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The theory of the drag effects in the system of spatially separated electrons and excitons in coupled quantum
wells �QWs� embedded in an optical microcavity is developed. It is shown that at low temperature an electron
current induces the polariton flow, therefore, a transport of photons along the cavity. However, the electron
current dragged by the polariton flow is strongly suppressed below polariton superfluid transition temperature
and hence, the strong suppression of the induced electron current indicates the superfluidity of polaritons.
Therefore, the transport properties of polaritons can be investigated by measuring the current or voltage in the
electron subsystem. At high temperatures, we study the exciton-electron drag effects. At high-temperatures
regime, from one hand, the existence of the electric current in an electron QW induces the exciton flow in the
other QW, from the other hand, the electron current in one QW induces the exciton flow in the other QW via
the drag of excitons by the electrons. The drag coefficients for the polariton-electron systems are calculated and
analyzed. We discuss the possible experimental observation of the drag effects in the system of electrons and
microcavity polaritons, that also allow to observe the cavity polaritons superfluidity.
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I. INTRODUCTION

The study of the drag effects in a two-layer system of
electrons and holes, and electrons and excitons has long his-
tory. The drag effects in a two-layer system of spatially sepa-
rated electrons and holes were predicted theoretically, and
their influence on phase transitions to a superfluid excitonic
phase investigated in Ref. 1. Later, Pogrebinskii in Ref. 2
discussed the drag of electrons by electrons in a
semiconductor-insulator-semiconductor structure. Price pro-
posed a practical method for observing the drag effect in
heterostructures.3 Subsequently, the drag effect was explored
in a number of theoretical and experimental studies,4–13

where various physical realizations of the drag effect were
discussed in one-dimensional, two-dimensional �2D�, and
three-dimensional systems. The prediction was that for two
conducting layers separated by an insulator there will be a
drag of carriers in one film due to the direct Coulomb inter-
action with the carriers in the other film.

A theory of transresistivity coefficients, which relate elec-
tric fields in one layer to currents flowing in the opposite
layer, for the case of an electron-hole double-layer system
with a superfluid electron-hole condensate was presented in
Ref. 12. Such electron-hole system can be realized in GaAs/
AlGaAs coupled quantum wells �CQWs�. The measurement
of these transport coefficients could provide an unambiguous
experimental indication of the existence of the condensate.
When no condensate is present, the transresistivity is typi-
cally several orders of magnitude smaller than the isolated
layer resistivity. According to Ref. 12, the transresistivity
jumps to a value comparable to the isolated layer resistivity
as soon as the condensate forms, it continues to increase with
decreasing temperature T, and it diverges as T→0. Employ-
ing diagrammatic perturbation theory, the charge Coulomb
drag resistivity and spin Coulomb drag resistivity were cal-

culated in the presence of Rashba spin-orbit coupling in Ref.
14.

For the past decade, there was great amount of various
interesting experiments on drag effects performed in the dif-
ferent groups. The measurements in a perpendicular mag-
netic field of the frictional drag between two closely spaced,
but electrically isolated, two-dimensional electron gases
were presented by Pepper’s group.15 The drag measurements
on dilute double-layer two-dimensional hole systems have
been performed in Tsui’s group.16 The formation of the su-
perfluid exciton Bose condensate at low temperatures has
been experimentally studied by performing magnetotransport
and drag measurements on a quasi-Corbino two-dimensional
electron bilayer at a total filling factor of 1 by von Klitzing’s
group.17 Electron-hole bilayers are expected to make a tran-
sition from a pair of weakly coupled two-dimensional sys-
tems to a strongly coupled exciton system as the barrier be-
tween the layers is reduced. The recent measurements done
by Lilly’s group18 for Coulomb drag in the exciton regime in
electron-hole bilayers demonstrated that there is an increase
in the drag resistance as the temperature is reduced when a
current is driven in the electron layer and voltage measured
in the hole layer. These results indicate the onset of strong
coupling possibly due to exciton formation or phenomena
related to exciton condensation.

The kinetic properties of a two-layer system of electrons
and excitons at temperatures above the temperature Tc of the
Kosterlitz-Thouless transition,19 at which there is no local
condensate or superfluidity in the exciton system, were con-
sidered in Ref. 20. The kinetic properties of a two-layer sys-
tem of electrons and excitons at temperatures below the tem-
perature Tc under conditions allowing the existence of a Bose
condensate of excitons have been studied in Ref. 21. The
corresponding calculations have been performed for two-
dimensional systems of spatially separated electrons and ex-
citons. The effect of spatially separated electron-exciton drag
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in a double-layer system was studied in the Debye-Hückel
approximation taking into account screening of the interlayer
electron-exciton interaction.22

Recently Bose coherent effects of 2D excitonic polaritons
in a quantum well embedded in a optical microcavity have
been the subject of theoretical and experimental studies.23–25

To obtain polaritons, two mirrors placed opposite each other
form a microcavity, and quantum wells are embedded within
the cavity at the antinodes of the confined optical mode. The
resonant exciton-photon interaction results in the Rabi split-
ting of the excitation spectrum. Two polariton branches ap-
pear in the spectrum due to the resonant exciton-photon cou-
pling. The lower polariton branch of the spectrum has a
minimum at zero momentum. The effective mass of the
lower polariton is extremely small, and lies in the range
10−5–10−4 of the free electron mass. These lower polaritons
form a 2D weakly interacting Bose gas. The extremely light
mass of these bosonic quasiparticles at experimentally
achievable excitonic densities, results in a relatively high
critical temperature for superfluidity, of 100 K or even
higher, because the 2D thermal de Broglie wavelength is
inversely proportional to the mass of the quasiparticle.

While at finite temperatures there is no true Bose-Einstein
condensation �BEC� in any infinite untrapped 2D system, a
true 2D BEC quantum phase transition can be obtained in the
presence of a confining potential.26,27 The essential experi-
mental progress was achieved in experimental studies of ex-
citon polaritons in the system of a QW embedded in optical
microcavity.28–30 Recently, the polaritons in a harmonic po-
tential trap have been studied experimentally in a GaAs/
AlAs quantum well embedded in a GaAs/AlGaAs
microcavity.31 In this trap, the exciton energy is shifted using
a stress-induced band gap. In this system, evidence for the
BEC of polaritons in a quantum well has been observed.32,33

The theory of the BEC and superfluidity of excitonic polari-
tons in a quantum well in a parabolic trap has been devel-
oped in Ref. 34. The Bose condensation of polaritons is
caused by their bosonic character.32,34,35 The BEC and super-
fluidity of cavity polaritons in a QW without a trap were
considered in Refs. 36–40.

The investigation of the kinetic properties of a system of
spatially separated polaritons and electrons based on drag
effects can provide additional information regarding the
phase state of the polariton subsystem and phase transitions
in it. The phase state of the polariton subsystem can be ana-
lyzed by performing a simple study of the response of the
electron subsystem. In other words, the transport properties
of polaritons and their changes upon phase transitions can be
investigated by measuring the current or voltage in the elec-
tron subsystem. Another property of systems of spatially
separated interacting quasiparticles is the possibility of con-
trolling the motion of the quasiparticles of one subsystem by
altering the parameters of state of the quasiparticles in the
other subsystem �for example, controlling the motion of elec-
trons using a flow of polaritons�. While the drag effect in
various electron-hole systems were considered in many in-
teresting papers cited above, we are lacked of such research
for a polariton-electron system. The drag effect in the
polariton-electron system embedded in an optical microcav-
ity was predicted just recently.41 In this paper, we develop

the theory of the drag effects in the system of spatially sepa-
rated electrons and excitons in coupled quantum wells em-
bedded in an optical microcavity.

The paper is organized in the following way. In Sec. II,
we present the interaction Hamiltonian between the spatially
separated polaritons and electrons. In Sec. III, we study
transport relaxation time of the quasiparticle excitations and
polaritons. In Sec. IV, we calculate the drag coefficients cor-
responding to the drag of the quasiparticles in the polariton
subsystem by the electron current and the drag of the elec-
trons by the quasiparticles in the polariton subsystem. The
study of the drag effects in the exciton-electron system at
high temperatures is presented in Sec. V. In Sec. VI, we
propose the experiments to observe the drag effects. Finally,
the discussion of the results and conclusions follow in Sec.
VII.

II. INTERACTION OF POLARITONS WITH ELECTRONS

We consider two neighboring quantum wells embedded in
an optical microcavity: the first QW is occupied by 2D elec-
tron gas �2DEG� and the second QW is occupied by the
excitons created by the laser pumping.

At low temperature kBT���R, where ��R is Rabi split-
ting, and kB is Boltzmann constant, and at the resonance of
excitons with cavity photons, the excitons are entangled with
the cavity photons and form the exciton polaritons. Here we
omit weak effects of direct nonresonant interaction of pho-
tons with 2D electron gas which will be considered else-
where. By focusing laser pumping in some region of the
cavity the gradient of excitons and exciton polaritons densi-
ties can be generated. These gradients induce the polariton
and exciton flows, and in a turn the normal component of
moving excitons drags the electrons in the neighboring QW
due to the electron-exciton interaction. So the electric current
would be generated by the flow of the normal component of
exciton polaritons.

In another scenario by applying electric voltage in the
QW with 2DEG the electronic current is induced, and this
current drags the normal component of excitons in the neigh-
boring QW. The excitons are entangled with the cavity pho-
tons. So the cavity photons can be also dragged and, thus,
controlled by the electric voltage. Besides, possible applica-
tions of the control of photons and �or� excitons by the
exciton-electron drag can be used for study of the properties
and phases in the polariton and exciton system, particularly,
the superfluidity of the system.

From the other hand, at high temperature, kBT���R, the
polariton states are occupied mainly far from the polariton
resonance, and in these states exciton-photon entanglement
is negligible. Thus, at high temperatures only the exciton-
electron drag is essential, and the exciton flow can induce the
electron current as well as the electron current can produce
the exciton flow. The various drag effects in an optical mi-
crocavity considered in this paper are schematically shown
in Fig. 1.

We consider the system of two parallel quantum wells
embedded into a semiconductor microcavity. One quantum
well is filled by two-dimensional exciton polaritons formed
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by direct excitons and microcavity photons. We assume that
the exciton system is dilute and weakly interacting system,
satisfying to the following condition nexa0

2�1, where nex is
the 2D exciton density, a0=��2 / �2�0e2� is the 2D exciton
Bohr radius, �0=memh / �me+mh� is the reduced exciton
mass, me and mh are effective masses of an electron and a
hole, respectively, � is the dielectric constant in a quantum
well, and e is the charge of an electron. The condition
nexa0

2�1 holds for the excitons at the exciton densities up to
nex�1012 cm−2, since in GaAs/GaAsAl quantum well the
exciton Bohr radius is in the order of a0�10–50 Å. It is
obvious to conclude that the system of polaritons is also
weakly interacting system since the system of excitons,
forming the polaritons, is dilute. The other quantum well
parallel to the quantum well with excitons is filled by the
2DEG. The polariton-electron drag effects are caused by the
polariton-electron interaction.

Let us mention that the second QW filled by the 2DEG
can also possess excitons, because the excitonic population

can be driven by the microcavity photons. Therefore, in this
system of the coupled QWs embedded in an optical micro-
cavity, the formation of polaritons, whose exciton compo-
nents are shared on both the QWs, can occur. However, we
do not consider the excitons formation in the QW filled by
the 2DEG since we suggest constructing this 2DEG QW so
that the excitons in this QW are not in the resonance with the
microcavity photons and the excitons in the other, “exci-
tonic” QW. This can be achieved by the fact that the two
QWs embedded in an optical microcavity are assumed to
have different chemical compositions or different widths.

The potential energy of the pair attraction between the
exciton and electron placed in two parallel quantum wells
with the spatial separation D is given by20,21

W�r,D� = −
21

32

e2a0
3

��r2 + D2�2 , �1�

where r is the distance between the exciton and electron
along the plane. The 2D Fourier image of W�r ,D� is

W�q,D� = −
21	

32

e2a0
3

�

q

�D
K1�qD/�� , �2�

where K1�qD� is the modified Bessel function of the second
kind.

In a many-particle system of excitons and electrons the
bare pair interaction W�q ,D� should be replaced by the ef-
fective interaction Wef f�q ,D� corresponding to the exciton-
electron interaction screened by the electron-electron inter-
actions in 2DEG. In the system of dilute excitons in one
quantum well and 2DEG in the other quantum well
Wef f�q ,D� is given by21

Wef f�q,D� = −
W�q,D�

1 − 
e�q�Ve�q�
, �3�

where Ve�q�=2	e2� / ��q� is the 2D Fourier image of the pair
electron-electron Coulomb attraction, and 
e�q� is the 2D
polarization function for electrons. We consider the limit of
the very dense 2DEG, when the following condition is valid:
nelae

2�1, where nel is the 2D density of the electrons and
ae=��2 / �2mee

2� is the 2D electron Bohr radius. In the limit
of very dense 2DEG in the Thomas-Fermi approximation

e�q� is 
e�q�=me / �	�2�,42 and, therefore, 
e�q�Ve�q�
= �aeq /��−1.

At low exciton density, nexa0
2�1, the term of the Hamil-

tonian Ĥex-el corresponding to the exciton-electron interac-
tion has the form21

Ĥex-el =
1

A
�

p1,p2,p1�,p2�

Wef f��p1 − p1��,D�âp1�
† ĉp2�

† ĉp2
âp1

, �4�

where âp
† and âp are the exciton Bose creation and annihila-

tion operators, respectively, ĉp
† and ĉp are the electron Fermi

creation and annihilation operators, respectively, and A is the
macroscopic quantization area of the system. Below for the
derivation of the drag coefficients we need the Hamiltonian
of the exciton-electron interaction in the representation of the
operators of the quasiparticles in the polariton subsystem.
The details for the derivation of the Hamiltonian of the

d Bragg mirror

Bragg mirror

QW

QW Exciton flow- + - +

- - - - Drag of electrons

b Bragg mirror

Bragg mirror

QW

QW

Cavity photons

Polariton flow- + - +

- - - - Drag of electrons

c Bragg mirror

Bragg mirror

QW

QW Drag of excitons- + - +

- - - - Electric current

a Bragg mirror

Bragg mirror

QW

QW

Cavity photons

Drag of polaritons- + - +

- - - - Electric current

FIG. 1. The schematic for the drag effects in the CQWs embed-
ded in an optical microcavity. �a� The quasiparticles in the cavity
polariton subsystem are dragged by the electron current at low tem-
peratures. �b� The electrons are dragged by the flow of the quasi-
particles in the cavity polariton subsystem at low temperatures. �c�
The excitons are dragged by the electron current at the high tem-
peratures. �d� The electrons are dragged by the exciton flow at high
temperatures.
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exciton-electron interaction in the representation of the qua-
siparticle operators are presented in Appendix A.

III. TRANSPORT RELAXATION TIME OF THE
QUASIPARTICLE EXCITATIONS AND POLARITONS

In order to calculate polariton-electron and exciton-
electron drag coefficients we use the kinetic equations in
Sec. IV, which include the transport relaxation time �1�p� of
the quasiparticle excitations corresponding to the scattering
on the impurities enters. In this section, we obtain the trans-
port relaxation time to the scattering of the quasiparticles on
the impurities. The Hamiltonian of elastic interactions of ex-
citons with impurities is given by

Ĥ1 =
1

A
�
p,p�

V�p,p��âp
†âp�, �5�

where V�p ,p�� is is the matrix element for the interactions of
an exciton with impurities. Replacing the exciton operators
by the polariton operators according to Eq. �A1� and the
polariton operators by the operators for quasiparticle excita-
tions defined by Eq. �A10�, and keeping only the terms
which satisfy the requirement of elastic collisions, we obtain

Ĥ1 =
1

A
�
p,p�

V�p,p���p,p��b̂p
†b̂p�, �6�

Using Hamiltonian �6� and applying Fermi’s golden rule, we
obtain for the reciprocal of the transport relaxation time �1�p�

1

�1�p�
=

2	

�
� �V�p,p���p,p���2���1�p� − �1�p��	

�
1 − cos��p,p�̂�	�
sd2p�

�2	��2 . �7�

Substituting Eqs. �A10� and �A12� into Eq. �7�, we get

�1�p� =
�1�p�
��p�

�p�p� , �8�

where �p�p� is the polariton relaxation time in the normal
phase given by

1

�p�p�
=

2	

�
� �V�p,p���2Xp

2Xp�
2 ���0�p� − �0�p��	

�
1 − cos��p,p�̂�	�
sd2p�

�2	��2 . �9�

Hence, we obtain �p�p�=�n�p� /Xp
4, where �n�p� is the exciton

relaxation time in the normal phase given by

1

�n�p�
=

2	

�
� �V�p,p���2���ex�p� − �ex�p��	

�
1 − cos��p,p�̂�	�
sd2p�

�2	��2 , �10�

where �ex�p� is the energy spectrum of the excitons. In the
case of excitations with a small momentum, where �0�p�

��, the dispersion law of the excitations has an acoustic
form: �1�p�=csp, and from Eq. �8� we have �1�p�
= �p / �Mpcs�	�p�p�. Therefore, in the presence of the superflu-
idity the relaxation time of polariton excitations �1�p� can be
obtained from the exciton normal-phase relaxation time �n�p�
as �1�p�= �Xp

4p / �Mpcs�	�n�p�. Without the superfluidity, at
�p1 , p1��=Xp1

Xp1�
we have �1�p�=Xp

4�n�p�. The exciton nor-
mal phase relaxation time �n�p� can be approximated by its
average value �̄n= ��n�p�, which can be obtained from the
exciton mobility �̃ex=e�̄n /M. The exciton mobility �̃ex is
presented in Figs. 1 and 2 in Ref. 43.

IV. DRAG COEFFICIENTS

We introduce the drag coefficients �p and �ex for electrons
in the 2DEG dragged by the moving polaritons and exitons,
respectively. For the case when the electric field is applied to
the system of electrons in the QW we introduce the drag
coefficients �p and �ex, respectively, for polaritons and exci-
tons dragged by the electron current. In the two-layer system
there are a current of electrons and flow of polaritons or
excitons. The flow of polaritons or excitons is ii=nivi, where
ni and vi are density and average velocity, and the index i is
defined as i=ex for excitons and i= p for polaritons. The
electron current j=−enelvel, where nel is the density and vel is
the average velocity of electrons in the electron layer. These
currents can be expressed in terms of the density gradient
�ni in the polariton or exciton subsystem, drag coefficients
�i and �i, and external electric field E applied to the 2DEG
by the following matrix expression:

�ii

j
� = �− Di �i

�i enelDe
� · ��ni

E
� , �11�

where Di is the polariton or exciton diffusion coefficient and
De is the mobility coefficient of the electrons. Only normal
component in the polariton subsystem is dragged by the elec-
tron current while the superfluid component is not dragged.
Thus, the appearance of the polariton superfluidity can be
detected by the electron-polariton drag effect.

A. Drag of the polariton quasiparticles by the electron current

Let us find the drag coefficient �p by following the pro-
cedure applied in Ref. 21 for the derivation of the drag co-
efficient related to the drag of the quasiparticles in the polar-
iton subsystem by the electrons. We obtain the drag
coefficient �p from the expansion of the polariton flow ip in
the first order with respect to E. The expression for the po-
lariton flow ip is given by

ip = −
1

Mp
� p1n�p1�

sd2p1

�2	��2 , �12�

where p1 is the polariton momentum, s=4 is the degeneracy
factor for polaritons, and n�p1� is the distribution function of
the quasiparticle excitations in the polariton subsystem
which can be found using kinetic equations. The kinetic
equations for distribution function of the quasiparticles are
represented in Appendix B.
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Using the distribution function of the quasiparticles from
Appendix B, we obtain the polariton flow ip in the first order
with respect to external electric field E, and find the drag
coefficient �p. As a result, we obtain for �p:

�p =
	

2�

e

MpmekBT
� sd2q

�2	��2Wef f
2 �q,D�

� �
0

� �̃�q,����q,��
sinh2��/�2kBT�	

d� , �13�

where

�̃�q,�� =� 2�p1, �p1 + q��
n0��1�p1 + q��	 − n0��1�p1�	�

� ��p��p1 + q���p1 + q� − �p�p1�p1	���1�p1�

− �1��p1 + q�� + �	
sd2p1

�2	��2

�
2s

	�2cs
2q���2�p1, �p1 + q��

�n0��1�
��1

��
�1=�

��1��p1

+ q�� − �1�p1�	�̄n���1�p1� − �1��p1 + q�� + �	�1d�1

� −
s��̄n

2	�2cs
2kBT

exp��/�kBT�	

exp��/�kBT�	 − 1�2�q �14�

and

��q,�� =� 
f0��2��p2 + q��	 − f0��2�p2�	�

���2��p2 + q���p2 + q� − �2�p2�p2	

� ���2�p2� − �2��p2 + q�� + �	
2d2p2

�2	��2

�
me

	�2q��� � f0��2�
��2

��
�2=�F

��2��p2 + q��

− �2�p2�	�̄2���2�p2� − �2��p2 + q�� + �	d�2

= −
me�̄2

4	�2kBT
�q . �15�

Assuming the system to be close to the equilibrium and con-
sidering ��qp�r� to be very small, we put �qp�r�=0 in Eqs.
�13�–�15�.

Let us mention that the typical interwell distances used in
the drag experiment in Ref. 4 are 17.5 and 22.5 nm. The
interwell distances used in the experiment in Ref. 18 are 20
and 30 nm. In our calculations we used the same interwell
distances that used in the drag experiments,4,18 namely, 17.5,
20, 22.5, and 30 nm. Figures 2 and 3 present results of cal-
culations for the drag coefficient �p. The drag coefficient �p
as a function of temperature T and interwell separation D is
shown in Fig. 2. The drag coefficient �p as a function of
temperature T and polariton density np is presented in Fig. 3.
We can conclude that the drag coefficient �p exponentially

decreases with the exciton density n, exponentially increases
with the temperature T and decreases with the interwell sepa-
ration D.

Let us mention that in the GaAs quantum wells used in
Ref. 33 the Rabi splitting is 13 meV ��150 K�. Since the
derivation �p resulting in Eq. �13� implies low temperatures
kBT�� and kBT���R, we can apply Eq. �13� for the tem-
peratures below �20 K.

Note that Eq. �13� was obtained by using the regular Bo-
goliubov approximation for the weakly interacting Bose gas
with no dissipation. If the exciton-polaritons have a finite
lifetime in the cavity, the Bogoliubov dispersion is modified
at small wave vectors.44 This modification should affect the
drag. However, we consider the small relative deviation from

FIG. 2. �Color online� The drag coefficient �p in V−1 s−1 in the
system of superfluid microcavity polaritons and electrons as a func-
tion of temperature T in kelvin and interwell separation D in nan-
ometer. The polariton density np=1010 cm−2. We used the param-
eters for the GaAs/GaAsAl quantum wells: me=0.07m0, mh

=0.15m0, M =0.24m0, and �=13.

FIG. 3. �Color online� The drag coefficient �pe in V−1 s−1 in the
system of superfluid microcavity polaritons and electrons as a func-
tion of temperature T in K and polariton density np in m−2. The
interwell separation D=20 nm. We used the parameters for the
GaAs/GaAsAl quantum wells: me=0.07m0, mh=0.15m0, M
=0.24m0, and �=13.
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the threshold pumping intensity, when the pumping main-
tains the exact balance of amplification and losses. Accord-
ing to Eq. �6� in Ref. 44, at small relative deviation from the
threshold pumping intensity, the spectrum of collective exci-
tations in the system of exciton polaritons corresponds to the
regular Bogoliubov approximation. We assume that the leak-
age of the photons from the microcavity is very small, and
the system can be considered in the quasiequilibrium.

B. Drag of the electrons by the flow of polariton quasiparticles

Let us find the drag coefficient �p related to the drag of
the electrons by the quasiparticles in the polariton subsystem.
We obtain the drag coefficient �p from the expansion of the
electron current j in the first order with respect to �nqp,
where nqp is the density of quasiparticles contributing to the
normal component of the polariton subsystem. The expres-
sion for the electron current j is given by

j = −
2e

me
� p2f�p2�

d2p

�2	��2 , �16�

where p2 is the electron momentum. and f�p2� is the electron
distribution function represented by Eq. �B4�. We can find

g2�p2� in Eq. �B4� by solving the kinetic equations Eqs. �B2�
and �B3�.

Substituting Eq. �B7� into Eq. �B6�, we expand the kinetic
Eqs. �B2� and �B3� in the first order with respect to ��qp, we
find the functions g1 and g2. Therefore, we can obtain the
electron current j in the first order with respect to �nqp, and
find the drag coefficient �p. As a result, we obtain �p,

�p =
	

2�

e

MpmekBT
� �nqp

��qp
�−1� sd2q

�2	��2Wef f
2 �q,D�

� �
0

� �̃�q,����q,��
sinh2��/�2kBT�	

d� , �17�

where �̃�q ,�� and ��q ,�� are given by Eqs. �14� and �15�,
correspondingly.

Applying for the density of the quasiparticles nqp,

nqp =� 1

exp
��1�p1� − �qp�r�	/�kBT�� − 1

sd2p1

�2	��2 , �18�

we obtain ��nqp� / ���qp�,

�� �nqp

��qp
��

�qp=0
=�� �

��qp
�

�qp=0
� 1

exp
��1�p1� − �qp�r�	/�kBT�� − 1
� sd2p1

�2	��2

=
1

kBT
� exp��1�p1�/�kBT�	


exp��1�p1�/�kBT�	 − 1�2

sd2p1

�2	��2 =
skBT

2	�2cs
2�

0

� exxdx

�ex − 1�2 , �19�

where we use �1�p1�=csp1 and x=csp1 /kBT for the small
momenta. The integral in the right-hand side of Eq. �19�
diverges at p→0. Therefore, we have ��nqp� / ���qp�→�,
which results in �p=0 according to Eq. �17�. This result
comes from the assumption that for the very dilute Bose gas
of polaritons we took into account only the sound region of
the collective excitation spectrum at small momenta, and ne-
glect almost not occupied regions with the quadratic spec-
trum at large momenta and crossover dependence of the
spectrum at the intermediate momenta. Our approximation
results in suppressed �p. Therefore, in the presence of the
superfluidity of polaritons, the polaritons moving due to their
density gradient almost do not drag electrons and there is
suppressed electron current induced by the polaritons.
Hence, the suppression of the dragged electric current in the
electron QW can indicate the superfluidity of the polaritons.

V. DRAG EFFECTS IN THE EXCITON-ELECTRON
SYSTEM AT HIGH TEMPERATURES

For high temperature, kBT���R, the majority of polari-
tons occupy the upper polariton branch, where the upper po-
lariton mass is very close to the mass of exciton Mex. So at

high temperature the polaritons are replaced by the gas of
excitons.38

Without the superfluidity in the definitions of the drag
coefficients presented by Eq. �11� it should be substituted the
exciton density nex instead of the quasiparticle density nqp,
exciton mass Mex instead of polariton mass Mp, and the
chemical potential of excitons �ex instead of the chemical
potential of the quasiparticles �qp The drag coefficients �ex
for the exciton system without the superfluidity can be ob-
tained from Eqs. �13�–�15� by substituting �p1 , p1��=1,
�1�p1�= p1

2 / �2Mex�, and �n0�p1�	= �exp
��1�p1�
−�ex

�0��r�	 /��kBT�	�−1�−1 is the Bose-Einstein distribution
function of the excitons at the equilibrium, where �ex

�0� is the
chemical potential of the excitons in the equilibrium deter-
mined by the polariton density nex,

nex =� 1

exp
��1�p1� − �ex
�0�	/�kBT�� − 1

sd2p1

�2	��2 . �20�

From Eq. �20�, we obtain the �ex
�0�,

�ex
�0� = kBT log�1 − exp�−

2	�2n

sMexkBT
�� . �21�

We get from Eq. �20�,
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nex = −
sMexkBT

2	�2 �1 − exp��ex�r�
kBT

�� . �22�

From Eq. �22� we find,

�� �nex

��ex
��

�ex=�ex
�0�

=
sMex

2	�2�1 − exp�−
2	�2n

sMexkBT
�� . �23�

The coefficient �ex for the high-temperature range is given
by

�ex = �� �nex

��ex
�

�ex=�ex
�0�
�−1 	

2�

e

MexmekBT
� sd2q

�2	��2Wef f
2 �q,D�

� �
0

� �̃�q,����q,��
sinh2��/�2kBT�	

d� , �24�

where �̃�q ,�� and ��q ,�� are defined by the the substituting
ex excitonic parameters described above to Eqs. �14� and
�15�, correspondingly.

The results of the calculations of the drag coefficients at
high temperature are presented in Figs. 4–6. The drag coef-
ficient �ex as a function of temperature and exciton density is
shown in Fig. 4 while the drag coefficient �ex as a function of
temperature and interwell separation is shown in Fig. 5. The
drag coefficient �ex at the high-temperature range for elec-
trons dragged by moving excitons as a function of tempera-
ture and interwell separation is presented in Fig. 6. Based on
the results of calculations we can conclude that the drag co-
efficients �ex and �ex decrease with the exciton density, in-
crease with the temperature and decrease with the interwell
separation.

VI. PROPOSED EXPERIMENTS

We propose the following experiments relevant to
electron-polariton and electron-exciton drag effect. Let the

screen with two diaphragms covers the quantum well embed-
ded into a semiconductor microcavity. The laser pumping
through one diaphragm generates excitons forming the po-
laritons by coupling to the cavity photons. At low tempera-
ture regime, the absence of the electron current will indicate
the superfluidity phase of the polaritons, while at high tem-
perature regime the existence of the electron current will
indicate the drag of electrons by the moving excitons. There-
fore, the drag coefficient �ex allows to estimate the dragged
electron current. When the electron current is induced by the
external electric field applied to the electron QW, the photo-
luminescence spectrum can be measured in the other dia-
phragm. At low temperature, the difference between the pho-
toluminescence spectrum of polaritons decay with the
electric field applied to the electrons and without the electric

FIG. 4. �Color online� The drag coefficient �exe in V−1 s−1 in the
system of spatially separated excitons and electrons without super-
fluidity as a function of temperature T in kelvin and exciton density
nex in m−2. The interwell separation is D=20 nm. We used the
parameters for the GaAs/GaAsAl quantum wells: me=0.07m0, mh

=0.15m0, M =0.24m0, and �=13.

FIG. 5. �Color online� The drag coefficient �exe in V−1 s−1 in the
system of spatially separated excitons and electrons without super-
fluidity as a function of temperature T in kelvin and interwell sepa-
ration D in nanometer. The exciton density nex=1010 cm−2. We
used the parameters for the GaAs/GaAsAl quantum wells: me

=0.07m0, mh=0.15m0, M =0.24m0, and �=13.

FIG. 6. �Color online� The drag coefficient �eex in A m2 in the
system of spatially separated excitons and electrons without super-
fluidity as a function of temperature T in kelvin and interwell sepa-
ration D in nanometer. The exciton density nex=1010 cm−2. We
used the parameters for the GaAs/GaAsAl quantum wells: me

=0.07m0, mh=0.15m0, M =0.24m0, and �=13.
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field will indicates that the polaritons moved to the other
place of the QW due to the drag by the electron current. The
photoluminescence spectrum in the other diaphragm without
the electric field is caused only by the diffusion of the po-
laritons. Only the normal component of the polariton sub-
system will move to the other diaphragm, while the super-
fluid component is not affected by the electrons. It seems like
electrons move the photons that coupled with excitons. At
high temperature regime the photoluminescence spectrum of
the electron-hole recombination indicates that the excitons
moved to the other place of the QW due to the drag by the
electron current.

The other suggested experiment is based on the observa-
tion of the angular distribution of the photons escaping the
optical microcavity. At low-temperature regime, we propose
to create the uniform distribution of polaritons by the laser
pumping within the microcavity. Therefore, �np=0 and there
is no polariton flow. In the absence of polariton flow the
average angle of the photons escaping the optical microcav-
ity and the perpendicular to the microcavity is �̄=0 because
the angular distribution is symmetrical.32 Let us induce the
electron current by applying the electric field E and analyze
the photon angular distribution in the presence of the non-
zero current of polaritons along the quantum well parallel to
the cavity dragged by the electron current due to the drag
effect. If �np=0 the polariton flow is ip=�pE, and according
to the definition of polariton flow we have vp=�pE /np.
Therefore, we can obtain the average component of the po-
lariton momentum in the direction parallel to the Bragg mir-
rors of the microcavity: p� =Mpvp=Mp�pE /np. Since the per-
pendicular to the Bragg mirrors component of the polariton
momentum is given by p�=�	 /LC,25 we obtain for the av-
erage tangent of the angle between the path of the escaping
photon and the perpendicular to the microcavity,

tan � =
p�

p�

=
�pMpLCE

�	np
. �25�

Note that only normal component of the polariton subsystem
will contribute to the drag coefficient �p and therefore to
tan �. There will be two peaks of the escaping photons: one
at tan ��0 corresponds to the moving �dragged� normal
component, and the other one at tan �=0 corresponds to the
superfluid component. Note that the analysis of the angular
distributions of the photons escaping the optical microcavity
has been used in the experiments.39,40 The manifestation of
polariton drag effect through the change in the angular dis-
tribution of the photons escaping the optical microcavity is
shown in Fig. 7. Only quasiparticles in polariton system are
dragged by electrons.

Let us make estimations of the parameters for the drag
effects. At the temperature T=4 K the experiment32,33 shows
that the polariton lifetime �=10 ps, and the polariton diffu-
sion path is l=20 �m. The corresponding average polariton
velocity is vp= l /�=2�106 m /s. Since E=npvp /�p, we can
estimate the electric field E corresponding to such drag ef-
fect. For np=1010 cm−2 and T=4 K for the interwell sepa-
ration D=17.5 nm�p=2.64�1016 V−1 s−1, the correspond-
ing electric field is E=3.8�103 V /m which corresponds to
the applied voltage V=3.8�10−3 V at the size of the system

d=1 �m. Using Mp=7�10−5�me, the length of the micro-
cavity LC=2 �m,32,33 and the estimated �p and E in Eq.
�25�, we obtain for the average tangent of the angle �:
tan �=0.385 and tan−1�tan ��=210.

VII. DISCUSSION AND CONCLUSIONS

Let us mention that we calculated the drag coefficients as
the linear responses of the equilibrium system, and, there-
fore, our formulas for the drag coefficients are expressed in
terms of the parameters of the system at the equilibrium.

The other approximation used in our approach is that we
considered the polariton-electron drag only due to exciton-
electron interaction, neglecting the contribution coming from
the cavity photon-electron interaction. There are several pro-
cesses caused by the photon-electron interaction. The mag-
nitude of the direct cavity photon-electron static scattering
processes are the second order with respect to the fine-
structure constant, and, therefore, their contributions are
much smaller than the contribution caused by the exciton-
electron interaction. The frequency of the plasmon excita-
tions in 2DEG are proportional to k1/2, where k is the wave
vector, and the characteristic k is by the order of magnitude
of 2mee

2 / ��2�� due to the screening.42 Therefore, the char-
acteristic frequencies corresponding to the plasmon excita-
tions in 2DEG are in terahertz range, while the characteristic
frequencies of the cavity photons are in the optical range by
the magnitude of 1015 Hz. Thus the plasmon excitations in

Peak induced by BEC of
polaritons

)(θF

θ

)(θF

θ

Contribution of noncondensate
polaritons and quasiparticles
of polariton system

a

b

FIG. 7. Proposed experiment: the manifestation of polariton
drag effect through change in the angular distribution of the photons
escaping the optical microcavity. �a� The angular distribution of the
photons escaping the optical microcavity without drag. �b� The an-
gular distribution of the photons escaping the optical microcavity in
the presence of the drag effect. Redistribution of the contribution of
noncondensate polaritons.
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2DEG are not in the resonance with the cavity photons while
we consider polaritons formed by the excitons and cavity
photons in the resonance. The electron intersubband transi-
tions corresponding to the transitions between the different
levels of the quantization in the QW are also not in the reso-
nance with the cavity photons because the characteristic
width of the QW d managing the frequency of these inter-
subband transitions is much smaller than the size of micro-
cavity LC managing the frequency of the cavity photons. The
frequencies of the electron interband transitions in the semi-
conductor corresponding to the range in the continuous elec-
tron spectrum, where there is no discrete levels, also cannot
be in the resonance with the microcavity photons. The
screening of the microcavity photon spectrum by the 2DEG
causes shift in the spectrum of microcavity photons, and
therefore, the frequencies corresponding to the exciton-
photon resonance related to the formation of the polariton are
shifted. However, the formalism and procedure for the cal-
culation of the polariton-electron drag coefficients will be the
same as presented in this paper. The rigorous analysis of the
electron-microcavity photon drag effects is the very interest-
ing direction for the future research.

We can conclude that for systems of spatially separated
interacting quasiparticles is the possibility of controlling the
motion of the quasiparticles of one subsystem by altering the
parameters of state of the quasiparticles in the other sub-
system, for example, controlling the flow of polaritons or
exciton using a current of electrons. At low temperatures, the
electron current dragged by the polariton flow is strongly
suppressed and hence, the absence of the electron current
indicates the superfluidity of polaritons. However, the polar-
iton flow can be dragged by the electrons, and, therefore,
there is a transport of photons along the microcavity, which
decreases with rise of the superfluid component and can be
observed through the change in angular distribution of pho-
tons discussed above. At high temperatures, from one hand,
the existence of the electric current in the electron QW indi-
cates the exciton flow in the other QW, and from the other
hand, the electron current in one QW induces the exciton
flow in the other QW via the drag of excitons by the elec-
trons. The obtained drag coefficients allow calculate the cor-
responding currents. According to our calculations, the low-
temperature drag coefficient �p and the high-temperature
drag coefficients �ex and �ex decrease with the exciton den-
sity, increase with the temperature and decrease with the in-
terwell separation. The suggested experiments allow to ob-
serve the analyzed drag effects. We suggested the experiment
for the observation of the distributions of the angles � be-
tween the path of the photons escaping the microcavity and
the perpendicular to the Bragg mirrors. The average tangent
of the angle tan � between the path of the escaping photon
and the perpendicular to the micocavity is proportional to the
drag coefficient �p and the electric field E applied to the
electrons.
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APPENDIX A: THE QUASIPARTICLE OPERATORS
REPRESENTATION FOR THE HAMILTONIAN
OF THE EXCITON-ELECTRON INTERACTION

Let us express the exciton operators in terms of polariton
operators. The exciton and photon operators are defined as45

âp = Xpl̂p − Cpŵp, d̂p = Cpl̂p + Xpŵp, �A1�

where l̂p and ŵp are lower and upper polariton Bose opera-
tors, respectively, Xp and Cp are

Xp = �1 + � ��R

�LP�p� − �ph�p���−1/2
,

CP = − �1 + ��LP�p� − �ph�p�
��R

��−1/2

�A2�

and the energy spectra of the low/upper polaritons are

�LP/UP�p� =
�ph�p� + �ex�p�

2

�
1

2
���ph�p� − �ex�p�	2 + 4���R�2. �A3�

Equation �A3� implies a splitting between the upper and
lower states of polaritons at p=0 of 2��R, known as the
Rabi splitting. Let us also mention that �Xp�2 and �Cp�2=1
− �Xp�2 represent the exciton and cavity photon fractions in
the lower polariton.

In Eq. �A3�, �ex�p� is the energy dispersion of a single
exciton in a quantum well given by

�ex�p� = Eband − Ebinding + �̃0�p� , �A4�

where Eband is the band gap energy, Ebinding=�0e4 / ��2�� is
the binding energy of a 2D exciton, and �̃0�p�= p2 / �2Mex�,
where Mex=me+mh is the mass of an exciton. The cavity
photon spectrum is given by

�ph�p� = �c/ñ��p2 + �2	2LC
−2. �A5�

In Eq. �A5�, c is the speed of light, LC is the length of the
cavity, ñ=�� is the effective refractive index. We assume the
length of microcavity has the following form:

LC =
�	c

ñ�Eband − Ebinding�
. �A6�

So the photonic and excitonic branches start at the resonance
at p=0. This means that �ex�p�=�ph�p� at p=0 if LC satisfies
to Eq. �A6�.

At small momenta ��1 /2�Mex
−1+ �c / ñ�LC /�	�p2 / ���R�

�1, the single-particle lower polariton spectrum obtained by
substitution of Eq. �A4� into Eq. �A3�, in linear order with
respect to the small parameters �, is
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�0�p� �
c

ñ
�	LC

−1 − ���R� +
�

4
r2 +

1

4
�Mex

−1 +
cLC

ñ�	
�p2 =

p2

2Mp
,

�A7�

where Mp is the effective mass of polariton given by

Mp = 2�Mex
−1 +

cLC

ñ�	
�−1

. �A8�

Substituting Eq. �A1� into Eq. �4�, and taking into account
only the lower polaritons corresponding to the lower energy,

we obtain the Hamiltonian Ĥex-el expressed in terms of the
lower polariton operators,

Ĥex-el =
1

A
�

p1,p2,p1�,p2�

Wef f��p1 − p1��,D�Xp1
Xp1�

l̂p1�
† ĉp2�

† ĉp2
l̂p1

.

�A9�

Now let us consider the the two-layer polariton-electron sys-
tem in the presence of the polariton superfluidity at kBT
���R. At temperatures about the Rabi splitting kBT���R,
the upper polaritons states become filled, and the lower po-
laritons systems is replaced by the system of the upper po-
laritons, which are primarily excitons.

In the presence of the superfluidity, we can obtain the
Hamiltonian for the interaction of of quasiparticle excitations
in a system of spatially separated polaritons and electrons by
using the Bogoliubov unitary transformations,46

l̂p = upb̂p + vpb̂−p
† , l̂p

† = upb̂p
† + vpb̂−p,

up = �1 − Fp
2�1/2, vp = Fpup,

Fp = ��1�p� − ��p�	/�, �1�p� = ��2�p� − �2	1/2,

��p� = �0�p� + � , �A10�

where b̂−p
† and b̂−p are the creation and annihilation operators

of the quasiparticle excitations, �1�p� is the energy spectrum
of the quasiparticle excitations in the polariton subsystem,
and �=Mpcs

2 is the polariton chemical potential in the Bo-
goliubov approximation,34 cs= �Uef f

�0�np /Mp�1/2 is the sound
velocity in the polariton system, np is the 2D density of po-
laritons, Uef f

�0� =3e2a0 / �2�� is the Fourier image of the

polariton-polariton interaction.34 Substituting l̂−p
† and l̂−p

from Eq. �A10� into Eq. �4�, we obtain

Ĥex-el =
1

A
�

p1,p2,p1�,p2�

Wef f��p1 − p1��,D��p1,p1��b̂p1�
† ĉp2�

† ĉp2
b̂p1

,

�A11�

where �p1 , p1�� in the presence of the superfluidity at T
�Tc is given by

�p1,p1�� = �up1
up1�

+ vp1
vp1�

�Xp1
Xp1�

�A12�

and �p1 , p1��=Xp1
Xp1�

at T�Tc without the superfluidity. Let
us mention that at small momenta ��1 we have �Xp�2
��Cp�2�1 /2.

APPENDIX B: THE KINETIC EQUATIONS
FOR DISTRIBUTION FUNCTION OF THE

QUASIPARTICLES

The distribution function of the quasiparticle excitations
in the polariton subsystem n�p1� is represented in a form

n�p1� = n0�p1� + n0�p1��1 + n0�p1�	g1�p1� , �B1�

where n0�p1�= �exp
��1�p1�−�qp�r�	 /��kBT�	�−1�−1 is the
Bose-Einstein distribution function of the quasiparticles in
the polariton subsystem at the equilibrium, g1�p1� is the con-
tribution to the quasiparticle distribution function corre-
sponding to the nonequilibrium correction due to the gradi-
ent of the quasiparticle chemical potential �qp�r� determined
by the external conditions, kB is the Boltzmann constant. We
can find g1�p1� by solving the kinetic equations,

�n

�r
·
��1�p�

�p
−

�n

�p
·
��1�p�

�r
= I1�n� + I12�n, f� , �B2�

� f

�r
· v +

� f

�p
· ṗ = I2�f� + I21�f ,n� , �B3�

where I1 and I2 are the collision integrals of the quasiparti-
cles in the polariton subsystems and electrons with the im-
purities, I12 and I21 are the collision integrals of the quasipar-
ticles with the electrons, and f�p2� is the electron distribution
function represented in a form

f�p2� = f0�p2� + f0�p2��1 − f0�p2�	g2�p2� , �B4�

where f0�p2�= �exp
��2�p2�−�F	 / �kBT��+1�−1 is the Fermi-
Dirac electron distribution function in the equilibrium, T is
the temperature, �F is the electron Fermi energy, �2�p2�
= p2

2 / �2me� is the electron energy spectrum, g2�p2� is the con-
tribution to the electron distribution function corresponding
to the nonequilibrium correction due to the external electric
field E.

We apply the � approximation for I1�n� and I2�f�,

I1�n� = �n0�p1� − n�p1�	/�1�p1� ,

I2�f� = �f0�p2� − f�p2�	/�2�p2� , �B5�

where �1�p1� and �2�p2� are the relaxation times of the qua-
siparticles excitations in the polariton subsystem and elec-
trons, respectively. According to Ref. 47, �2�p2�� �̄2 can be
approximated by the relaxation time at the Fermi surface,
which can be determined from the electron mobility �̃e
=e�̄2 /me. In a quantum well GaAs/AlGaAs �̃e is presented
in Fig. 2 in Ref. 47.

Since the collision integral I12 is only a perturbation with
respect to I1, we neglect it and assume I12=0. The collision
integral I21 has the form21
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I21�g2,g1� = 2� w�p1,p2;p1�,p2��n0�p1��1 + n0�p1��	f0�p2�

��1 + f0�p2��	�g1�p1�� + g2�p2�� − g1�p1�

− g2�p2�	���1�p1� + �2�p2� − �1�p1��

− �2�p2��	
sd2p1�

�2	��2

�ed
2p2�

�2	��2 , �B6�

where s is the level degeneracy �equal to 4 for excitons in
GaAs quantum wells�, w�p1 ,p2 ;p1� ,p2�� is the probability of a

collision between a quasiparticle from the polariton sub-
system and an electron, which can be obtained in the Born
approximation as

w�p1,p2;p1�,p2�� =
2	

�
�Wef f�q,D��p1,p1���

2, �B7�

where q=p1�−p1=p2−p2�.
Substituting Eq. �B7� into Eq. �B6�, and expanding the

kinetic Eqs. �B2� and �B3� in the first order with respect to
��qp, we find the functions g1 and g2.
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