
ficient which is significantly smaller than the prompt one and
actually the one to be used to characterize polarization-
induced trapping of an electron at a dielectric surface. The
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FIG. 6. �Color online� Bound-state occupancy of the lowest
bound state �dashed blue line� and the upper bound states �solid red
line� as a function of time for an unit flux of a Boltzmannian elec-
tron with kBTe=0.1 eV. The left and right panels show the two
occupancies on two time scales. The left panel on the scale of the
desorption time �0

−1=�e �vertical dashed line in the left panels� and
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−1 �vertical dashed line in the
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=2500 K whereas the lower two panels show results for Ts
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relaxation bottleneck is absent in neutral physisorption sys-
tems because the level spacing is small compared to the De-
bye energy. Prompt and kinetic sticking coefficients are thus
almost identical as has been indeed found for neon atoms
physisorbing on a copper substrate.29

Figure 7 finally shows for graphite the energy-averaged
prompt and kinetic sticking coefficients as a function of the
mean energy of the incident electron and the surface tem-
perature. As two-phonon processes contribute little to the
initial trapping of the electron, their most important role is to
control relaxation to the lowest bound state. In agreement
with the foregoing discussion, the kinetic sticking coefficient
diminishes therefore for higher surface temperatures whereas
the prompt sticking coefficient is less sensitive to the surface
temperature. From Fig. 7 it can be also seen that even the
prompt sticking coefficient for graphite is only at most on the
order of 10−3, the order we also found in our investigation of
electron sticking at metallic surfaces.15 It is two orders of
magnitude smaller than the value obtained from a semiclas-
sical estimate42 whose range of applicability is however hard
to grasp. We expect it, at best, to be applicable to very low
mean electron energies, below 0.0026 eV, and rather high
electron binding energies, larger than 1 eV.15

V. CONCLUSIONS

As a preparatory step toward a microscopic understanding
of the buildup of surface charges at dielectric plasma bound-
aries, we investigated phonon-mediated temporary trapping
of an electron on a dielectric surface. In our simple model for
the polarization-induced interaction of the electron and the
dielectric surface, the adsorbed electron occupies the bound
states of a recoil-corrected image potential. Electron-energy
relaxation responsible for transitions between the image
states leading to adsorption and eventually to desorption is
due to the coupling to an acoustic bulk phonon.

Dielectrics typically used as plasma boundaries are graph-
ite, silicon oxide, aluminum oxide, and bismuth silicon ox-
ide. They all have large energy gaps blocking internal elec-

tronic degrees of freedom and small Debye energies
compared to the energy difference of at least the lowest two
bound surface states. Electron physisorption at these bound-
aries is thus driven by multiphonon processes. As in I we
presented results for a two-phonon deep surface potential, as
it is applicable to graphite, where the energy difference be-
tween the lowest two bound states is between one and two
Debye energies. Classifying two-phonon processes by the
energy difference they allow to bridge, we included two-
phonon transition probabilities only for transitions not al-
ready triggered by one-phonon processes. Besides the Debye
temperature, which we varied to realize different potential
depths, the material parameters used in the numerical calcu-
lations are the ones for graphite.

Similar to physisorption of a neutral particle, sticking and
desorption of an electron can be subdivided into three char-
acteristic stages. At first, the electron is trapped in one of the
upper bound states of the surface potential. Then the bound-
state occupancy relaxes to a quasistationary occupancy. Fi-
nally, over the time scale set by the desorption time, the
electron desorbs. In order to account for both initial trapping
and subsequent relaxation we employed a quantum-kinetic
rate equation for the occupancy of the image states. Apart
from calculating the energy-resolved and energy-averaged
prompt and kinetic electron sticking coefficients, which typi-
cally turn out to be on the order of 10−3, we also investigated
the relative importance of one-and two-phonon processes for
the two stages of the sticking process.

The initial trapping is almost entirely due to one-phonon
transitions from the continuum, two-phonon processes from
higher-lying continuum states contribute very little. The re-
laxation of the bound-state occupancy after the initial trap-
ping depends strongly on the ratio of the probabilities for
downward transitions to the lowest state and upward transi-
tions to the continuum. For graphite, with its two-phonon
deep surface potential, the upper bound states are linked to
the lowest bound state only by a two-phonon process. The
trapped electron has thus only a slim chance to drop to the
lowest bound state, particularly at high surface temperatures,
which favor transitions back to the continuum. The de-
creased accessibility of the lowest surface state leads to a
significant reduction in the kinetic sticking coefficient com-
pared to the prompt sticking coefficient. For the other dielec-
trics typically used as plasma boundaries, silicon dioxide,
aluminum oxide, and bismuth silicon oxide, the surface po-
tentials are much deeper because the Debye energy for these
materials is very small. Hence, more than two phonons are
required to link the upper image states to the lowest one, the
accessibility of the lowest image state is thus even more
suppressed, and the kinetic sticking coefficient should be ac-
cordingly small.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft through the transregional collaborative research
center TRR 24. F.X.B. and H.F. acknowledge discussions
with H. Deutsch in the early stages of this investigation.

0 0.5 1 1.5
kBTe [eV]

0.0

5.0×10
-4

1.0×10
-3

1.5×10
-3

2.0×10
-3

s e
Ts = 150 K
Ts = 300 K
Ts = 450 K
Ts = 600 K

FIG. 7. �Color online� Prompt �full line� and kinetic �dashed
line� energy-averaged sticking coefficient for graphite �TD

=2500 K� as a function of the mean energy of the electron and the
surface temperature.

PHONON-MEDIATED STICKING OF ELECTRONS AT… PHYSICAL REVIEW B 82, 125408 �2010�

125408-9



1 M. Rapp and F.-J. Lübken, J. Atmos. Sol.-Terr. Phys. 63, 759
�2001�.

2 E. C. Whipple, Rep. Prog. Phys. 44, 1197 �1981�.
3 B. T. Draine and B. Sutin, Astrophys. J. 320, 803 �1987�.
4 I. Mann, Adv. Space Res. 41, 160 �2008�.
5 V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and

G. E. Morfill, Phys. Rep. 421, 1 �2005�.
6 O. Ishihara, J. Phys. D: Appl. Phys. 40, R121 �2007�.
7 Y. B. Golubovskii, V. A. Maiorov, J. Behnke, and J. F. Behnke, J.

Phys. D: Appl. Phys. 35, 751 �2002�.
8 U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 �2003�.
9 M. Li, C. Li, H. Zhan, and J. Xu, Proceedings of the XV Inter-

national Conference on Gas Discharges and their Applications,
2004 �unpublished�.

10 L. Stollenwerk, S. Amiranashvili, J.-P. Boeuf, and H.-G. Pur-
wins, Phys. Rev. Lett. 96, 255001 �2006�.

11 L. Stollenwerk, J. G. Laven, and H.-G. Purwins, Phys. Rev. Lett.
98, 255001 �2007�.

12 M. Li, C. Li, H. Zhan, and J. Xu, Appl. Phys. Lett. 92, 031503
�2008�.

13 M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma
Discharges and Materials Processing �Wiley-Interscience, New
York, 2005�.

14 F. X. Bronold, H. Fehske, H. Kersten, and H. Deutsch, Phys.
Rev. Lett. 101, 175002 �2008�.

15 F. X. Bronold, H. Deutsch, and H. Fehske, Eur. Phys. J. D 54,
519 �2009�.

16 B. Bendow and S.-C. Ying, Phys. Rev. B 7, 622 �1973�.
17 G. Iche and P. Noziéres, J. Phys. �Paris� 37, 1313 �1976�.
18 Z. W. Gortel, H. J. Kreuzer, and R. Teshima, Phys. Rev. B 22,

5655 �1980�.
19 Z. W. Gortel, H. J. Kreuzer, and R. Teshima, Phys. Rev. B 22,

512 �1980�.
20 U. Leuthäusser, Z. Phys. B: Condens. Matter 44, 101 �1981�.
21 W. Brenig, Z. Phys. B: Condens. Matter 48, 127 �1982�.

22 H. J. Kreuzer and Z. W. Gortel, Physisorption Kinetics
�Springer-Verlag, Berlin, 1986�.

23 W. Brenig, Phys. Scr. 35, 329 �1987�.
24 S. G. Chung and T. F. George, Surf. Sci. 194, 347 �1988�.
25 Z. W. Gortel and J. Szymanski, Phys. Rev. B 43, 1919 �1991�.
26 G. Armand and J. R. Manson, Phys. Rev. B 43, 14371 �1991�.
27 D. P. Clougherty and W. Kohn, Phys. Rev. B 46, 4921 �1992�.
28 G. P. Brivio and T. B. Grimley, Surf. Sci. Rep. 17, 1 �1993�.
29 G. P. Brivio, T. B. Grimley, V. Bortolani, and G. Santoro, Chem.

Phys. Lett. 208, 93 �1993�.
30 W. Brenig, A. Gross, and R. Russ, Z. Phys. B: Condens. Matter

96, 231 �1994�.
31 C. Carraro and M. W. Cole, Prog. Surf. Sci. 57, 61 �1998�.
32 W. Brenig and R. Russ, Surf. Sci. 278, 397 �1992�.
33 D. Neilson, R. M. Nieminen, and J. Szymański, Phys. Rev. B 33,

1567 �1986�.
34 A. P. Mills, E. D. Shaw, M. Leventhal, P. M. Platzman, R. J.

Chichester, D. M. Zuckerman, T. Martin, R. Bruinsma, and
R. R. Lee, Phys. Rev. Lett. 66, 735 �1991�.

35 A. B. Walker, K. O. Jensen, J. Szymański, and D. Neilson, Phys.
Rev. B 46, 1687 �1992�.

36 R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. B 81,
155420 �2010�.

37 B. Gumhalter, Surf. Sci. 347, 237 �1996�.
38 B. Gumhalter, Phys. Rep. 351, 1 �2001�.
39 A. Šiber and B. Gumhalter, Phys. Rev. Lett. 90, 126103 �2003�.
40 A. Šiber and B. Gumhalter, Phys. Rev. B 71, 081401�R� �2005�.
41 A. Šiber and B. Gumhalter, J. Phys.: Condens. Matter 20,

224002 �2008�.
42 T. Umebayashi and T. Nakano, Publ. Astron. Soc. Jpn. 32, 405

�1980�.
43 R. Ray and G. D. Mahan, Phys. Lett. 42A, 301 �1972�.
44 E. Evans and D. L. Mills, Phys. Rev. B 8, 4004 �1973�.
45 R. L. Heinisch, Diploma thesis, Universität Greifswald, 2009.

HEINISCH, BRONOLD, AND FEHSKE PHYSICAL REVIEW B 82, 125408 �2010�

125408-10

http://dx.doi.org/10.1016/S1364-6826(01)00006-2
http://dx.doi.org/10.1016/S1364-6826(01)00006-2
http://dx.doi.org/10.1088/0034-4885/44/11/002
http://dx.doi.org/10.1086/165596
http://dx.doi.org/10.1016/j.asr.2007.04.066
http://dx.doi.org/10.1016/j.physrep.2005.08.007
http://dx.doi.org/10.1088/0022-3727/40/8/R01
http://dx.doi.org/10.1088/0022-3727/35/8/306
http://dx.doi.org/10.1088/0022-3727/35/8/306
http://dx.doi.org/10.1023/A:1022470901385
http://dx.doi.org/10.1103/PhysRevLett.96.255001
http://dx.doi.org/10.1103/PhysRevLett.98.255001
http://dx.doi.org/10.1103/PhysRevLett.98.255001
http://dx.doi.org/10.1063/1.2838340
http://dx.doi.org/10.1063/1.2838340
http://dx.doi.org/10.1103/PhysRevLett.101.175002
http://dx.doi.org/10.1103/PhysRevLett.101.175002
http://dx.doi.org/10.1140/epjd/e2009-00213-7
http://dx.doi.org/10.1140/epjd/e2009-00213-7
http://dx.doi.org/10.1103/PhysRevB.7.622
http://dx.doi.org/10.1051/jphys:0197600370110131300
http://dx.doi.org/10.1103/PhysRevB.22.5655
http://dx.doi.org/10.1103/PhysRevB.22.5655
http://dx.doi.org/10.1103/PhysRevB.22.512
http://dx.doi.org/10.1103/PhysRevB.22.512
http://dx.doi.org/10.1007/BF01292657
http://dx.doi.org/10.1007/BF01362458
http://dx.doi.org/10.1088/0031-8949/35/3/019
http://dx.doi.org/10.1016/0039-6028(88)90859-X
http://dx.doi.org/10.1103/PhysRevB.43.1919
http://dx.doi.org/10.1103/PhysRevB.43.14371
http://dx.doi.org/10.1103/PhysRevB.46.4921
http://dx.doi.org/10.1016/0167-5729(93)90023-I
http://dx.doi.org/10.1016/0009-2614(93)80082-Z
http://dx.doi.org/10.1016/0009-2614(93)80082-Z
http://dx.doi.org/10.1007/BF01313289
http://dx.doi.org/10.1007/BF01313289
http://dx.doi.org/10.1016/S0079-6816(98)00013-6
http://dx.doi.org/10.1016/0039-6028(92)90675-V
http://dx.doi.org/10.1103/PhysRevB.33.1567
http://dx.doi.org/10.1103/PhysRevB.33.1567
http://dx.doi.org/10.1103/PhysRevLett.66.735
http://dx.doi.org/10.1103/PhysRevB.46.1687
http://dx.doi.org/10.1103/PhysRevB.46.1687
http://dx.doi.org/10.1103/PhysRevB.81.155420
http://dx.doi.org/10.1103/PhysRevB.81.155420
http://dx.doi.org/10.1016/0039-6028(95)00954-X
http://dx.doi.org/10.1016/S0370-1573(00)00143-5
http://dx.doi.org/10.1103/PhysRevLett.90.126103
http://dx.doi.org/10.1103/PhysRevB.71.081401
http://dx.doi.org/10.1088/0953-8984/20/22/224002
http://dx.doi.org/10.1088/0953-8984/20/22/224002
http://dx.doi.org/10.1016/0375-9601(72)90431-8
http://dx.doi.org/10.1103/PhysRevB.8.4004

