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Motivated by the recent experiments of Amasha et al. �Phys. Rev. B 78, 041306�R� �2008��, we investigate
single electron tunneling into an empty quantum dot in presence of a magnetic field. We numerically calculate
the tunneling rate from a laterally confined, few-channel external lead into the lowest orbital state of a
spin-orbit coupled quantum dot. We find two mechanisms leading to a spin-dependent tunneling rate. The first
originates from different electronic g factors in the lead and in the dot, and favors the tunneling into the spin
ground �excited� state when the g factor magnitude is larger �smaller� in the lead. The second is triggered by
spin-orbit interactions via the opening of off-diagonal spin-tunneling channels. It systematically favors the
spin-excited state. For physical parameters corresponding to lateral GaAs/AlGaAs heterostructures and the
experimentally reported tunneling rates, both mechanisms lead to a discrepancy of �10% in the spin-up vs
spin-down tunneling rates. We conjecture that the significantly larger discrepancy observed experimentally
originates from the enhancement of the g factor in laterally confined lead.
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I. INTRODUCTION

Spintronics uses the spin, rather than the charge degree of
freedom of electrons for information processing.1,2 This re-
quires the ability to create, manipulate, and detect spin cur-
rents and accumulations, all tasks for which semiconductors
seem especially promising.3 Experiments on few-electron
quantum dots in a Zeeman field have shown how to manipu-
late two electron-spin states by electrically controlling the
exchange interaction in double-dot systems4,5 and how to
convert electronic spin orientations into electrostatic
voltages.6–8 More recently, Amasha et al.9 reported a strong
and unexpected spin dependence of the tunneling rate into an
empty quantum dot in a Zeeman field. In these experiments a
lateral quantum dot is tunnel coupled to a narrow external
lead. Charge sensing allows to measure the time it takes for
an electron to enter the dot after an electric pulse has brought
the lowest orbital level below the Fermi energy in the lead.
Once this level is Zeeman split the tunneling rates into the
ground state and into the first spin-excited level can be ex-
tracted. Changing the magnetic field and the geometry of the
dot, the ratio � of the tunneling rates for the two spin states
was found to vary between �=1 �symmetric tunneling� to
��1 �negligible tunneling into the spin-excited state�. It
was, in particular, found that �→0 at large in-plane mag-
netic field. This is rather intriguing as one expects tunneling
rates to depend mostly on the orbital structure of the wave
function, over which a Zeeman field has no effect. Because
of the importance that such an effect might have for quantum
dot spintronics, these experimental results need to be better
understood. This is one of our objectives in this paper.

In III-V semiconductor heterostructures, the spin-orbit in-
teractions are the usual suspect behind any spin-dependent
effect. Several mechanisms for spin injection in tunneling
structures with spin-orbit interactions have been considered,
most notably based on resonant enhancement of weak
spin-orbit effects,10–12 spatial modulation of the spin-orbit
interactions strength,13,14 spin-orbit-induced mass

renormalization,15 lateral confinement,16–18 or electron mo-
mentum filtering.19 Here, we extend these investigations and
study electronic tunneling into an empty quantum dot from a
single external lead in presence of an external magnetic field.
We uncover two, so far neglected mechanisms for elastic
spin-dependent tunneling. The first one appears when tunnel-
ing occurs between an extended and a confined region with
different g factors. Tunneling being elastic, the splitting of
the orbital states in the confined region determines the en-
ergy of the tunneling electron in the continuum. Because of
the discrepancy in the g factors, however, the continuum
wave vectors of the tunneling electrons depend on the spin
orientation, thus the tunneling rate becomes spin dependent.
Tunneling into the ground state �first spin-excited state� is
favored if the g factor magnitude is larger �smaller� in the
lead. The second mechanism arises because spin-orbit inter-
actions are effectively weaker in the low-energy spectrum of
a confined region than in the continuum. The direction of the
effective Zeeman field �the sum of the magnetic and spin-
orbit fields� seen by the electron in the lead and in the dot are
thus different, and this opens spin-nonconserving tunneling
channels. Because this second mechanism systematically fa-
vors tunneling into the spin-excited state, and because our
numerical investigations estimate a discrepancy of �10% at
most in the tunneling rates for realistic parameters, we con-
clude that it plays only a marginal role in the experiments of
Ref. 9, where tunneling rates into the ground state are sys-
tematically larger and discrepancies up to almost 100% are
observed. In contrast, we conjecture that such large spin
anisotropies in tunneling arise from the first mechanism
when the g factor in the lead is substantially larger than the
dot and the bulk value. Strongly enhanced g factors have
been observed in the lowest conduction subbands of quan-
tum point contacts.20–22 They are usually attributed to the
electron-electron Coulomb interactions.23 We expect that a
similar enhancement occurs in narrow, laterally confined
leads.

To model the experiment, we consider a two-dimensional
dot divided by a barrier from a semi-infinite lead of finite
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width. The potential along the lead axis is sketched in Fig.
1�a�, with Fig. 1�b� giving a top view of the model structure.
We assume that tunneling is elastic, which has been found to
be the case experimentally.24 It is easy to understand how a
spin asymmetry in tunneling can arise. Consider first that
there is no spin-orbit interaction. Applying an in-plane mag-
netic field Zeeman splits electronic levels. Tunneling being
elastic, the tunneling rate is spin independent if the g factor
is constant because the barrier height is the same for both
spin species. This is sketched in Fig. 1�c�. If on the other
hand the Zeeman splitting is larger in the dot, the barrier
height for the spin-excited state becomes effectively smaller,
thus tunneling into that state is faster than into the lowest
spin state. The situation is depicted in Fig. 1�d�. Consider
next that spin-orbit interactions are present. They are effec-
tively weaker in the dot than in the lead25,26 and because of
this, tunneling can be accompanied by spin flips in presence
of a Zeeman field. The net result is that spin off-diagonal
tunneling channels open up. Below we show that this leads
to a systematically larger rate into the spin-excited state in
the dot. This mechanism is sketched in Fig. 1�e�.

The paper is organized as follows. In Sec. II we present
our model for the dot and lead states, and for the tunneling
rate. We analyze separately the g factor inhomogeneity and
the spin-orbit interactions mechanisms in Secs. III and IV,
respectively. We conclude in Sec. V. In the Appendix we
compare the tunneling formula we use with three common
alternatives in a simplified model to demonstrate its general-
ity.

II. MODEL

We compute tunneling rates using the method of Ref. 27,
which to leading order gives

�� =
2�

�
�

c,k,��

����
dot��V̂�	c,k,��

lead 	�2��E�
dot − Ec,k,��

lead � . �1�

It describes an elastic transition from the set of lead states
labeled by the transverse channel c, longitudinal wave vector
k, and spin �� into the lowest orbital state of the dot with

spin �. The effective transition potential �V̂ is defined as the
difference of the potential of the isolated dot and a dot with
a nearby lead, see Fig. 1�a�. The tunneling formula, Eq. �1�,
is discussed in the Appendix, where we additionally show
that in one dimension it is equivalent to other, standardly
used tunneling formulas.

The lead and the dot wave functions in Eq. �1� are those
of the two subsystems considered separately. We take them
as eigenstates of the following Hamiltonian:

H =
�2

2m
k̂2 +

g

2

BB · � + Hso + V�r� �2�

with appropriate boundary conditions. These are that the dot
wave functions are zero at infinity while the extended states
of the lead are fixed by the energy, the transverse channel,
and the spin of the incoming wave. In Eq. �2�, m is the

electron effective mass, k̂=−i�, B is an in-plane magnetic
field forming angle �B with the crystallographic x axis. It
couples to electronic spins via the Landé g factor and the
Bohr magneton 
B, and �= ��x ,�y ,�z� is a vector of Pauli
matrices. The spin-orbit interactions Hamiltonian Hso in-
cludes the Bychkov-Rashba, linear Dresselhaus, and cubic
Dresselhaus terms3

Hbr =
�2

2mlbr
�k̂y�x − k̂x�y� , �3a�

Hd =
�2

2mld
�− k̂x�x + k̂y�y� , �3b�

Hd3 = �c�k̂xk̂y
2�x − k̂yk̂x

2�y� , �3c�

which we write as a momentum-dependent magnetic field

Hso= �g /2�
BBso�k̂� ·�. Here, we adopt the two-dimensional
approximation, where only the lowest subband of the perpen-
dicular confinement is occupied. In this case, the in-plane
magnetic field has no orbital effect as long as the magnetic
length, 
2� /eB is larger than the perpendicular extension of
the two-dimensional electron gas �2DEG�. This condition is
fulfilled here, since even at the largest magnetic fields of 7.5
T we consider, the magnetic length is �13 nm. Moreover,
the strengths of the two Dresselhaus interactions are related
by �2 /2mld=�c�kz

2	, with �kz
2	 being the quantum-mechanical

variance of kz in the lowest subband in the perpendicular
confinement of the two-dimensional electron gas.

Electronic confinement is described by the potential V�r�.
The semi-infinite lead is laterally confined by infinite poten-
tial barriers a distance wlead apart. Close to the dot, it is
terminated by a potential barrier linearly reaching a magni-
tude V0 over a distance L �we call this the “ramp”�,

xdot

dc e

χ > 1

xlead

φ

φ

lead

dot

offsetr

x

ram
p

Dot:

V

V0

0

Vg

ba
offsetr

χ ∼ dot
g g
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Lead:

δV(r)

χ = 1 /

Fermi
energy

FIG. 1. �Color online� �a� Potential profile of the dot and the
semi-infinite lead when considered separately. �b� Top view of the
dot-lead structure. �c�–�e� Schematics of the tunneling mechanisms.
�c� Symmetric tunneling. �d� Asymmetric tunneling: a larger
�smaller� g factor in the lead enhances the tunneling into the ground
�excited� state. �e� Asymmetric tunneling: spin-orbit interactions
open the off-diagonal spin-tunneling channels, which always favors
tunneling into the excited state.
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Vlead�xlead� = �V0, xlead  0,

�1 − xlead/L�V0, 0  xlead  L ,

0, L  xlead.
� �4�

The lead coordinate system is offset by roffset with respect to
the dot center and rotated by an angle �lead with respect to
the crystallographic coordinates x and y. This is shown in
Fig. 1�b�.

For the dot confinement we take an anisotropic linear har-
monic oscillator, bounded from above by V0 in the lead area
�see Figs. 1�a� and 1�b��

V0
dot�r� =

�2

2m
�xdot

2 lx
−4 + ydot

2 ly
−4� + Vg, �5�

Vdot�r� = V0
dot�r� , r � lead,

min�V0
dot�r�,V0� , r � lead.

� �6�

The main axes of the dot are rotated with respect to the
crystallographic axes by an angle �dot. The two independent
confinement lengths lx and ly allow us to consider dot defor-
mations as in the experiment of Ref. 9. The potential Vg is
used to offset the dot with respect to the lead. The model has
no particular spatial symmetry.

We use parameters typical for GaAs heterostructures.
When not varied, their values are m=0.067, �c
=27.5 eV Å3, g=−0.39, ld=0.63 
m, lbr=2.4 
m,28 and a
Fermi energy in the lead EF=8 meV. The geometry is set to
qualitatively correspond to the description of the experimen-
tal setup in Refs. 9 and 29, lx= ly =24 nm, corresponding to
an orbital excitation energy Eorb=2 meV, V0=12 meV, L
=240 nm, �lead=−� /4, �dot=� /4, and �B=3� /4. We offset
the dot by Vg�6 meV to align the lead Fermi energy with
the dot spin-excited state. We offset the lead with respect to
the dot by yoffset=24 nm and we take wlead=72 nm, giving
two open transverse channels. Finally, we use xoffset as a free
parameter, which we always adjust to keep the total tunnel-
ing rate into the spin-excited state at 200 Hz. Below we vary
all the parameters individually, which allows us to identify
which are relevant for spin-dependent tunneling. Because we
consider tunneling into an empty dot, we neglect electron-
electron interactions in the dot �beyond charging effects
which prohibit double occupancy of the dot� but incorporate
them in a renormalized g factor in the lead.

We define the asymmetry � in spin tunneling as the ratio
of the tunneling rates into the two lowest Zeeman split dot
states

� = �↓/�↑. �7�

Symmetric tunneling corresponds to �=1, while � smaller
�larger� than one means that tunneling into the ground
�excited�-spin state is faster.

III. SPATIALLY DEPENDENT g FACTOR

As a first source of tunneling asymmetry, we consider the
inhomogeneity in the g factor and neglect spin-orbit interac-
tions for the time being. A slight difference of the g factor in

the dot and the lead is not unexpected, as in semiconductor
quantum dots the g factor depends on the magnetic field,
state energy, or wave function penetration into the barrier
along the growth direction.30–33 Reference 29 reported meso-
scopic fluctuations of the g factor in a quantum dot of a
relative magnitude �20%, see Fig. 3�a� there.

We first discuss qualitatively how a g factor difference
results in ��1. According to Eq. �1�, the tunneling rate from
a lead state �� to the dot state � scales with

���→� � ����
dot�	��

lead	�2 � exp�− 2k��→�L���������	�2.

�8�

The orbital overlap depends on the wave vector

k��→� = 
2m��V0 + ���
lead� − �E0 + ��

dot��/�2, �9�

where we split the energy levels in the dot into the orbital
and Zeeman contributions, E0+��

dot, and ���
lead is the Zeeman

energy in the lead. In the absence of spin-orbit interactions,
��� ����	=����. If the g factor is the same everywhere, there
is no tunneling asymmetry

� �
exp�− 2k↓→↓L�
exp�− 2k↑→↑L�

= 1 �10�

because ��
lead=��

dot. If, however, the Zeeman energies in the
dot and the barrier differ, we get

� � exp�− 2L
 m

�2�V0 − E�
�glead − gdot�
BB� . �11�

A g factor larger in magnitude in the lead gives a faster
tunneling into the ground state, as observed in Ref. 9. How-
ever, assuming a dot g factor reduction of 20%, we estimate
��0.95 at 7.5 T, an asymmetry much smaller than observed.

We numerically evaluate �� from Eq. �1� and plot � in
Fig. 2. Figure 2�a� confirms that the tunneling into the
ground �excited� state is preferred, if the g factor magnitude
is larger �smaller� in the lead than in the dot. We next show
in Fig. 2�b� that the asymmetry is larger for tunnel barriers
with larger ramps. For a dot-lead g factor difference of 20%,
��0.9 for a barrier with L�200 nm, which qualitatively
corresponds to the experimental setup of Ref. 9. There is a
slight dependence of � on V0 shown in Fig. 2�c�. The trend
somehow contradicts Eq. �11�, because for low barriers, the
dot wave function leaks out into the lead channel, and this is
not captured by the approximations made in Eq. �8�. Finally,
Fig. 2�d� shows that deforming the dot leaves � practically
unchanged. This is expected because the symmetry of the
ground state depends only weakly on details of the confine-
ment potential. Most importantly, these numerical results on
a two-dimensional model confirm the qualitative picture
based on a one-dimensional toy model given above. For
variations in the dot’s g factor up to 20%, the relative tun-
neling asymmetry does not exceed �10% and the symmetry
of the confinement potential of the dot plays no role. We
conclude that the reported fluctuations in the dot’s g factor
variations cannot explain the reported large spin asymmetry
in tunneling.
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A small � requires a large argument in the exponential of
Eq. �11�, which can be reached for a large difference in Zee-
man energy or kL�1. The barrier width L is limited by the
tunneling rate magnitude �200 Hz� and therefore cannot ex-
ceed few hundreds of nanometer. We just argued that varia-
tions in the dot’s g factor cannot account for the observed �,
if glead=−0.39, which is the standardly accepted value for the
two-dimensional electron gas in GaAs/AlGaAs heterostruc-
tures. We now argue that only an enhancement of the lead g
factor can generate a large tunneling asymmetry. A strong
enhancement of the g factor, up to �g�=3 at magnetic field of
16 T, has been reported in Refs. 20 and 21 in the lowest
conduction subbands of a quantum point contact. It is rea-
sonable to expect that a similar effect occurs in the narrow
leads of Ref. 9. Two data sets are shown in Fig. 3�a� for
values of the lead g factor as reported in Ref. 20. The tun-
neling asymmetry is now strongly enhanced and comparable
to the experiment at reasonable barrier lengths. Alternatively,
Fig. 3�b� shows the tunneling asymmetry at two fixed barrier
lengths. The g factor enhancement required for a substantial
asymmetry is still reasonable, given that enhancement fac-
tors of up to 50 were reported in Ref. 23. Using the enhanced
g factor is consistent with the fact that the tunneling in our
model is dominated by the lowest transverse channel.

Reference 9 showed a strong variation in � as the poten-
tials defining the confinement of the dot were changed. It
was concluded that � strongly depends on the dot’s shape.
Our theory does not account for such a dependence—the
data in Fig. 2�d� show only a marginal dependence of � on
lx− ly. There are two mechanisms by which changing the gate
voltages defining the dot confinement may influence the tun-
neling asymmetry. First, changes in those voltages can be
accompanied by shifts in the position of the dot and thus
modulations of the barrier length L and of the tunneling
asymmetry.34 Second, shape voltages can directly influence
the transverse confinement in the lead tip, on which the g
factor strongly depends.22

IV. EIGENSPINOR ORIENTATION MISMATCH

We next investigate the influence that spin-orbit interac-
tions have on �, assuming a homogeneous g factor. The nu-
merical results allow us to rule out the spin-orbit interactions
as the source for the observed asymmetry, as the effect is too
small. For the sake of completeness, we nevertheless explain
how the spin-dependent tunneling arises since it may become
important in materials with a stronger spin-orbit coupling.

It is important to note that the effective strength of spin-
orbit interactions is not the same in the dot and in the lead. In
2DEG GaAs, the spin-orbit-induced magnetic field is
�10 T. As this is at least comparable to the external mag-
netic field, spin-orbit interactions significantly influence the
eigenspinor orientation. On the other hand, spin-orbit inter-
actions are strongly suppressed in the dot. The spin is almost
perfectly aligned with the external magnetic field, deflecting
from it by a small angle of the order of lx,y / lso�1.25,26 Due
to the misaligned eigenspinors, spin-dependent tunneling is
expected.

We therefore consider the eigenfunctions of the Hamil-
tonian in Eq. �2� for a constant potential V�r�=V. The
ansatz35 	�r�=exp�ik ·r�� leads to an algebraic equation for
the wave vector k and a spatially independent two compo-
nent eigenspinor �,

�k2

2m
+ V − E +

g

2

B�B + Bso�k�� · ��� = 0. �12�

For given energy and wave vector, Eq. �12� has two solu-
tions, which we label by the spin index �= �1. The direc-
tion of the eigenspinor �� is parametrized by its inclination
and azimuthal angles ��� ,���. We call a state evanescent if
V�E and extended if VE. These two have purely imagi-
nary and real wave vector k, respectively, if one neglects the
Zeeman energy �� contribution to the eigenstate total energy
E. The spin-orbit-induced magnetic field Bso, defined by Eq.
�3�, is in plane, and generates an anisotropy if the external
field direction is varied with respect to the crystallographic
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FIG. 2. Spin-tunneling asymmetry due to the g factor inhomo-
geneity varying �a� the g factor difference, �b� the length L of the
barrier ramp, �c� the barrier height V0, and �d� the dot asymmetry
�lx− ly�. When not varied, the parameters are glead=−0.39, gdot=
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axes. In Fig. 4�a�, we plot the azimuthal angle of B and Bso
and mark the directions where the external field is
�anti�parallel/perpendicular with the spin-orbit field by the
downward/upward arrows.

For an extended spinor, Bso�k� is real. The sum of the spin
orbit and external fields sets the spin direction of the ex-
tended solutions of Eq. �12� to

�� = �/2, �� = �B+Bso
+ �1 − ���/2, �� = �� . �13�

The Zeeman splitting energy

� = �g/2�
B

�B + Bso�2 �14�

is �minimal� maximal, if the two fields are �anti�parallel. This
is shown in Fig. 4�c�. The opposite Zeeman energy of the
two spinors is compensated by a small change in the wave
vectors.

The picture changes appreciably for an evanescent spinor.
Despite their importance for tunneling, analytical solutions
of Eq. �12� are known only for zero magnetic field35 while
some numerical results exist for a finite magnetic field.36–38

A simple perturbative solution of Eq. �12� follows if the spin-
orbit magnetic field is taken as

Bso�k� � Bso�k0� �15�

with the unperturbed wave vector defined by �k0
2 /2m=E

−V0. Expanding the square root in Eq. �14�, one finds that
the error of the approximation is of order �Eso / �E−V��2

�10−4. The spin-orbit magnetic field is now purely imagi-
nary. Still, the Zeeman interaction term with a complex
“magnetic field”39 has two eigenstates with opposite com-
plex eigenenergies given by Eq. �14�, whose magnitude is
plotted in Fig. 4�d�. In the coordinate system with the z axis
perpendicular to the plane defined by B and Bso �the crystal-

lographic coordinate system here�, the spin direction of the
evanescent eigenspinors is

�� = �e, �� = �e + �1 − ���/2, �� = �� . �16�

The angles �e and �e are plotted in Fig. 4�b� as a function of
the external magnetic field orientation. The two spinors are
orthogonal and in plane only if the two magnetic fields are
�anti�parallel �downward arrows�. The out-of-plane spinor
component is maximal if the two fields are orthogonal �up-
ward arrows�.

With the Zeeman energy given by Eqs. �14� and �15�, the
wave vector k is obtained from the quadratic Eq. �12�. The
imaginary part of the Zeeman term and the kinetic energy
cancel such that the total energy E is real. To illustrate the
solutions, we consider the wave vector fixed along k0 so we
can write it as k= �1−�z /k0− i�so /k0�k0 introducing two real
parameters �z/so. To leading order, these are given by

�z + i�so = �
2m�

�2k0
, �17�

in particular, they are opposite for the two spinors.
Consider now that a coherent superposition of the two

eigenspinors propagates inside the barrier. The real part of
the Zeeman energy leads to different decay lengths for the
two components while the imaginary part leads to a coherent
rotation of the initial spin orientation. If both the magnetic
field and the spin-orbit interactions are present, the spin will
make a spiral, both decaying and rotating at the same time,
over the length scales 1 /�z, and 1 /�so, respectively. The eva-
nescent states show an additional possibility for the spin se-
lection through spin-dependent penetration lengths. Note,
however, that both eigenspinors are additionally damped
over the length 1 /k0, which is usually much shorter than
1 /�z,so, strongly limiting the achievable differentiation for
the two spin species.

Before we present numerical results we note an interest-
ing singular limit when the external and the spin-orbit mag-
netic fields are orthogonal and of the same magnitude. In this
case the out-of-plane spinor misalignment is maximal and
both spinors are oriented along the same direction �the z
axis�.

We analyze our numerical results for the tunneling asym-
metry using the just developed picture of the extended and
evanescent spinors. In Fig. 5�a� we vary the direction of the
external magnetic field. If the two magnetic fields are �anti-
�parallel �downward arrows�, the spin quantization axis
throughout the structure is the same and only spin-diagonal
tunneling is possible. The asymmetry arises from the spin-
orbit contribution to the Zeeman energy in the lead, which
gives rise to spin-dependent discrepancies in the wave vec-
tor. When the magnetic fields are not parallel, the eigens-
pinor orientations in the lead, under the barrier and in the dot
are all different, which opens off-diagonal spin-tunneling
channels. The spin-dependent tunneling arises from different
effective potential barriers in these off-diagonal channels.
The wave vectors in Eq. �9� fulfill �note that �→�� refers to
an eigenspinor direction in the lead ��� and the dot ����,
which are not necessarily along the same axis�
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k↓→↑ � k↑→↑ = k↓→↓ � k↑→↓. �18�

They are shown as arrows of different lengths in Fig. 1�e�.
The tunneling into the excited state is always preferred and
the effect is maximal if the spin orbit and the magnetic fields
in the lead are perpendicular.

Figure 5�b� shows that the asymmetry is dominated by the
linear spin-orbit terms, with the cubic Dresselhaus contribu-
tion smaller by a factor of �5. We checked �but do not
show� that the contributions from different spin-orbit terms
are additive with good accuracy. In Fig. 5�c� we consider an
out-of-plane magnetic field and show that, despite the pres-
ence of orbital effects, the asymmetry is of similar magnitude
as for an in-plane field. Finally, we show in Fig. 5�d� that the
asymmetry grows with the magnetic field. This is expected,
as a larger Zeeman energy makes the difference of wave
vectors in Eq. �18� larger.

Figure 6 shows the dependence of the effect on the barrier
potential. The tunneling asymmetry is more pronounced for
lower �panel a� and longer �panel b� barriers because the
longer the barrier, the stronger the suppression of the spin
down-to-up tunneling channel relative to the up-to-down
channel. We next see in Fig. 6�c� that the dot’s symmetry has
little importance since varying the dot-lead offset changes
the tunneling asymmetry only marginally. Similarly, Fig.
6�d� shows that the lead width is important only around the
pinch-off point, where the upper spin state disappears from
the lead. Because the tunneling is dominated by the lowest
transverse channel contribution, opening additional channels
has a hardly noticeable effect on �.

Our numerical data therefore show that spin-orbit-induced
spin-tunneling asymmetries reflect evanescent and extended
spinor solutions of Eq. �12� but that the effect is too small to

account for experimental observations. Here also, the dot
symmetry plays only a minor role.

V. CONCLUSIONS

We investigated possible spin dependencies in the tunnel-
ing of an electron into an empty lateral quantum dot in pres-
ence of a magnetic field. We used a general two-dimensional
model and examined the parameters’ space in great details,
by varying the tunnel barrier geometry, the spin-orbit inter-
actions strengths, the magnetic field orientation and strength,
the dot confinement potential, the dot g factor, and the dot vs
lead orientation. We found that the spin-tunneling asymmetry
does not exceed 10% for realistic parameters, much too
small compared to the results of Ref. 9. We therefore postu-
late that the observed asymmetry originates in an anoma-
lously enhanced lead g factor because of the lateral confine-
ment in the lead. Such an enhancement has been reported in
Refs. 20 and 21.

We expect the error stemming from approximations in our
model to be negligible compared to the specificities of the
tunnel barrier profile, about which not much is known in
gated quantum dots. On the other hand, we do not expect the
asymmetry to arise because of specific barrier shape, as
seemingly related effects are present in different structures.40

Our findings provide cues for further experimental checks
of the origin of the spin-tunneling asymmetry. Assuming the
g factor mechanism is at play, the tunneling asymmetry
growth is accompanied by a reduction in the tunneling rates
themselves. On the other hand, the spin-orbit interactions
induce anisotropy with respect to the crystallographic direc-
tions and we identify specific directions of the magnetic
field, which give maximal/minimal spin-tunneling asymme-
try. This mechanism might be of relevance in other materials,
such as InAs.41 We note, but do not show, that our numerics
indicate that these two effects are essentially additive �inde-
pendent�.
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Among alternative explanations for the observed asym-
metry, one could consider that single electron tunneling is
dynamically assisted by phonons and/or nuclear spins. How-
ever, one does not expect these to induce a spin dependence,
as phonons do not couple and nuclear spins couple only very
weakly to the electronic spin. The dependence may arise due
to an inhomogeneous collective nuclear field, which would
be similar to, and presumably indistinguishable from, the
inhomogeneous g factor that we studied here. We note finally
that the finite extension of the 2DEG in the z direction allows
for orbital effects. The fields of up to 7–8 T used in Ref. 9
however correspond to a magnetic length significantly larger
than the typical thickness of the 2DEG. Possible weak dia-
magnetic effects, such as a slight shift or a compression of
the 2DEG, seem to affect both the lead and the dot in the
same way and should not result in the spin-tunneling asym-
metry.
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APPENDIX: COMPARISON OF VARIOUS FORMULAS
FOR TUNNELING

We compare four different formulas for the dot to lead
tunneling rate in one dimension. We differentiate scattering
approaches, based on eigenstates of the full system Hamil-
tonian from perturbative approaches, where the dot and the
lead are considered separately. We find that the perturbative
approach used in the main text agrees very well with scatter-
ing approaches. A similar correspondence is expected for
tunneling into a quasi-one-dimensional channels of a finite-
width lead which we consider in the main text.

We set up a one-dimensional square barrier model with
the Hamiltonian H=�2k2 /2m+V�x�. The potential V�x�, de-
picted in Fig. 7�a�, describes a dot of width l0, separated from
a semi-infinite lead by a barrier of width L. The dot is offset
with respect to the lead by Vg and the barrier height is V0. We
compare the rates for tunneling to all quasibound states of
the structure.

We take the Hilbert space to be spanned by a bound state
��0	 and a set of �orthonormal� extended states ���n	�n�0. We
expand the time-dependent system wave function as27

�		 = e−i�0ta0��0	 + �
n

e−i�ntan��n	 , �A1�

introducing so far unspecified frequencies �i and time-
dependent coefficients ai�t�. The time-dependent Schrödinger
equation for �		 reads

i��ta0 = − ��0���0 − H��0	a0

− �
n

e−i�n0t��0�i��t + ��n − H��n	an, �A2a�

i��tan = − ei�n0t��n�i��t + ��0 − H��0	a0

− �
m

e−i�mnt��n���m − H��m	am, �A2b�

where we denote �ij =�i−� j.
Let us now consider the lead as a perturbation of an iso-

lated dot, as shown in Fig. 7�b�, that is, H=H0+�V̂, where

�V̂ = − ��x − l0 − L��V � − ��x − l0 − L�V0. �A3�

Accordingly, we choose ��0	 and ��n	���n
dot	 as the bound

and extended eigenstates of H0, depicted in Figs. 7�b� and
7�c�, respectively, and ��i their energies. The formula for the
tunneling rate follows from Eq. �A2� as42

�1 =
2�

�
�

n

���0��V̂��n
dot	�2����0 − ��n

dot + �V� , �A4�

if one neglects the transitions between extended states �m
�n terms in Eq. �A2b�� and the bound-state energy shift, i.e.

��0��V̂��0	�0.
Equation �A4� turns out to be a poor estimate. Gurvitz et

al.27,43 suggested to improve it by replacing the extended
states of the isolated dot ��n

dot	 �see Fig. 7�c�� by the extended
states of the isolated lead ��n

lead	 �see Fig. 7�d��. We obtain
Eq. �1�,

�2 =
2�

�
�

n

���0��V̂��n
lead	�2����0 − ��n

lead� . �A5�

Equation �A5� is equivalent to the Bardeen formula for
tunneling,44 which comes from the following derivation. In
Eq. �A1�, we choose ��0	 and ��n	 to be the dot bound state
�Fig. 7�b�� and lead extended states �Fig. 7�d��. Transitions
stem from those states being neither orthogonal nor eigen-
states of H. Neglecting continuum to continuum transitions
again in Eq. �A2b� and the time derivatives of the coeffi-
cients ai on the right-hand side of Eq. �A2� and using that for
�0=�n we can write

0l fullΨ Φdot δV

Vg V0

dΨ

Ψ

dot

lead

c

a bL

FIG. 7. �a� Full scattering eigenstate �thick line� and the con-
finement potential �thin solid line� of the dot-barrier-lead system.
�b� Potential of an isolated dot and its bound eigenstate and the
perturbation �V. �c� Extended eigenstate for the same problem. �d�
Potential profile and an extended eigenstate of an isolated lead.
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��0�H − ��n��n	 = ��0�H − ��0��n	 = ��0��V̂��n	 .

�A6�

We then get Eq. �A5� from Eq. �A2�.
We next turn our attention to scattering approaches. The

first one is due to Wigner.45 We write a scattering state �an
unnormalized eigenstate of H� in the lead as

�xlead��full	 = e−ikxlead + eikxlead−i�. �A7�

Current conservation requires that the reflection results only
in a phase shift �. Consider now a wave packet of energy E
and wave vector −k �velocity v=�k /m�, scattering at the
barrier from the right. The reflected wave phase shift in Eq.
�A7� is interpreted as an action phase due to time of the
tunneling �=Et /�=2E�−1 /�. Differentiating with respect to
the energy we get

��

�E
=

2E

�

��−1

�E
+

2�−1

�
. �A8�

The quasibound-state lifetime �−1 is sharply peaked around
the resonance energy, where its first derivative is zero. The
tunneling rate follows as

�3 =
2

�
� ��

�E
�−1

. �A9�

The reflection phase � is plotted in Fig. 8�a�. The sharp
resonances where the phase jumps by 2� are evident.

The second scattering approach we consider is the follow-
ing. Take a steady state where a constant flux impinges on
the barrier. A part of it is directly reflected while a part tun-
nels through. The latter �influx� increases the probability ac-
cumulated behind the barrier, compensated by a constant
leak out �outflux�. The tunneling rate can be defined as the
ratio of the influx and the accumulated probability,46

�4 =
jin

Q
=

v��	full
left going�xlead = 0��2

�
dot+barrier

�	full�x��2dx

. �A10�

The coefficient � quantifies how much of the left-going
probability flux tunnels through �a part is reflected right at
the barrier�. In analogy with an infinite barrier, we suppose
the phase of a reflected wave changes sign at the reflection
point, which gives �=cos2�� /2�. As on resonance �=� /2,
we get �=1 /2. Figure 8�b� shows the quasibound-state life-
time computed by Eq. �A10�. The resonant energies corre-
spond to those obtained in the Wigner method.

We compare the results of the discussed approaches in
Fig. 9. We take the Bardeen-Gurvitz formula, Eq. �A5�, as
reference and plot the corresponding rates in Fig. 9�a�. The
Fermi Golden rule of Eq. �A4� shows spurious resonances
and can differ by orders of magnitude, as shown in Fig. 9�b�.
As �3=�4 within numerical precision of our software, we
compare only the Wigner formula to the reference in Fig.
9�c� and find an excellent agreement even improving as the
resonance energy is reduced.

To investigate the spin-tunneling asymmetry, we have
chosen to use the Bardeen-Gurvitz formula, Eq. �A5�. Out of
those we discussed, it presents the advantage that it is based
on the eigenstates of the isolated subsystems, which are
much easier to obtain than the scattering eigenstates of the
full system. An additional disadvantage of the scattering ap-
proaches is that as the tunneling rate drops, the resonances
become narrower and harder to spot. Therefore, instead of
searching for the them numerically, one can take the energy
of a dot bound state as the approximation for the resonance
position. In Fig. 8�d� we evaluate the rate in the Wigner
approach at such approximate resonance energy. For states
well below the barrier, we still find a very good correspon-
dence with the Bardeen-Gurvitz formula.
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