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We present a theoretical analyses of the fine structure of the band-edge biexciton in nanometer-size crystal-
lites �nanocrystal �NC� quantum dots� of direct semiconductors with a cubic lattice structure or a hexagonal
lattice structure, which can be described within the framework of a quasicubic lattice model. The six ground
biexciton states created from the two fourfold degenerate hole states and the two twofold degenerate electron
states, according to the Pauli principle, are split into three levels by the crystal-shape asymmetry, the intrinsic
crystal field �in hexagonal lattice structure�, and the hole-hole exchange interaction. The size-dependent split-
ting and oscillator transition strength between the biexciton states and the ground exciton states were calculated
in NCs with different types of spatial confinement: NCs surrounded by impenetrable barrier and NCs with a
soft confinement created by gradually changing along the radius composition of the alloy forming the NC. The
results of the calculations were compared with available experimental data on CdSe NCs.
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I. INTRODUCTION

One of the properties possessed by nanocrystal �NC� as-
semblies that are most important for future applications is
their strong nonlinear optical response.1,2 Nonlinear optical
effects in absorption can be observed at relatively low exci-
tation power because a second electron hole pair in a NC is
excited in the presence of the electric field of the first pair,
which affects the transition energy and oscillator strength of
the second.3–5 The energy spectra of two electron-hole �e-h�
pairs created from ground electron and hole states or the
ground biexciton state are especially important because they
determine almost all the band-edge nonlinear optical proper-
ties of NCs including stimulated emission.6 This is a unique
property of strongly confined NC quantum dots. In the NCs,
the ground electron state is a 1Se level, which is twofold
degenerate with respect to the spin projection.7 It is separated
from the next 1Pe level, typically by 200–300 meV.8 The
Pauli principle allows only two electrons to occupy the first
1Se level and excitation of the third e-h pair requires an extra
200–300 meV. Thus, the band-edge nonlinear optical proper-
ties of NCs are determined only by the optically allowed
transitions between single exciton states and two e-h pair
states, i.e., band-edge biexciton states. These states also par-
ticipate directly in various types of pump-probe experiments
conducted in NCs, such as pump-probe Faraday rotation, for
example.9

Despite the important role biexcitons play in the optics of
NCs, it has been practically impossible to observe the biex-
citon line in the photoluminescence �PL� of the NCs under
steady-state excitation conditions. The radiative decay time
of biexcitons in NCs is on the order of several nanoseconds
and is much longer than their nonradiative Auger recombi-
nation time, which was measured to be 10–300 ps, depend-
ing on NC size.10 As a result, the nonradiative Auger recom-
bination completely quenches the steady-state PL in NCs.
The biexciton lines were observed only in a stimulated emis-
sion from the biexciton confined in the NC because the

stimulated emission time could be shorter than nonradiative
Auger recombination,6 and in the transient absorption11–13 or
transient PL experiments.14–16 These experiments have mea-
sured the binding energy of the ground biexciton state.

Recently, the fine structure of the optical transitions be-
tween band-edge biexciton and exciton states and vice versa
was partially resolved in transient absorption and PL experi-
ments conducted on CdSe NCs.17 These experiments showed
a significant difference in biexciton binding energies mea-
sured in absorption and PL, which was attributed to the fine
structure of the band-edge exciton. The first-principles calcu-
lation of the fine structure conducted in Ref. 17 reproduce,
however, the experimental observations only qualitatively.
This may be connected with the fact that the wave functions
of two holes creating a biexciton was not properly antisym-
metrized in Ref. 17. The antisymmetrization of the holes
from the �8 valence subband leads to the hole exchange
splitting of the ground biexciton state into two biexciton
states even in spherical NCs, namely, the ground fivefold
degenerate state with total angular momentum J=2 and the
excited state with J=0.18 More generally, the hole-hole �h-h�
exchange interaction leads to a nonequidistant biexciton
level structure, instead of the equidistant one calculated in
Ref. 17, and it modifies the optical selection rules.

One also could expect direct measurements of the biexci-
ton fine structure in steady-state PL experiments. Such mea-
surements became feasible recently because a new genera-
tion of NCs with a suppressed rate of nonradiative Auger
processes was reported by several groups.19–22 The suppres-
sion was connected with softening of the confinement poten-
tial �CP� created by the gradual variation of the alloy com-
position along the NC radius19 or by interfacial diffusion in
core/shell NCs.21 The direct biexciton PL under steady-state
excitation conditions was already reported in single NC
measurements.22

In this paper we present realistic multiband calculations of
the band-edge biexciton fine structures in NCs of semicon-
ductors having a degenerate valence band, which takes into
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account the effect of h-h exchange interaction, nonsphericity
of the NC shape, and the intrinsic hexagonal lattice symme-
try. Using the obtained spectra we discuss the optical selec-
tion rules and calculate the oscillator transition strength for
optically allowed transitions between band-edge biexciton
and exciton states and vice versa. The general theory is ap-
plied to NCs with abrupt confinement and to NCs whose
confinement is created by radial variation of the chemical
composition. The theoretical results are compared with avail-
able experimental data.

The paper is organized as follows: In Sec. II we present
general expressions that describe the fine structure of the
band-edge biexciton in a semiconductor with a degenerate
valence band and the transition matrix elements for optically
allowed transitions between levels of the band-edge exciton
and the band-edge biexciton. In Sec. III we calculate the size
dependence of the biexciton energy spectra and optically al-
lowed transition probabilities for several semiconductor NCs
with soft and abrupt confinement. The discussion of the ob-
tained results and their comparison with available experi-
mental data are given in Sec. IV.

II. FINE STRUCTURE OF BAND-EDGE BIEXCITON

In this paper we consider almost spherical NCs of direct-
gap semiconductors with a cubic lattice structure or a hex-
agonal lattice structure, which can be described within the
framework of a quasicubic lattice model. The radius of con-
sidered NCs, a, is supposed to be sufficiently small to allow
us to use the strong confinement approximation7 and to con-
sider all Coulomb interactions between electrons and holes
perturbatively.23 In NCs of such size, the energy spectra and
wave functions of excitons and biexcitons are determined by
the energy spectra of independent electrons and holes in the
first approximation.

The biexciton spectra will be studied for two types of
carrier confinement in NCs. The first one considers the NC
surface as an impenetrable barrier. This approach success-
fully describes the energy spectra of electrons and holes and
the fine structure of the band-edge excitons in bare CdSe
NCs in Refs. 8 and 24–27, respectively. The second one
describes NCs with soft confinement potential �SCNCs�.
This soft CP is created, for example, in alloyed semiconduc-
tor compound, AxB1−xC, whose composition, x, changes
gradually along the NC radius from x=0 at the NC center to
x=1 at the NC surface.19 We will model the CP in these
SCNCs by a parabolic potential assuming that electrons and
holes are localized at the NC center. For numerical modeling
of the biexciton energy spectra in the SCNCs the curvature
of the parabolic potentials will be calculated from the band
offsets between bulk AC and BC compounds for electrons
and holes, respectively. In the following discussion we will
generalize the expressions for the fine structure of exciton
energy spectra described in Ref. 25 that would allow one to
use them in any type of CP and still keep the notations in-
troduced in Refs. 25–27.

A. Band-edge levels of electrons and holes

Let us describe briefly a structure of the lowest quantum
size levels in a spherical NC. The electron ground state in the

conduction band is a spherically symmetrical 1Se state that is
twofold degenerate with respect to the spin projection. The
wave function of the state could be written

��
e �r� = ��r��S�� = Re�r�Y00����S�� , �1�

where �S�� are the Bloch functions of the conduction band,
and �=↑ �↓ � is the projection of the electron spin, sz=
+�−�1 /2. The spherical harmonic function, Ylm���, for the
1Se level has both l=0 and m=0. The radial component of
the electron wave function, Re�r�, in the parabolic band ap-
proximation satisfies the standard equation

−
�2

2me
� �

�r
+

2

r
� �

�r
Re�r� + �Ve�r� − E1S�Re�r� = 0, �2�

where Ve�r� is the potential that confines the electron motion
in a NC and me is the electron effective mass. Equation �2�
should be accompanied by some boundary condition at the
NC surface at r=a. In NCs surrounded by an impenetrable
barrier the standard boundary condition leads to the radial
function, Re

SBC�r�, which may be found, e.g., in Ref. 28. We
will refer to such confinement as the “standard CP for elec-
trons” throughout the paper.

In this paper we also consider electrons confined in the
parabolic spherical potential Ve�r�=kcr

2 /2= �me�e
2r2� /2,

where kc is the spring constant of the potential defining the
electron characteristic frequency �e. The ground energy
level, E1S, and the radial function can be written

E1S =
3

2
��e =

3�2

2meLe
2 , Re�r� =

2

	1/4Le
3/2exp�−

r2

2Le
2� ,

�3�

where Le=	� / �me�e� is the electron oscillator length char-
acterizing the electron localization at the NC center. In our
calculations, we connect the parabolic potential spring con-
stant kc in alloyed AxB1−xC NCs with the conduction band
offset between bulk AC and BC pure compound semiconduc-
tors, Ve

of f, assuming that x=1 at the NC surface and x=0 at
the NC center. This results in Le

2=a	�2 / �2meVe
of f�, which

characterizes completely the electron ground state in this
parabolic CP.

The first quantum-size level of holes in a spherical NC of
a semiconductor with a degenerate �8 valence subband is a
1S3/2 state.8 This state has total angular momentum j=3 /2
and is fourfold degenerate with respect to its projection M
=3 /2,1 /2,−1 /2,−3 /2 on the z axis.8,29 The wave functions
of this state could be written30

�M
h = 2 


l=0,2
�− 1�l−3/2+MRl�r� 


m+
=M
� l 3/2 3/2

m 
 − M
�Yl,mu
,

�4�

where � i k l
m n p � are the Wigner 3j symbols, and u


�
=�1 /2,�3 /2� are the Bloch functions of the fourfold
degenerate valence band �8 �Ref. 31�

u3/2 =
1
	2

�X + iY�↑, u−3/2 =
i

	2
�X − iY�↓ ,
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u1/2 =
i

	6
��X + iY�↓− 2Z↑� ,

u−1/2 =
1
	6

��X − iY�↑+ 2Z↓� . �5�

The radial wave functions R0 and R2 in Eq. �4� are normal-
ized: ��R0

2+R2
2�r2dr=1 and satisfy the following system of

radial equations:32,33

�1 + ��Â1
−Â0

+R0�r� + �1 − ��Â1
−Â2

−R2�r�

=
2mh

�2 �E1S3/2
− Vh�r��R0�r� ,

�1 − ��Â1
+Â0

+R0�r� + �1 + ��Â1
−Â2

−R2�r�

=
2mh

�2 �E1S3/2
− Vh�r��R2�r� , �6�

where �=ml /mh is the ratio of light to heavy hole effective
masses: ml and mh, respectively, Vh�r� is the potential that
confines the hole motion in a NC and the differential opera-

tors Âl
+ and Âl

− are defined as

Âl
+ = −

�

�r
+

l

r
, Âl

− =
�

�r
+

l + 1

r
. �7�

To find the energy, E1S3/2
, and the radial functions of the

ground state, one must accompany Eq. �6� by some boundary
condition at the NC surface at r=a. In NCs surrounded by an
impenetrable barrier, the standard boundary condition leads
to the radial functions, R0

SBC�r� and R2
SBC�r�, which could be

found, for example, in Refs. 25 and 34. We will refer to such
confinement as the standard CP for holes throughout the pa-
per.

In this paper we also consider holes in a parabolic con-
finement potential: Vh�r�=kvr2 /2��mh�h

2r2� /2. Here the
spring constant kv of the parabolic potential in alloyed
AxB1−xC NCs is connected with the valence band offset be-
tween bulk AC and BC pure compound semiconductors,
Vh

of f =Vh�a�, and defines the typical frequency of the heavy
hole motion, �h. To find the hole ground state level E1S3/2

we
use the variational approach.

The form of selected variational functions allows them to
transfer into the functions satisfying Eqs. �6� for the two
limiting cases �=1 and �=0. For the case of �=1 the sys-
tem of Eq. �6� describes two, twofold degenerate particles
that are moving in parabolic confinement potential. The ra-
dial dependence of the hole wave functions in this case have
a standard Gaussian form similar to the electron radial func-
tion in Eq. �3�. Although the exact solution of Eq. �6� for
�=0 is not known, the radial functions R0 and R2, however,
must satisfy the exact differential condition18

dR0

dr
+

dR2

dr
+

3

r
R2 = 0. �8�

These selection principles lead to the following variational
function:

R2�r� = C
�r2

2Lh
2exp�−

�r2

2Lh
2� − �2 exp�−

�r2

2Ll
2�� , �9�

R0�r� = C
3

2exp�−
�r2

2Lh
2� + �3/2 exp�−

�r2

2Ll
2�� − R2�r� ,

�10�

where � is the variational parameter, Lh=	� / �kvmh�1/2

�	� /mh�h and Ll=	� / �kvml�1/2=Lh /�1/4 are the oscillator
length of the heavy and light holes, respectively, and C is the
normalization constant. The variational procedure gives for
the ground-state energy

E1S3/2
��� =

3

2
��h3/2��� =

3

2

�2

mhLh
23/2��� . �11�

The dimensionless function 3/2��� is plotted in Fig. 1. Its
value decreases from 	161 /45 to 1 while � increases from 0
to 1. The variational parameter ���� is also plotted in Fig. 1
and it changes with � from 	23 /35 to 1. In our calculation,
Lh is related to the NC radius a as Lh

2=a	�2 / �2mhVh
of f� and

characterizes completely the ground state of holes in the
parabolic CP.

Nanocrystal asymmetry lifts the degeneracy of the 1S3/2
ground hole states. The asymmetry has three sources: the
intrinsic asymmetry of the hexagonal lattice structure of the
crystal’s field,34 the nonspherical shape of the finite NC,35

and an axial asymmetry of confined potential Vh in alloyed
nonspherical NCs.19 All of them split the fourfold degenerate
hole state into two twofold degenerates states with �jz�=3 /2
and �jz�=1 /2, respectively,

E1S3/2,jz
= E1S3/2

−
�

2
�jz

2 − 5/4� , �12�

where �=�int+�sh+�pot. For any CP, calculations similar to
the ones conducted in Ref. 35 give the splitting connected
with the crystal field in hexagonal NCs
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FIG. 1. Dimensionless ground-state energy �3/2 of the hole con-
fined in spherical parabolic potential �solid line� and the respective
variational parameter � �dashed line� as a function of the ratio of
the light to heavy-hole effective masses, �.
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�int = �crvint

= �cr� drr2�R0
2�r� − �3/5�R2

2�r�� , �13�

where �cr is the splitting between the �M�=3 /2 and �M�
=1 /2 valence band states in the bulk hexagonal semiconduc-
tor caused by the crystal field. In the case of standard bound-
ary conditions and parabolic CP vint depends only on the
ratio � and the �jz�=3 /2 state is always the ground hole

state.34 In any CP vint increases from 0.2 for �=0 to 1 for
�=1. The value of vint at �=0 is determined by Eq. �8�
resulting in �R2

2r2dr=�R0
2r2dr=1 /2. For �=1, vint=1 is ex-

plained by the vanishing of R2. The complete dependence of
vint��� for both CPs is shown in Fig. 2�a�.

The splitting of the ground j=3 /2 hole state in nonspheri-
cal �ellipsoidal� NCs is connected with the difference in a
kinetic energy of the holes with �jz�=3 /2 and �jz�=1 /2.35 The
related splitting can be written in the following form:35,36
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FIG. 2. �a� The dimensionless function vint��� associated with hole level splitting due to the hexagonal lattice structure for the standard
and parabolic CPs described in the text as the functions of the light-hole to heavy-hole effective mass ratio � shown by solid and dashed
lines, respectively. �b� The dimensionless function usp��� associated with hole level splitting due to the effect of the NC ellipsoidal shape on
the hole kinetic energy for standard and parabolic CPs shown by solid and dashed lines, respectively. �c� The dimensionless function �pot���
associated with hole level splitting due to the effect of the NC ellipsoidal shape on the potential energy of the hole confined in spherical
parabolic CP. �d� The dimensionless function ���� describing the exciton level splitting due to the electron-hole exchange interaction is
shown for standard and parabolic CPs for electrons and holes by the solid and dashed lines, respectively. The latter ones were calculated for
the following ratios �1� Lh /Le=0.25, �2� Lh /Le=0.5, and �3� Lh /Le=0.75.
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�sh = 2
ushE1s3/2
���

=

�2

3mh
I1 −

1

5
I2 +

4

5
I3 −

1

�
�I1 −

1

5
I2 −

4

5
I3�� , �14�

where the ellipticity of NCs, 
=c /b−1, is characterized by
the ratio c /b of its major to minor axes, and is positive
�negative� in prolate �oblate� NCs, and

I1 =� r2drdR0�r�
dr

�2

,

I2 =� r2dr�dR2�r�
dr

�2

+
6R2�r�2

r2 � ,

I3 =� r2drR2�r�d2R0�r�
dr2 −

dR0�r�
rdr

� . �15�

For both CPs, ush depends only on the ratio �. In the case of
standard boundary conditions, ush changes from the value
4/15 at �=0 to zero at �=1 and changes its sign from posi-
tive to negative with the increase of � at ��0.14.35 In the
case of the considered parabolic potential, ush changes from
the value 2/15 at �=0 to zero at �=1 and changes its sign
from positive to negative with the increase in � at ��0.63.
The value of ush at �=0 is determined by Eq. �8� which gives
I1= I2= I3 and I1=E1S3/2

�0�mh /�2 �1 /2E1S3/2
�0�mh /�2� for the

standard boundary conditions �parabolic potential�. The dif-
ferences in ush are connected with the contribution of the
potential energy to E1S3/2

�0� in the case of parabolic CP. The
splitting vanishes at �=1 due to vanishing of R2. The depen-
dence of ush��� for both CPs is shown in Fig. 2�b�.

The asymmetry of the NC shape should also lead to a
small asymmetry of the hole confinement potential, Vh�r�, in
SCNCs. In this case the asymmetric potential could be writ-
ten in the following forms:

Vh�r� =
mh�h

2

2
r2 + 2
�z2 −

1

3
r2�� . �16�

A straightforward calculation gives us the following addi-
tional splitting:

�pot = 2
 · ��h · �pot���

= −
4


15
��h · �Lh�−2� drr4R0�r�R2�r� . �17�

The function �pot��� shown in Fig. 2�c� decreases from value
0.04 at �=0, changes sign at ��0.1, and goes to zero at
�=1. Thus, the total asymmetry splitting, ��� ,a�, depends
generally on the light-hole to heavy-hole effective mass ratio
�, on the NC radius a and on the type of the spatial confine-
ment potential.

B. Exciton states

To consider optical transitions between exciton and biex-
citon states, we must describe the fine structure of excitons in
NCs. The fine structure of single-exciton spectra was studied

in Refs. 26 and 25. The theory completely describes the PL
of CdSe NCs as well as the resonant PL excitation spectra.27

For alloyed NCs where holes are localized at the NC center
we must, however, generalize the theory developed in
Ref. 25.

The ground exciton state in spherical NCs of zinc-blende
semiconductors is characterized by the total exciton momen-
tum F, which has two values: 2 �ground state� and 1 �excited
state�. In cubic semiconductor NCs with nonspherical shape
and NCs with wurzite lattice structure, these states are split
into five excitons, each of which is characterized by the pro-
jection of the total momentum on the hexagonal axis F.25

The fine structure of the exciton is strongly affected by e-h
exchange interaction enhanced in NCs, which could gener-
ally be written in terms of electron and hole radial functions.
The strength of this interaction connected with the short-
range exchange interaction is described by the energy param-
eter � �Ref. 25�

� =
a0

3

6	
�exch�

0

a

drr2Re
2�r��R0

2�r� + 0.2R2
2�r�� , �18�

where a0 is the lattice constant and �exch is the exchange
constant. In CdSe this constant was extracted from the
bulk exciton splitting: �exch=450 meV.25 In the case of im-
penetrable CP, the energy parameter can be rewritten as25

�= �2 /	��exch�a0 /a�3���� in terms of the dimensionless
function ����

���� = �1/12�a3�
0

a

drr2Re
2�r��R0

2�r� + 0.2R2
2�r�� �19�

that depends only on the ratio of light to heavy-hole effect-
ive masses, �. In the case of the parabolic CP, one can write
�= �2 /	��exch�a0 /Lh�3��� ,Lh /Le� in terms of the dimension-
less function ��� ,Lh /Le�

���,Lh/Le� = �1/12�Lh
3�

0

�

drr2Re
2�r��R0

2�r� + 0.2R2
2�r�� .

�20�

The dependence of the functions � on � for the standard
boundary conditions and for the parabolic confinement with
Lh /Le=0.25, Lh /Le=0.5, and Lh /Le=0.75 is shown in
Fig. 2�d�.

Thus, the short-range electron-hole exchange interaction
described by ��� ,a�, depends generally on the light-hole to
heavy-hole effective mass ratio �, on the NC radius a and on
the type of the CP. With these generalizations for � and �
one can describe the fine structure of the band-edge exciton
in a NC of any semiconductor with degenerate valence band
with any type of spatial confinement, using the expressions
from Ref. 25. There are five-band-edge exciton states. The
optically forbidden Dark exciton has total angular momen-
tum projection F=�2. Its energy is

2 = − 3�/2 − �/2. �21�

There are two, twofold degenerate states with total angular
momentum projection F=�1. Their energy is
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1
U,L = �/2�	�2� − ��2

4
+ 3�2 �22�

for the upper �U� and lower �L� states, where U and L cor-
respond to “+” and “−” signs in the equation, respectively.
Finally there are two states with total angular momentum
projection F=0. Their energies are described as

0
U,L = �/2 + �/2� 2� �23�

for the U and L states, where U and L correspond to + and −
signs in the equation, respectively.

The wave functions, �F�re ,rh�, of all five exciton states
were expressed in Ref. 25 via a linear combination of the
direct products of independent electron and hole wave func-
tions ��,M�re ,rh�=��

e �re��M
h �rh� with F=�+M. Equations

�17�–�23� describing these wave functions in Ref. 25, how-
ever, contain misprints and we write the corrected expres-
sions here. For the exciton state with �F�=2, the respective
wave functions are25

�−2�re,rh� =�↓,−3/2�re,rh�, �2�re,rh� =�↑,3/2�re,rh� .

�24�

For the two levels with �F�=1, the corresponding wave func-
tions for the states with F=+1 are

�1
U�re,rh� = − iC+�↑,1/2�re,rh� + C−�↓,3/2�re,rh� ,

�1
L�re,rh� = + iC−�↑,1/2�re,rh� + C+�↓,3/2�re,rh� �25�

while for the states with F=−1, the wave functions are

�−1
U �re,rh� = − iC−�↑,−3/2�re,rh� + C+�↓,−1/2�re,rh� ,

�−1
L �re,rh� = + iC+�↑,−3/2�re,rh� + C−�↓,−1/2�re,rh� ,

�26�

where

C� =	D� f

2D
, �27�

f =� /2−� and D=	f2+3�2. For the two F=0 exciton lev-
els, the corresponding wave functions are described by25

�0
U,L�re,rh� =

1
	2

��i�↑,−1/2�re,rh� +�↓,1/2�re,rh�� ,

�28�

where superscripts U and L correspond to the upper �−� and
the lower �+� signs, respectively.

C. Ground biexciton state

The Pauli principle limits the number of biexciton states
that could be formed at the band edge of NCs of direct band-
gap semiconductors because it allows only two electrons
with opposite spin directions to occupy the ground 1Se elec-
tron level. The singlet configuration of electron spins in the
ground biexciton state is described by the following wave
function:

�0
2e�re1,re2� =

1
	2

��1/2
e �re1��−1/2

e �re2� −�−1/2
e �re1��1/2

e �re2�� ,

�29�

where ��1/2
e �re� are the single-electron wave functions de-

scribed in Eq. �1�. Importantly the e-h exchange interaction,
which plays such an important role in the energy spectra of
the band-edge exciton, vanishes completely in the biexciton
due to the exact cancellation of the two electron contribu-
tions, which have opposite signs.

Implication of the Pauli exclusion principle to the two
holes of the biexciton occupying the 1S3/2 level is nontrivial.
Generally, the two holes with momentum �j1�= �j2�=3 /2 ac-
cording to the momentum summation rule J= j1+ j2 could
form four states with the total angular momentum J=3, 2, 1,
and 0. The wave functions of these states can generally be
written

�J,Jz

2h �r1,r2� = �− 1�Jz	2J + 1 

M1+M2=Jz

��3/2 3/2 J

M1 M2 − Jz
��M1

h �r1��M2

h �r2� ,

�30�

where Jz is the projection of the total momentum J on z axis.
The Pauli hole permutation requirement applied to the wave
function described by Eq. �30�, however, allows only the two
nontrivial solutions. As a result, the two holes occupying the
1S3/2 level can only be in a fivefold degenerate state with
total momentum J=2 and a state with J=0.18

Hole-hole exchange interaction splits the ground biexci-
ton into the two states with total momentum J=2 and J=0.
The straightforward calculation of the h-h Coulomb interac-
tion with the functions from Eq. �30� gives the energy of the
corresponding levels

EJ��� = Ebi��� −
�exch���

8
�4J − 5� , �31�

where Ebi��� is the band-edge biexciton energy and ex-
change splitting �exch���=E0���−E2��� can be written in the
following form:18

�exch��� =
e2

2�

64

25
� � r1

2r2
2dr1dr2

r�
2

r�
3 R0�r1�R2�r1�R0�r2�R2�r2� ,

�32�

where � is the dielectric constant of the semiconductor and
r�=min�r1 ,r2�, r�=max�r1 ,r2�. One can see that in the
spherical NCs, the ground biexciton state has total momen-
tum J=2. The splitting is inversely proportional to the char-
acteristic confinement length for holes, a�, and depends on
the ratio of light to heavy-hole effective masses. It generally
can be written as

�exch��� =
e2

2�a�
���� , �33�

where a�=a in the case of NCs with standard CP and a�

=Lh in the case of the parabolic CP. The corresponding ����
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for the two cases are shown in Fig. 3. One can see that ����
is always positive.

The NC asymmetry, which lifts degeneracy of the 1S3/2
hole state in Eq. �12�, results in further splitting of the biex-
citon states. The corresponding perturbation can be written
as

Ĥas
2h = Ĥas

1h�r1� + Ĥas
1h�r2� = −

�

2
� ĵ1z

2 − 5/4� −
�

2
� ĵ2z

2 − 5/4� ,

�34�

where ĵ1z and ĵ2z are the operators of hole momentum pro-
jection acting on the first and second holes, respectively. One
can see that the perturbation described by Eq. �34� conserves
the total spin projection Jz of the two holes. This perturba-
tions also does not lead to the first-order corrections to the

two hole states with J=2 and J=0: ��J,Jz

2h �Ĥas
2h��J,Jz

2h �=0. In-
deed, the matrix elements of these perturbations taken be-
tween the wave functions of the two hole states can be writ-
ten

��J1,Jz

2h �Ĥas
2h��J2,Jz

2h �

= 2	�2J1 + 1��2J2 + 1�

� 

M1+M2=Jz

�3/2 3/2 J1

M1 M2 − Jz
��3/2 3/2 J2

M1 M2 − Jz
�

���M1

h �r��Ĥas
1h��M1

h �r�� . �35�

One can see that for J1=J2=J, the sum in Eq. �35� is zero

because ���3/2
h �r��Ĥas

1h���3/2
h �r��=−���1/2

h �r��Ĥas
1h���1/2

h �r��.
The only nonzero matrix element in Eq. �35� is between

states with J=2 and J=0: ��0,0
2h �Ĥas

2h��2,0
2h �=−�. As a result,

the perturbation matrix taken on the basis of the functions of

two independent holes �J,Jz

2h that describes the fine structure
of the ground biexciton states can be written

�
�0,0� �2,0� �2,2� �2,1� �2,− 1� �2,− 2�

�0,0� E0 − � 0 0 0 0

�2,0� − � E2 0 0 0 0

�2,2� 0 0 E2 0 0 0

�2,1� 0 0 0 E2 0 0

�2,− 1� 0 0 0 0 E2 0

�2,− 2� 0 0 0 0 0 E2

� .

�36�

The diagonalization of this matrix gives us the energy of the
three biexciton levels.

The ground biexciton state has the angular momentum
projection Jz=0 and the energy

E0
− = E2��,a� +

�exch��,a�
2

−	�exch��,a�
2

�2

+ ���,a�2,

�37�

The first excited state has Jz=�1, and �2 and energy E2,
which is not affected by perturbations connected with NC
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FIG. 4. Size dependence of the biexciton fine structure calcu-
lated in �a� spherical and �b� slightly elongated �
=0.1� CdSe NCs
for the standard and parabolic CPs for holes shown by the solid and
dashed lines, correspondingly. For the parabolic CP we used the
hole wave function with Lh=	a�2 / �2mhVh

of f� where mh=m0 and
Vh

of f =0.6 eV.
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FIG. 3. The dimensionless function ���� describing the biexci-
ton level splitting due to h-h exchange interaction as a function of
the ratio of the light to heavy-hole effective masses, �, for the
standard and parabolic CPs shown by the solid and dashed lines,
correspondingly.
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asymmetry. Finally the upper biexciton state has Jz=0 and
the energy:

E0
+ = E0��,a� −

�exch��,a�

2
+	�exch��,a�

2
�2

+ ���,a�2,

�38�

For the case when �exch=0, the splittings between all
biexciton states with Jz=0 �the upper and lower levels� and
Jz=�1,�2 �the middle level� are equal to �. The fine struc-
ture of the biexciton levels in NCs with different types of
confinement is shown in Fig. 4.

The figure shows size dependence of the biexciton fine
structure calculated in spherical and slightly elongated �

=0.1� CdSe NCs. The crystal-field splitting of the hole levels
has been taken into account. One can see that the biexciton
fine structure in spherical CdSe NCs is almost independent
of the NC radius. In the elongated CdSe NCs with standard
CP the fine-structure splitting shows the nonmonotonic size
dependence. The splitting decreases initially with size,
passes through the minimum, and finally increases. This size
dependence is controlled by the size dependence of the total
splitting of the hole levels. The minimum of the dependence
is the most interesting point on this curve. The minimum
splitting is reached at the NC size, where the NC shape
asymmetry and crystal field exactly compensate their contri-
bution to the splitting of the holes. The corresponding NC
has the electronic properties of a spherical NC although it
does not have spherical shape. As a result, the NC has just
two biexciton states: a fivefold degenerate biexciton with
total angular momentum 2 and the state with total angular
momentum 0 that should exist only in a spherical cubic
NC.18 In the case of the parabolic CP, this variation in the
biexciton fine structure does not take place. First, the contri-
bution of the shape asymmetry to the kinetic energy of holes
has another sign in elongated parabolically confined CdSe

NCs and this contribution does not compensate for the
crystal-field effect. Second, the contributions of the shape
asymmetry to the kinetic and potential energy of holes con-
fined in parabolic CdSe NCs have opposite signs and they
nearly compensate each other. Thus, one can observe quan-
titatively different size dependence of the biexciton fine
structure in NCs with standard and parabolic confinement.

The wave functions of these band-edge biexciton states
can be written as the product

�Jz
�re1,re2,rh1,rh2� =�0

2e�re1,re2��Jz

2h�rh1,rh2� �39�

of the two electron wave function, �0
2e�re1 ,re2�, defined in

Eq. �29� and the two-hole wave functions �Jz

2h�rh1 ,rh2�. For
the biexciton states with the projections Jz=�1,�2 these
wave functions are the unperturbed wave functions of the
biexciton states in spherical potential with the same projec-
tion momentum

��1
2h �rh1,rh2� =�2,�1

2h �rh1,rh2�,

��2
2h �rh1,rh2� =�2,�2

2h �rh1,rh2� �40�

For the biexciton states with Jz=0, the corresponding wave
functions are linear combinations of those for the states with
total momentum 2 and 0

�0
2h,��rh1,rh2� = B2

��2,0
2h �rh1,rh2� + B0

��0,0
2h �rh1,rh2� ,

�41�

where

B0
� = �

2�

	4�2 + D�
2

, B2
� = 	1 − �B0

��2 �42�

with D�=�exch�	�exch
2 +4�2. Using explicit expressions for

the functions �J,Jz

2h we can rewrite Eqs. �40� and �41� in the
more useful form

�0
2h,��rh1,rh2� =

1

2
��B2

� + B0
����3/2

h �rh1��−3/2
h �rh2� −�−3/2

h �rh1��3/2
h �rh2��

+ �B2
� − B0

����1/2
h �rh1��−1/2

h �rh2� −�−1/2
h �rh1��1/2

h �rh2��� ,

��1
2h �rh1,rh2� = �

1
	2

���3/2
h �rh1���1/2

h �rh2� −��1/2
h �rh1���3/2

h �rh2�� ,

��2
2h �rh1,rh2� = �

1
	2

���3/2
h �rh1���1/2

h �rh2� −��1/2
h �rh1���3/2

h �rh2�� . �43�

Using Eq. �42� one can show that B0
�=� �� / ���� /	2 and

B2
�=1 /	2 if �exch� ���. Only in this case, the wave func-

tions of the equally spaced biexciton triplet is constructed
solely from the holes with the same module of the angular

momentum projection: �3 /2 if ��0 or solely from the
�1 /2 if ��0. Even in this limit, however, the hole states
are always a mixture of light and heavy holes and are not the
heavy-hole states as mistakenly written in Ref. 17. The op-

A. V. RODINA AND AL. L. EFROS PHYSICAL REVIEW B 82, 125324 �2010�

125324-8



posite limiting case, �exch� ���, describes the spherical cubic
NCs. This case can also be realized in some size range of the
elongated NCs, for which ��a��0 as one can see in Fig.
4�b�. In this case Eq. �42� gives B0

−=0 and B2
−=1 for the

lower ground state with energy E0
−=E2; and �B0

+�=1 and B2
−

=0 for the upper excited state with energy E0
+=E0. One can

easily verify using Eq. �42�, that B0
−2+B0

+2=B2
−2+B2

+2=1. As a
result, the admixture of the J=0 wave function to the lowest
0− state described by �B0

−� is always the same as the admix-
ture of the J=2 wave function to the upper 0+ state described
by �B2

+�. As one can see in Fig. 4�b�, the anticrossing of the
biexciton energy levels takes place at NC radius where
��a�=0 due to the nonzero h-h exchange interaction. Thus
the account of the h-h exchange interaction is very important
for the proper description of the size-dependent biexciton
energy structure.

III. BIEXCITON-EXCITON TRANSITION PROBABILITIES

Both the absorption spectra of NCs with an already cre-
ated exciton and the biexciton PL are controlled by optical
transitions between exciton and biexcitons states. Let us first
consider the selection rules for the biexciton-exciton optical
transitions. Following Elliott,37 we can write the probability
of the transitions between an exciton state, X ��2, �1L,U,
and �0L,U� and a biexciton state, BX �0�, �1, and �2�, as
the square of the following matrix element:

T�X,BX� = 

i,j,k,m=1,2

i�k,j�m

���F
X�rei,rhj�

���rek − rhm��ep̂��Jz

BX�re1,re2,rh1,rh2���2

= 4���F
X�re1,rh1���re2 − rh2��ep̂�

��Jz

BX�re1,re2,rh1,rh2���2. �44�

Here e is the polarization of the emitted or absorbed light and
the momentum operator p̂ acts only on the valence band
Bloch functions. The calculation of T�X ,BX� with the wave
functions of excitons, �F

X, defined in Eqs. �24�–�26� and �28�
and biexcitons, �Jz

BX=�0
2e�Jz

2h, defined in Eqs. �29�, �40�, and
�41� is straightforward but cumbersome because the hexago-
nal axes of a NC ensemble are randomly oriented relative to
the light propagation of emission directions. First, let us con-
sider T�X ,BX�’s responsible for the two most important non-
linear optical processes in NCs: �i� the radiative decay of the
ground biexciton state and �ii� the resonant photoexcitation
of the ground exciton state, which is critical in all pump-
probe experiments.

The ground biexciton state has zero angular momentum
projection. It can radiatively decay in all exciton states ex-
cept the state with angular momentum projection �2. If the
NCs were oriented, according to the selection rules, the tran-
sitions to the states with the angular momentum projection
�1 should be accompanied by emission of circularly polar-
ized light along their hexagonal axes while transitions to the
state with angular momentum 0 should be accompanied by
emission of linear polarized light perpendicular to these axes.

For any other NC orientation, the biexciton emission is not
polarized and generally can be considered as an emission of
linear polarized light with an arbitrary polarization plane.

A. Transition probabilities caused
by linear polarized light

For linear polarized light, ep̂ in Eq. �44� can be written

ep̂ = ezp̂z +
1

2
�e−p̂+ + e+p̂−� , �45�

where z is the direction of the hexagonal axis of the NC,
e�=ex� iey, p̂�= p̂x� ip̂y, and ex,y and p̂x,y are the compo-
nents of the polarization vector and the momentum operator,
respectively, that are perpendicular to the NC hexagonal axis.

Let us calculate the corresponding T�X ,0− ;	� connected
with linear polarized light. These matrix elements can be
used to describe of a radiative decay of the biexciton ground
state into different exciton states.38 The transition probability
to the exciton state with F=�2 is described by T��2,0−�
=0 and is equal to zero. The biexciton decay into the exciton
U pper and L over states with F=0 is described by

T�0U,L,0−;	�

= 4���0
U,L�re1,rh1���re2 − rh2��ep̂��0

−�re1,re2,rh1,rh2���2

= �B2
− − B0

−�2 �1� 1�2

6
KP2 cos2 � , �46�

where P=−i�S�p̂z�Z� is the Kane transition matrix element, �
is the angle between the vector polarization of light e and the
hexagonal axis of the NC, and K is the square of the overlap
integral between the electron and hole wave functions25

K = �� drr2Re�r�R0�r��2

. �47�

One can see from Eq. �46�, that the biexciton transitions to
the L over exciton states with F=0 are forbidden, while the
transitions to the U pper exciton state are allowed, contrary
to the selection rules described by Ref. 17. It is easy to show
that T�0U,0−;	� vanishes only if one neglects the h-h ex-
change interaction in the biexciton.

The relative probability of biexciton decay into the two U
pper and two L over exciton states with F=�1 are described
by

2T��1U,L,0−;	� = 8����1
U,L�re1,rh1���re2 − rh2��ep̂�

��0
−�re1,re2,rh1,rh2���2. �48�

Here the additional factor 2 is connected with the degen-
eracy of the exciton state with F=�1 and the fact that
T�+1U,L ,0− ;	�=T�−1U,L ,0− ;	�. A straightforward calcula-
tion results in

T̃�1U,L,0−;	� = 2T��1U,L,0−;	� =
2

3
KP2 sin2 �NU,L

−

�49�

with
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NU,L
− = �B0

−�2N1
U,L + �B2

−�2N2
U,L + B0

−B2
−N02

U,L, �50�

N1
U,L = �2D� f � 3�

4D
�, N2

U,L = �2D� f � 3�

4D
�,

N02
U,L = �D� 2f

2D
� , �51�

where upper signs and lower signs describe the transition
probabilities to the U pper and L over levels, respectively.
One can see from Eq. �50� that the transitions to both exciton
levels are allowed, contrary to the selection rules described
in Ref. 17. The transition probability to the U pper exciton
state vanishes only if one completely neglects the h-h and
e-h exchange interaction.

The relative probability of the ground biexciton radiative
decay into the different exciton states can be obtained after
integration of Eqs. �46� and �50� over all possible directions
of emitted light. These probabilities can be expressed via
Eqs. �46� and �50� with cos2 � and sin2 � replaced by 1/3 and
2/3, respectively.

Let us now consider the resonant photoexcitation of the
ground exciton state with F=�2 to the biexciton states. Ac-
cording to the selection rules discussed above, the photoex-
citation could occur only into fourfold degenerate biexciton
states with angular momentum projection Jz=�2 or Jz
=�1. The polarization properties of the photoexcitation
would be very simple if the NC were aligned along the light
propagation direction. In this case, only the �� circularly
polarized light would create the Jz=�1 biexciton state.
However the NCs are randomly oriented and both the linear
and circularly polarized light create biexcitons with different
probabilities.

Let us consider first the effect of linear polarized light. If
the exciton in a NC occupies the ground exciton state with
F=+2 the transition probability is proportional to the follow-
ing sum:

T�+ 2,+ 2;	� + T�+ 2,+ 1;	�

= 4���+2�re1,rh1��re2 − rh2���ep̂��+2�re1,re2,rh1,rh2���2

+ 4���+2�re1,rh1���re2 − rh2��ep̂��+1�re1,re2,rh1,rh2���2

=
KP2

6
�3 cos2 � + 1� . �52�

The identical expression with + replaced by − describes
the photoexcitation of the ground F=−2 exciton leading to
T�−2,−2;	�+T�−2,−1;	�=T�+2,+2;	�+T�+2,+1;	� so
that the total excitation probability from the exciton ground

state is given by T̃�2,2 ;	�=2�T�+2,+2;	�+T�+2,+1;	��.

B. Transition probabilities caused
by circularly polarized light

Let us consider now the photoexcitation of the ground
exciton state by circularly polarized light. The selection rules
and the relative transition probabilities in this case are deter-
mined by the matrix element of the operator 1 /	2e�p̂�,
where the polarization vector, e�=ex� iey, and the momen-

tum, p̂�= p̂x� ip̂y, lie in the plane that is perpendicular to the
light-propagation direction. In vector representation, this op-
erator can be written as in Ref. 39

1
	2

e�p̂� =
1
	2

�ep̂� ie�p̂� , �53�

where e�c, c is the unit vector parallel to the light propa-
gation direction and e�= �e�c�; as a result of the e� defini-
tion, the scalar product �ee��=0. To calculate the matrix el-
ement in Eq. �44�, we expand the operator of Eq. �53� in
coordinates that are connected with the direction of the hex-
agonal axis of the NCs �z direction�

1
	2

e�p̂� =
1
	2
�p̂ =

1
	2

�z
�p̂z +

1

2
�+
�p̂− + −

�p̂+�� ,

�54�

where �=e� ie� and �
�=x

�� iy
�. Substituting Eq. �54�

into Eq. �44� we obtain the relative values of the optical
transition probability between exciton and biexciton states
coursed by the absorption/emission of the �� polarized light.

In the NCs oriented under angle �k to the light-
propagation direction, the probability of the transitions be-
tween the F=2 exciton and Jz=1 biexciton states and the
F=−2 exciton and Jz=−1 biexciton states initiated by the ��

polarized light, are given, respectively, by

T�+ 2,+ 1;��� = T�− 2,− 1;��� =
KP2

12
�1� cos �k�2.

�55�

The probabilities of the transition between the F=+2
�F=−2� exciton and Jz=+2 �Jz=−2� biexciton states initiated
by the �� polarized light are given by

T��2, � 2;��� =
KP2

3
sin2 �k. �56�

At high temperature or during transient relaxation time,
one can observe PL from the upper biexciton states or the
photoexcitation of the NC where an exciton occupies a
higher band-edge state. For example, the intermediate biex-
citon state with energy E2 can decay radiatively to all pos-
sible exciton states with different polarizations of emitted
light. The unrelaxed excitons also strongly affect the selec-
tion rules and intensity of the NC resonant photoexcitation.
In Tables I and II we summarize the relative transition prob-
abilities described by Eq. �44� for linear and circularly polar-
ized light, respectively.

The relative transition probabilities are given in the
KP2 /6 units. In the case of the standard CP the value of K is
independent of crystal size and depends only on �.25 In the
case of the parabolic CP the value of K depends additionally
on the ratio of the hole and electron oscillator lengths Lh /Le.

C. Fine structure of the ground biexciton
state photoluminescence

In spherical NCs with a hexagonal lattice structure, such
as CdSe, the ground biexciton state has zero angular momen-
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tum projection on the hexagonal axis. As one can see from
Tables I and II, in a single NC one can observe two transi-
tions from the biexciton ground state with the electric field of
the light perpendicular to the c axis �� polarization� and one
transition in 	 polarization. Just for comparison, we would
like to note that in spherical zinc-blende NCs, where there
are only two ground exciton and two ground biexciton states,
the selection rules allow only one-color stimulated emission
in each polarization mode.

In an ensemble of randomly oriented NCs all three tran-
sitions can be observed simultaneously, although with very
different probabilities. Figure 5�a� shows the structure of the
PL line created by decay of the ground biexciton levels in a
spherical hexagonal CdSe NC. Figure 5�b� shows the relative
intensity of these transitions averaged over the solid angle.

D. Fine structure of the ground exciton
resonant photoexcitation

By probing the excited NCs with light one creates one of
the three ground biexciton substates. In spherical NCs with a
hexagonal lattice structure, such as CdSe, only one transition
from the ground dark exciton state to the first excited biex-
citon state is possible. Size dependence of this transition en-

ergy in CdSe NCs is shown in Fig. 6�a�. The energy is cal-
culated from the energy of the transition that could be
observed in spherical NCs in the absence of the electron-hole
exchange interaction and crystal field splitting.

All three biexciton states could be excited in spherical
NCs with a hexagonal lattice structure when pulse probes the
excited exciton state. The size dependence of the correspond-
ing transition energies in CdSe NCs is shown in Fig. 6�a�.
The relative intensity of these transitions for an ensemble of
randomly oriented NCs is shown in Fig. 6�b�. Note, that in
the ensemble of randomly oriented NCs all these transitions
can be observed with equal probabilities for both the linear
polarized or circular polarized excitation. After an exciton
relaxation to the ground dark state, only one biexciton state
could be excited according to the selection rules described
above. The relative intensity of this transition does not de-
pend on size and is equal to 2KP2 /3. This shows that a study
of the induced absorption line width should allow us to de-
termine the exciton thermalization time.

IV. DISCUSSION AND COMPARISON WITH AVAILABLE
EXPERIMENTAL DATA

The theory developed in this paper is based on the strong
confinement approximation.7 Numerical analyzes show40 that

TABLE I. Relative probability of transitions between the ground biexciton and ground exciton states
created by linear polarized light in NCs oriented under angle � to the light polarization vector. The prob-
abilities are given in the KP2 /6 units. Constants NU,L

− are defined by Eq. �50�; NU,L
+ can be found by

replacement B0,2
− with B0,2

+ in Eq. �50�; constants N2
U,L are defined by Eq. �51�; and N0

U,L= �D� f� /2D.

ex\biex 0− +1 +2 −2 −1 0+

+2 0 sin2 � 4 cos2 � 0 0 0

−2 0 0 0 4 cos2 � sin2 � 0

+1L 2NL
− sin2 � 4N0

L cos2 � 4N2
U sin2 � 0 0 2NL

+ sin2 �

−1L 2NL
− sin2 � 0 0 4N2

U sin2 � 4N0
L cos2 � 2NL

+ sin2 �

+1U 2NU
− sin2 � 4N0

U cos2 � 4N2
L sin2 � 0 0 2NU

+ sin2 �

+1U 2NU
− sin2 � 0 0 4N2

L sin2 � 4N0
U cos2 � 2NU

+ sin2 �

0U 4�B2
−−B0

−�2cos2 � 6 sin2 � 0 0 6 sin2 � 4�B2
+−B0

+�2cos2 �

0L 0 6 sin2 � 0 0 6 sin2 � 0

TABLE II. Relative probability of transitions between the ground biexciton and ground exciton states
created by �+ polarized light in NCs oriented under angle �k to the light-propagation direction. The prob-
abilities are given in the KP2 /6 units. Constants NU,L

− are defined by Eq. �50�; NU,L
+ can be obtained by

replacement of B0,2
− with B0,2

+ in Eq. �50�; constants N2
U,L are defined by Eq. �51�; N0

U,L= �D� f� /2D; and
�k
�= �1�cos �k�2 /2.

ex\biex 0− +1 +2 −2 −1 0+

+2 0 �k
− 2 sin2 �k 0 0 0

−2 0 0 0 2 sin2 �k �k
+ 0

+1L 2NL
−�k

− 2N0
L sin2 �k 4N2

U�k
+ 0 0 2NL

+�k
−

−1L 2NL
−�k

+ 0 0 4N2
U�k

− 2N0
L sin2 �k 2NL

+�k
+

+1U 2NU
−�k

− 2N0
L sin2 �k 4N2

L�k
+ 0 0 2NU

+�k
−

−1U 2NU
−�k

+ 0 0 4N2
L�k

− 2N0
U sin2 �k 2NU

+�k
+

0U 2�B2
−−B0

−�2sin2 �k 6�k
+ 0 0 6�k

− 2�B2
+−B0

+�2sin2 �k

0L 0 6�k
+ 0 0 6�k

− 0
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for electrons this approximation works very well if a 3ae,
where ae=��2 /e2me is the electron Bohr radius defined via
the electron charge, e, the electron effective mass, me, and
the dielectric constant, �. For holes in the degenerate valence
band, the strong confinement approximation is satisfied when
a 5ah, where ah=��2 /e2mh is the Bohr radius of heavy
hole. We connect the numerical factors “3” and “5” in these
estimates with numerical increases of confinement energy
of electron and hole ground states in NCs, which for
electrons and holes are described as �32��2 /2mea

2� and
�52��2 /2mha2�, respectively. The developed theory can be
extended, however, to the case when the condition a 5ah is

not satisfied because of a very large value of the heavy hole
effective mass. The Coulomb potential of an electron acting
on a hole in this case can be averaged out over its fast mo-
tion. This would create an additional potential for the hole
motion that should be added to the confinement potential
Vh�r�. The additional potential has a parabolic form at the
NC center7 and could be taken easily into account from cal-
culations of the hole wave functions using the variational
approach described in our paper.

The developed theory neglects also the long-range ex-
change contribution to the e-h exchange interaction, �, in the
exciton states. Generally the contribution of the long-range
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FIG. 5. �a� Size dependence of the ground biexciton state pho-
toluminescence fine structure in spherical CdSe NCs with the stan-
dard CP and �b� the respective relative transition probabilities. Solid
line corresponds to the strongest transition to the lower 1L exciton
state, dashed line—to the transition to the 1U exciton state and
dotted line—to the 0U exciton state. The respective transition prob-
abilities are multiplied by factor 100. The zero energy in �a� corre-
sponds to the transition energy which would be observed in spheri-
cal NCs in the absence of the electron-hole and hole-hole exchange
interaction and the crystal-field splitting. The probabilities are given
in the 2KP2 /3 units. The insert shows the schematic of the consid-
ered transitions.
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FIG. 6. �a� Size dependence of the exciton-biexciton resonant
photoexcitation energy in spherical CdSe NCs with the standard CP
and �b� the respective relative transition probabilities. Solid line
corresponds to the excitation from the exciton ground state �F�=2,
the dashed, dotted, and dash-dotted lines correspond to the transi-
tions from the lowest 1L exciton state to the 0−, J=2, and 0+ biex-
citon states, respectively. The zero energy corresponds to the tran-
sition energy, which would be observed in spherical NCs in the
absence of the electron-hole exchange interaction and the crystal-
field splitting. The probabilities are given in the 2KP2 /3 units. The
insert shows the schematic of the considered transitions.
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exchange interaction to the exciton energy spectra and wave
functions can be described by adding some term �� to � in
all equations from Eqs. �21�–�28�.41 The magnitude of ��
is under discussion, however, because the effective mass
approach41 and the expansion in Wannier functions42,43 gives
different results for this value. The tight-binding approach to
this problem44 has demonstrated that the magnitude of ��
depends on the relative values of the intraatomic and inter-
atomic velocity operators. The relative values of these opera-
tors are generally unknown, resulting in a large uncertainty
in the �� value. Empirically, the exciton fine structure mea-
sured in CdSe NCs in Ref. 25 was quantitatively described
using ��=0 and we use the same approach in the current
paper.

The multiband effective mass approach used in this paper
is not valid in small NCs where the number of atoms in the
NC core is smaller than those on the surface. Only an atom-
istic approach can fully describe energy spectra and excita-
tions in such NCs. For the larger NCs such as were studied in
Ref. 17, both the atomistic and effective mass approaches
should give the same results, in principle. Differences can
arise from different descriptions of the NC surface. In the
multiband effective mass approximation the surface is de-
scribed by additional phenomenological parameters, which
may be extracted from experimental data �see, for example,
Ref. 45�. They also can be set to be zero, as was done in this
paper and in the majority of other papers describing elec-
tronic and optical properties of CdSe NCs. The atomistic
empirical pseudopotential approach in Ref. 17 used fictitious
atoms to passivate the surface, which leads to different
boundary conditions for the intrinsic electron and hole states
in the NC.

At present there are no direct measurements of the biex-
citon fine structure or the fine structure of the optical transi-
tions between exciton and biexciton states. The fine structure
of the ground biexciton PL and the exciton resonant photo-
excitation is difficult to observe in ensemble measurements
because of the dispersion of NC sizes and shapes. These
measurements require single NC studies. The pump-probe
ensemble measurements, however, allow us to observe the
redshift of the maximum of biexciton PL spectrum from the
maximum of resonant exciton photoexcitation, known as the
global Stokes shift of the biexciton PL.

The global Stokes shift of the biexciton was observed
experimentally in Ref. 17. The measurements demonstrated
that the shift depends on the NC’s size, temperature and
pump-probe delay time. At room temperatures, for the short
pump-probe delay time ��t�1 ps�, the measured Stokes
shift was 73 meV, 57 meV, and 45 meV in NCs with radii of
a=15 Å, a=21 Å, and a=28 Å, respectively.

To describe the experimental results, we first calculated
the biexciton Stokes shift, �BX at T=0 for the long pump/
probe delay time ��t�1 ps�. At these conditions only
ground biexciton state and ground exciton states could be
occupied. We obtained the values 35.9 meV, 26.9 meV, and
24.1 meV for a=15 Å, a=21 Å, and a=28 Å, respectively.
The calculated size dependence of the biexciton Stokes shift
is shown in Fig. 7 together with the experimental data and
the calculated results from Ref. 17. One can see in Fig. 7 that

our calculations provide results very close to those calculated
for two NC radii �19 and 23 Å� in Ref. 17. However, the
calculations of Ref. 17 show an increase in the Stokes shift
with NC size for T=0 �open circles in Fig. 7�. Our calcula-
tions show monotonic decrease in the global biexciton
Stokes shift with NC size growth for all temperatures. This is
consistent with the experimental data. The difference is cre-
ated by the e-h and h-h exchange interactions which are fully
taken into account in our calculations and only partially in
Ref. 17.

One can see in Fig. 7 that assumption of thermoequilib-
rium population of excitons and biexcitons �T=300 K data
from Ref. 17� does not improve agreement between the
theory and experiment. The experimental values of the
Stokes shift measured at a short delay time �less than 1 ps�
are significantly larger than the ones calculated assuming ex-
citon and biexciton thermoequilibrium, which requires times
much longer than 1 ps. The nonequilibrium populations of
excitons and biexcitons might explain the disagreement of
our theory with experimental data. Description of the Stokes
shift measured at a short delay time requires, however, de-
tailed knowledge of exciton and biexciton relaxation mecha-
nisms, which does not exist today.

The other possible explanation of the disagreement is
in our assumption about the spherical shape of the CdSe NCs
used in the experiment of Ref. 17. Our theory allows us
to calculate the effect of the NC nonspherical shape on
the biexciton Stokes shift. We have found that the Stokes
shift can be significantly larger in oblate NCs with 
�0.
The best description of the �BX experimental data obtained
for 
=−0.25 is shown in Fig. 7 by the dashed line calculated
for long pump-probe delay time ��t�1 ps� at T=0 K.

In summary, we have developed a complete theory of the
fine structure of the band-edge biexciton in NCs of zinc-
blende and wurzite semiconductors with large spin-orbit
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FIG. 7. Size dependence of the biexciton Stokes shift in spheri-
cal CdSe nanocrystals. The calculated dependencies for T=0 in
spherical, with 
=0, and oblate, with 
=−0.25 dots are shown by
solid and dashed lines, respectively. Squares show the experimental
data from Ref. 17, open and black circles the calculated results from
Ref. 17 for T=0 and T=300 K, respectively.
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splitting of the valence band. The effect of the various con-
finement types and the NC shape on the biexciton spectra
and optical transition energies for the resonant creation of
biexcitons and biexciton photoluminescence decay were con-
sidered. The fine structure of the band-edge biexcitons cal-
culated in this paper could be measured directly in PL and
pump-probe experiments conducted in a new generation of
semiconductor NCs with a suppressed rate of nonradiative
Auger processes.
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