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Antilinear spectral symmetry and the vortex zero modes in topological insulators and graphene
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We construct the general extension of the four-dimensional Jackiw-Rossi-Dirac Hamiltonian that preserves
the antilinear reflection symmetry between the positive- and negative-energy eigenstates. Among other sys-
tems, the resulting Hamiltonian describes the s-wave superconducting vortex at the surface of the topological
insulator, at a finite chemical potential, and in the presence of both Zeeman and orbital couplings to the
external magnetic field. Here we find that the bound zero mode exists only when the Zeeman term is below a
critical value. Other physical realizations pertaining to graphene are considered, and some novel zero-energy

wave functions are analytically computed.
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I. INTRODUCTION

Eigenstates with precisely zero energy which are localized
in the core of topological defects in some order parameter in
low-dimensional electronic systems have continued to draw
attention. Historically, they were first studied in the context
of fractionalization of electric charge.'"> Nowadays, they are
also thought to provide a possible route to fault tolerant
quantum computation*~” as well as a mechanism for ordering
of the vortex core, for example.®~!? Their existence is often
tied to index theorems, which in turn rely on the symmetry
between positive and negative eigenvalues of the Hamil-
tonian. Such a reflection symmetry of the energy spectrum is
certainly a necessary condition for the zero-energy states to
be robust under variations in the defect potential: obviously,
at least when their number is odd, at least one state has to be
pinned to zero in order for the spectrum to remain symmetric
under the exchange of the sign of the energy. This raises the
following question: what is the general extension of the
Jackiw-Rossi-Dirac® (JRD) Hamiltonian [defined below in
Eq. (1)] which still possesses the symmetry in question? In
this paper we provide the answer and discuss some physical
realizations of our result.

We show that irrespectively of a representation, there are
exactly two, one linear and one antilinear, operators which
anticommute with the four-dimensional JRD Hamiltonian.
The additional terms that respect the spectrum’s reflection
symmetry and which can be added to it then have to be odd
under one of these two operators. An important example of a
Hamiltonian that anticommutes with the linear operator is
the JRD Hamiltonian in presence of the Abelian gauge
field.!! Here we focus on those terms that, in contrast, anti-
commute with the antilinear operator. In the four-
dimensional representation there are precisely four such
terms. Their physical meaning is maybe most transparent in
the context of the superconducting vortex at the surface of
the topological insulator:'? (1) the chemical potential, (2) the
Zeeman coupling of the electron spin to the external mag-
netic field, and (3) the two components of the electromag-
netic vector potential. Some special cases of our general
Hamiltonian have already appeared in literature in different
physical contexts.!>'# It is shown here that the most general
Hamiltonian with the vortex of unit vorticity indeed has a
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zero mode under a certain condition, and we exhibit the ana-
lytical solution for it when the flux of the gauge field is
localized at the origin. In the context of topological insula-
tors, for example, we find that the Majorana zero mode!'?
exists only for the Zeeman term below a critical value, at
which it delocalizes.

The paper is organized as follows. In the next section we
derive the antilinear operator that anticommutes with the
JRD Hamiltonian. In Sec. III we display the extended JRD
Hamiltonian consistent with the antilinear spectral symmetry,
and discuss its physical realizations. In Sec. IV we solve
analytically for the zero mode of the spectrum. The impor-
tant example of a vortex at the surface of the topological
insulator in the magnetic field is discussed in Sec. V and we
summarize our findings in Sec. VI. Some simple, but for our
purposes crucial algebraic facts about Dirac matrices are pre-
sented in the Appendix.

II. ANTILINEAR SPECTRAL SYMMETRY
The JRD Hamiltonian® has the general form
Hy=ayp; + appy + my(¥) oz + my(X) ay, (1)

where «; are four Hermitian four-dimensional matrices that
satisfy the Clifford algebra {a;, @;}=26};, and the two masses
are m,(X)=2m(r)cos n¢ and m,(x)=2m(r)sin n¢, with (r, @)
as polar coordinates in the plane, and the integer n is the
vorticity. We assume m(r— o) to be finite, but the function
m(r) otherwise arbitrary. p; are two components of the mo-
mentum operator. We have also set the velocity and the
Planck constant to unity for convenience.

It is well known that there is a unique constant matrix that
anticommutes with all four matrices ¢;, and consequently
with Hy: B=a;a,a304, which we chose here to be Hermitian
as well. The existence of this matrix implies that the spec-
trum is symmetric around zero and S plays a crucial role in
the derivation of the index theorem for the JRD
Hamiltonian."> There exists, however, a unique additional
antilinear operator that anticommutes with H,,. To see this,
the reader may recall that H, may be understood as the ef-
fective low-energy Hamiltonian for a nonuniform but real
tight-binding Hamiltonian on the graphene’s honeycomb
lattice.'® Irrespectively of the representation one can thus
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always define an operation formally (and in the case of
graphene, literally!?) analogous to time-reversal symmetry:
an antilinear operator that commutes with H,. Such an effec-
tive time-reversal operator may then be written as 7T=UK,
where U is unitary, and K stands for complex conjugation.
The explicit form of U, of course, depends on the represen-
tation of the Clifford algebra. Since all four-dimensional rep-
resentations are equivalent,'®!® on the other hand, one is at
liberty to chose the most convenient one for the present pur-
poses. Let us assume therefore a representation in which a;
and «a, are real, and a3 and «, are imaginary. The existence
of such a representation is proved in the Appendix. In this
representation the unitary part of 7 has to anticommute with
all «;, and therefore there is a unique solution, U=p. The
antilinear operator that anticommutes with H, in this repre-
sentation is then simply

A=BT=K, ()

where the first equality is completely general and the second
is specific to the representation. We have used the fact that
B*=1 and that the matrix 8 in this representation must be
real.

Uniqueness of the operator A can also be seen to follow
from Schur’s lemma:'® since the unitary part of A would
have to commute with all four a matrices in the chosen
representation, the irreducibility of the four-dimensional rep-
resentation guarantees that it is proportional to unit operator.

III. GENERAL HAMILTONIAN

It is easy then to identify all four-dimensional purely
imaginary Hermitian matrices that as such anticommute with
the operator A. The first class consists of those which are
even under 7 and anticommute with 8: a3 and a4, already
present in H,, and ia;B=ia,aza, and ia,B=—ia;azay,
which are not. The second class contains terms that are odd
under 7 and which commute with S: iaja, and iazay. The
most general Hamiltonian, which while not anticommuting
with B any longer still anticommutes with the antilinear op-
erator A, and as such has the reflection symmetry of the
spectrum around zero, may thus be written as

2
H=2, a{p;+ AR iazay)) +my (D) as + my(F) ey
i=1

+ u(X)iczay + h(X)ia ay. (3)

It may also be useful to display the result using the standard
covariant notation in terms of the Dirac (Hermitian) -y matri-
ces: afi=i‘y()‘y,-, for i=1 ,2,3, a4=i'}’0’)’5

2

H =2 iyoydpi+ Ai®) yas) + iyo(m, (%) ys + my(3) ys)
i=1

+ (u(X) + h(X) o) V3s- (4)

The matrix y35=i7y;7s that plays the prominent role in H is
the generator of the rotations of the two masses present in H,
into each other. Since 735 has the eigenvalues *1, A;(X) en-
ters the Hamiltonian as the axial gauge field, although we

PHYSICAL REVIEW B 82, 125402 (2010)

will see that it may also represent the true electromagnetic
field in some physical realizations, notably in the topological
insulator. i(X) is the mass term which preserves the chiral
symmetry of the massless Dirac Hamiltonian, generated by
{73, 75,735}, but breaks the (effective) time-reversal symme-
try.

The Hamiltonian in Eq. (4) represents the most general
extension of the JRD Hamiltonian that preserves the antilin-
ear symmetry between the positive and negative parts of the
energy spectrum with the additional terms independent of
momentum. Momentum-dependent extensions are also
physically relevant and will be a subject of a separate
publication?. In this paper we have not considered the ex-
tensions of the JRD Hamiltonian that would preserve the
linear spectral symmetry provided by S either. As already
mentioned, an important example of the latter is the addition
of the Abelian gauge potential by minimal subtraction, p;
— p;—A;, which represents graphene in magnetic field, for
example, and also yields zero-energy states.!!

Special cases of the Hamiltonian H have already arisen in
different physical contexts. When wu(x)=h(x)=0, Jackiw and
Pi'% have found that the axial vector potential can in certain
sense be factored out of the Hamiltonian so that its presence
does not alter the number of zero-energy states but only
modifies their form. When A;(X)=h(X)=0, the Hamiltonian
describes the vortex in the s-wave superconducting order pa-
rameter at the surface of the topological insulator at a finite
chemical potential,'>?%2! and the exciton condensate in the
symmetrically biased graphene bilayer.'? It may also be un-
derstood as describing the vortex in the Néel order parameter
at finite Zeeman coupling to magnetic field in graphene,
where one needs one copy of H for each Dirac point.® Simi-
larly, the Bogoliubov-de Gennes (BdG) Hamiltonian for the
vortex in a general superconducting order parameter on
graphene’s honeycomb lattice with the orbital effect of the
magnetic field included requires two copies of H with A(x)
:0.10

IV. ZERO MODE

Let us now proceed to solve for the zero-energy state for
u(X)=2u and h(X)=2h constant, when an analytic solution is
possible. In graphene, for example, we may chose a;=—03
® gy, CY2=I® O, O3=0 ® gy, and ay= O'2® 0'1.22 The Dirac
fermion is then W7 =(u;,v,,u,,v,), with u; and v; standing
for the components of the wave functions at the two triangu-
lar sublattices of the honeycomb lattice, near the two Dirac
points. (True spin degree of freedom is suppressed.) The
masses are chosen so to represent the vortex in the Kekulé
bond-density wave.'® The term proportional to w is in this
example the “pseudochemical potential,” which has the op-
posite sign at the two Dirac points, whereas the one propor-
tional to h represents the pattern of imaginary-valued hop-
pings between the sites belonging to the same sublattice.?
The vector potential may be understood as arising from a
ripple on the graphene’s surface, for example, Ref. 17. The
equations for the zero-energy state in this representation be-
come

(/L+h)ul+(iﬂZ——A)vl+n_wz=0, (5)
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—(,u+h)u2+mv1—(i&z+g)v2=0, (6)
(M—h)vl+(i§z—A_)M1+ﬁlu2=O, (7)
—(M—h)Uz'i'mM]—(i&z'{'A)Mz:O, (8)

where m=m(r)e'?, .= %[3,~(i/r)d4], A=A, +iA,, and the
bar denotes a complex conjugation. Assuming an ansatz

ol (A=) (- )kvk =(- )k+1g(r)e—f6m(r’)dr' i 9)
oA )k”Mk =f(r)e—f6m(r’)dr’ (10)

with k=1,2, Egs. (5)—(8) reduce to only two
(u+h)g(r) +[d,+Aun]f(r) =0, (11)

(,u—h)f(r)—[&+%—A¢(r)]g(r)=0, (12)

where we have also assumed a spherically symmetric field
gauge field A®®) =A4(r) ®.
A. Zero gauge field

Let us first consider the problem without the gauge field,
A 4(r)=0. Combining the last two equations, one finds the
standard Bessel differential equation for the function g(r)

r?arg(r) +ra,g(r) +[(u> =) = 1g(r)=0.  (13)

For |h|<|u| the solution normalizable at the origin is quali-
tatively similar to the solution for =0 (Refs. 20 and 21)

g(r)=CJ\[r(u* = h*)"], (14)
1/2
flr)= C<“—+h> Jolr(p? = n*)'2], (15)
m—h

where J,(z) are the Bessel functions of the first kind and C is
the normalization constant. The only difference from the so-
lution at £=0 is in the characteristic length scale of oscilla-
tions, which now became longer. As long as |u|=|h| the
zero-energy state is exponentially localized far from the vor-
tex with the characteristic length scale ~1/m(®). At u=nh
two of the components vanish identically, v;=v,=0, while
the other two become constant. The zero mode in this limit
becomes the same as the one of the original JRD
Hamiltonian.? At the opposite end when u=-h, however, the
solution is different, f(r)=C, g(r)=Cur. In either case, at
|| =|h| the characteristic length scale for the oscillations un-
der the overall exponential decay of the solution diverges.

When |u|<|h|, on the other hand, the solutions turn into
the modified Bessel functions

g(r) = CL[r(h? - u*)"], (16)

1/2
flr)=- C(%ﬁ) Io[r(h* = u*)"], (17)

which now at large radius grow exponentially
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er(hz _ MZ)I/Z
V(h2 _ MZ)I/Z :

The zero-energy state therefore remains normalizable only if
the following condition is met:

m()? + u? = h>. (19)

g(r) = (18)

When |h] is above the critical value the zero mode is expo-
nentially large far from the vortex. In a finite system this
would presumably correspond to the state becoming local-
ized at the boundary. Right at the critical value the zero mode
is thus critical: it oscillates with the amplitude of oscillations
decaying as a power law ~1/1r.

B. Finite gauge field

With the general gauge field present it seems not to be
possible any more to find the analytic solution for the zero
mode, in contrast to the case when u=h=0."* We can nev-
ertheless solve analytically a somewhat artificial but never-
theless instructive example of the field’s strength as the delta
function at the origin, when A ¢(r)=(D/ 2r. To determine the
sign and the magnitude of the flux ® that would render the
energy of the vortex configuration assumed here finite, note
that the Hamiltonian H in Eq. (4) is invariant under the local
unitary transformation

H — /09357100735 (20)
provided it is accompanied by the gauge transformation
Ay — Ap+ 9 0(X) (21)
and the rotation of the complex mass
m — me*0 . (22)

The last two transformations imply that the gauge-invariant
coupling of the mass and the vector potential has the form

|(0) = 2iA)m|? (23)

so that the vortex configuration in the mass m has the finite
energy only if A,=1/2r at large distances. We thus take the
flux to be ®=+1/2. Equations (11) and (12) then become
quite similar

om0+ 2 )0=0.  @v

(n=h)f(r) - (ﬁr + %r)g(r) =0. (25)

For || > |h| the solutions are still the Bessel functions of the
first kind but now of the order £1/2

g(r)= C1]1/2[r(#2 - hz)m] + CzJ-l/z[r(,U«2 - hz)”z],

(26)
2
1) = (“—”) el - 117
m—h
- C2J—1/2[V(I-L2 - hz)l/z]}~ (27)

One of the two constants appearing in the solutions is to be

125402-3



IGOR F. HERBUT AND CHI-KEN LU

fixed by the condition at the origin, which, as usual, must be
additionally specified,?»> and which would correspond to
different short-distance regularizations of the magnetic flux.

Spreading the flux over a finite region of a linear size ~\
around the origin may be accomplished by defining A,
=(1/2\?)r for r<\, and A=1/2r, for r>N\, for example.
Very near the origin then the differential equation would re-
duce to Eq. (13) with u?— u?+(1/2\?), which would still
yield one regular solution. At r=X\ the continuity of the so-
lution would place two constraints on three (one for r<<A\,
and two for r>\) constants of integration. The zero mode
clearly still exists. When || > |u|, modified Bessel functions
replace those of the first kind far from the origin, and the
zero mode again delocalizes when the condition in Eq. (19)
ceases to hold.

V. DISCUSSION

The graphene representation we used is such that «; are
real for i=1,3 and imaginary for i=2,4. The time-reversal
operator is then T=ia;a,uK, and therefore A=ia,a3K=0
® 03K. The zero-energy mode we found is therefore an
eigenstate of the operator A with the eigenvalue +1. It is easy
to check that the other eigenstate of A with the eigenvalue —1
has the opposite sign of the exponential in Egs. (9) and (10),
and therefore is not normalizable.

The antilinear operator that anticommutes with the special
case of our Hamiltonian when A=0 was already recognized
in the second of the Ref. 14, in a specific representation
similar to the one for graphene. The readers familiar with the
BCS theory of superconductivity may also recognize it as
being closely related to the ubiquitous symmetry of the BCS-
type Hamiltonians, which originates in the Bogoliubov-
Valatin doubling of degrees of freedom, characteristic for the
BCS problem. We saw here, however, that the antilinear
spectral symmetry is in fact a general property of certain
wide class of Dirac Hamiltonians, which derives from the
properties of the representations of Clifford algebra under
complex conjugation. As such it is also present in the real-
izations of the Dirac Hamiltonian relevant to graphene,
where the masses may equally represent insulating order
parameters.?>%0

At the surface of the topological insulator, we can con-
sider the BAG Hamiltonian in presence of the vortex in the
s-wave superconducting order parameter,'>?’ by constructing
the Dirac fermion as ¥'T =(cy,c l’c;’cD' If the single particle
Hamiltonian is h=p,0y+p,0,—u, the BAG Hamiltonian at
n=0 assumes the form in Eq. (1) but with the a matrices as
&1=I® gy, a2=0'3 ® O, &3=O-l ® O), and &4= 0'2® 0). Al-
though this representation appears rather different from the
one we used, the two are, of course, equivalent: Ez,:UTaiU,
for i=1,2,3,4, with the unitary operator as

U= ei7T/4(0'3®0'3)[I ® eiw/40'3:|[0.3 ) 0.2]. (28)

Since the matrix —o3 ® I=iazay is the particle number opera-
tor, both the chemical potential and the electromagnetic field
enter the BAG Hamiltonian by multiplying it, just like in Eq.
(3). Finally, as the generator of spin rotations around the
direction perpendicular to the plane of the system is o3
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® oy=—ia;a,, the Zeeman coupling of the electrons to the
magnetic field of the vortex, enters the BAG Hamiltonian
precisely as the last term in Eq. (3).

The superconducting vortex at the surface of the topologi-
cal insulator provides therefore a physical realization of the
most general Hamiltonian with the antilinear reflection sym-
metry of its spectrum. As the magnetic field always accom-
panies the superconducting vortex, we conclude that the Ma-
jorana fermion in the vortex will survive only if the Zeeman
coupling of the electrons in the topological insulator to the
magnetic field is small enough. In this respect we may note
that our assumption of a constant Zeeman term is a reason-
able approximation in the strong type-II limit, in which the
magnetic field decays over the length scale of penetration
depth \, whereas the zero-energy state decays over the much
shorter superconducting coherence length, £~ 1/m(%). Ac-
cording to Eq. (19), however, even for an overly strong Zee-
man coupling the Majorana fermion can always be produced
inside the vortex by simply increasing the chemical potential.
Finally, one can imagine placing the whole system in an
additional uniform magnetic field, which can then be used to
manipulate the localization of the Majorana zero mode.

VI. CONCLUSION

In conclusion, we have determined the general extension
of the four-dimensional Jackiw-Rossi-Dirac Hamiltonian that
retains the antilinear reflection symmetry of the spectrum
and solved for its zero-energy state in several examples. A
particularly relevant physical realization of the most general
Hamiltonian of this kind is provided by the superconducting
vortex at the surface of a topological insulator with the vor-
tex and/or an external magnetic field fully included. The Ma-
jorana fermion inside the vortex core is found to exist only
when the Zeeman coupling of electrons to the magnetic field
is sufficiently small.
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APPENDIX

If one demands that five four-dimensional anticommuting
Hermitian matrices, such as «; i=1,...,4 and 3, are all ei-
ther real or imaginary, it is easy to see that in any represen-
tation precisely three of these will be real and two imaginary.
A direct way to show this is to construct the matrices «; and
B out of standard Pauli matrices. The first three one may
chose to be

(Tk®0'1,0'k®0'2,0'k®0'3. (29)
The remaining two will then be
o, ®1,0,01, (30)

where n # m # k. Choosing k=1 or k=3 then makes the sec-
ond in the first group and one in the second group imaginary,
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and the rest real. Choosing k=2, on the other hand, makes
the first and the third in the first group imaginary, and the rest
real. Since all sets of five four-dimensional anticommuting
Hermitian matrices of definite symmetry under complex con-
jugation are either exactly like in this example, or with the
two factor spaces interchanged, this proves our assertion.
Another way to prove it would be notice first that it would
be impossible to have three of the matrices imaginary and
two real since that would contradict the fact that any of the
five matrices is a product of the remaining four. So a priori
the only other options would be to have all five matrices real
or four imaginary and one real. Both cases would imply that
there exists a four-dimensional representation of the Clifford
algebra of four elements that all square to +1 or all to —1,
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which is purely real, since in the latter case we could pick the
four imaginary matrices and multiply them by the imaginary
unit. But that would, on the other hand, be in contradiction
with the result that the smallest real representations of Clif-
ford algebras C(4,0) (four anticommuting elements each
squaring to +1) and C(0,4) (four anticommuting elements
each squaring to —1) is actually eight-dimensional.?® The
only Clifford algebras of four elements that actually possess
a real four-dimensional representation are C(3,1) and
C(2,2), in accord with our result.

In our derivation of the antilinear symmetry of the JRD
Hamiltonian we could indeed therefore pick two real matri-
ces for those multiplying the momentum operator and the
two imaginary for the masses.
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