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Nitrogen composition dependence of electron effective mass in GaAs;_,N,
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We have investigated the N composition, x, and temperature, 7, dependence of the electron effective mass,
m*, of GaAs,;_,N, films with sufficiently low carrier concentration that carriers are expected to be confined to
near the bottom of the conduction-band edge (CBE). Using Seebeck and Hall measurements, in conjunction
with assumptions of parabolic bands and Fermi-Dirac statistics, we find a nonmonotonic dependence of m* on
x and an increasing T dependence of m* with x. These trends are not predicted by the two-state band anti-
crossing model but instead are consistent with the predictions of the linear combination of resonant nitrogen
states model, which takes into account several N-related states and their interaction with the GaAs CBE.
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I. INTRODUCTION

Dilute nitride alloys such as GaAsN and InGaAsN are
promising for a wide range of applications including laser
diodes, high-efficiency solar cells, and high performance bi-
polar transistors. Earlier studies have shown that the electron
mobility of (In)GaAs;_,N, decreases significantly with N
composition, x,'~® presumed to be partly due to the influence
of N incorporation on the effective mass, m*.>*78% There
have been conflicting experimental®’~® and theoretical®!%:!!
reports on the x and temperature, 7, dependences of m”*. For
x<0.005, m* was reported to either decrease* or rapidly
increase®”” with increasing x. For x>0.005, m"* is predicted
to either increase monotonically, according to the simple
band anticrossing (BAC) model,'! or to vary nonmonotoni-
cally with a minimum around x=0.01 and a maximum
around x=0.02, according to the linear combination of reso-
nant nitrogen states (LCINS) model.'® However, experimen-
tally, a x-dependent saturation in m* was reported.’” In terms
of the T dependence, one group has reported measurements
showing that m* decreases monotonically with increasing 7.3
Here, we have determined the x dependence of m”, using a
combination of T-dependent Seebeck and Hall measure-
ments, interpreted in the framework of parabolic conduction
bands and Fermi-Dirac statistics. We find a nonmonotonic
behavior of m" with x. Our results are in contrast to the
prediction of a simple BAC model'! of a monotonic decrease
in m™ with increasing x, but they are very similar to the
predicted minimum at x=0.01 of the LCINS model'® and to
the experimental values for x=0.016 of Ibéfiez et al.? In ad-
dition, our data suggest a more significant 7' dependence with
m™ decreasing by ~30% from 150 to 300K.

II. EXPERIMENTS

For these studies, GaAs;_,N, alloy films were grown on
(001) GaAs substrates by molecular-beam epitaxy, using Ga,
As, GaTe, and a N, radio-frequency plasma source with
ultrahigh-purity N, gas, as described elsewhere.”!> For all
samples, a 500-nm-thick buffer layer was grown at 580 °C
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on GaAs (001) substrates using a growth and annealing se-
quence described elsewhere.'®> Next, an electronically active
layer of GaAs(N) was grown at 400 °C with targeted Te
doping concentrations of 5—13 X 10'7 ¢m™. The buffer and
active layers were grown with As to Ga incorporation rate
ratios of 1.5.1% In all cases, the surface reconstruction was
monitored in situ with reflection high-energy electron dif-
fraction.

Following growth, x in the GaAs;_ N, films was deter-
mined using x-ray rocking curves, interpreted with an inter-
stitial model, as discussed elsewhere.!> For Hall and magne-
totransport measurements, Hall bars (1050 X 150 wm?) were
prepared using standard lithography and lift-off processes.
For thermoelectric measurements, 5 mmX 15 mm rect-
angles were cleaved and In-Sn contacts were applied, and
subsequently annealed at 410 °C for 2 min in N, atmo-
sphere.

To determine the carrier concentration, we measured the
parallel resistivity, p,,, and the transverse resistivity, p,,, as a
function of 7 (1.6 to 300 K) and magnetic field (-8 to 8 T).
For measurements of the Seebeck coefficient, S=AV/AT, a
current-driven heater and a copper block were attached to
each end of the cleaved rectangles. The thermally induced T
gradients were measured with thermocouples attached to the
In-Sn contacts.

III. RESULTS AND DISCUSSION

Figure 1 shows a plot of S as function of 7, from 2 to 300
K, for GaAs and GaAsN layers. At the lowest 7, S decreases
monotonically to a minimum (maximum absolute value) at
12 K, followed by a corresponding monotonic increase up to
~100 K. The significant enhancement of |S| in the low-T
regime is attributed to increased electron-phonon coupling,
often termed the “phonon drag” component of S.'® For
GaAs,_,N, with x=0, the maximum [S] is 1000 uV K-, and
increases with x, from 1800 to 3050 uV K=! for x=0.01 to
x=0.017.

For T>140 K, for both GaAs and GaAsN, S decreases
monotonically with 7, due to electron diffusion driven by the
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FIG. 1. (Color online) Seebeck coefficient, S, as a function of
temperature, 7, from 2 to 300 K. The significant enhancement in |S]|
in the low-T regime is attributed to increased electron-phonon cou-
pling, often termed phonon drag. For the T range from 140 to 300
K, S| decreases monotonically with 7, due to electron diffusion
driven by the T gradient.

T gradient. To consider the influence of x on § in this so-
called “diffusion” regime, we examine S in the 7 range from
140 to 300 K, shown in Fig. 2(a). For GaAs, S is negative
and decreases monotonically with increasing 7, consistent
with reported values for n-type GaAs.!” In the GaAsN alloys,
S is also negative and decreases monotonically with increas-
ing T. However, the absolute values of § are larger than those
of GaAs and the T dependence is less significant. In Fig.
2(a), linear least-squares fits to S(7) are shown. For each
value of x in GaAs;_,N,, the electron diffusion regime is
identified within this 7 range. Interestingly, the low-7" bound
of the electron diffusion regime increases with x, from 140 K
for GaAs to nearly 200 K for GaAs;_ N, with x=0.017.
Since S consists of a phonon drag, Sp;,, and a electron diffu-
sion, S,;, component, the total is S=Sp;,+S,;. With increasing
x, the phonon drag component, Sp;,, increases, and the Sp,
tail extends to higher 7, presumably due to a shift of the
electron diffusion regime to higher 7.

As shown in Fig. 2(b), the GaAs free carrier concentra-
tion, n,, is T independent. For GaAsN alloys grown with
nominally identical doping concentration, n is approxi-
mately an order of magnitude lower than that of GaAs, pre-
sumably due to electron trapping at native N-related defect
states, e.g., N interstitials.'>!®!? In addition, for all the
GaAsN alloys, n, exhibits a gradual monotonic increase with
temperature, suggesting the presence and thermal activation
of deep-level donors related to N interstitials.'® In all cases,
n, is sufficiently low that carriers are expected to be confined
to near the bottom of the conduction-band edge (CBE). In-
deed, the Fermi level, derived using Eq. (2) (below), is
within £20 meV of the CBE, varying from +20 meV (x
=0.001) to =20 meV (x=0.019). Therefore, any nonparabo-
licity of the CBE is expected to be negligible.

To determine the values of m*, S is defined in terms of the
reduced Fermi level, n=Ey/kgT, where E. is the Fermi level
with respect to the CBE, and the electron momentum relax-
ation time 7,,, as follows:
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FIG. 2. (Color online) Electronic properties as a function of
temperature, 7, are shown from 135 to 300 K. (a) Seebeck coeffi-
cient, S, for GaAs;_N, (left axis) and GaAs (right axis). Linear
least-square fits to the data are shown. The low-7 bound of the
electron diffusion regime increases with x, from 140 K for GaAs to
nearly 200 K for GaAs,_,N, with x=0.017. (b) Free carrier concen-
tration, n,, for GaAs,_,\N,, and (c) m" determined from S and n,
using assumptions of parabolic bands and Fermi-Dirac statistics.
iSee Ref. 33.

S:k—B(M—n) (1)

e\ (7,

In general, 7, is a function of the reduced Fermi level
T,=Ton, where r=3/2 for ionized impurity scattering
(GaAs) (Ref. 20) and r=-1/2 for localized N scattering
(GaAsN).> We note that the introduction of N into GaAs has
been reported to lead to an order of magnitude decrease in
electron mobility.2381821 Since the majority of N is incor-
porated substitutionally, it is thus assumed that electrons in
GaAsN are primarily scattered by localized states associated
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with N atoms. Furthermore, LO phonon scattering in GaAs
has been reported to be insignificant at room temperature
(RT) and to decrease with decreasing temperature;>>>3 there-
fore, it is not expected to be significant in GaAsN at low 7.
S is then simplified to

o '2{ (r+5/2) Fpan(n) 7}] | )
e L(r+3/2) Froypn(n)
where Fj(7) is the jth Fermi integral given as
1 (" 124
F(n)=—| —————dE. 3
() jlfo o EEpkgT | | (3)

Using Fermi-Dirac statistics, the free carrier concentration is
written as

m*kBT 312
n=2< 22 ) Fipp(m) (4)
and the effective mass becomes
2 k2 n 2/3
m' = P . (5)
kgT [ 2F /(1)

For GaAs, using the values of S and n, shown in Figs. 2(a)
and 2(b), and solving for 7 in Egs. (2) and (5), we find a RT
value of m* of 0.048=0.019 times the free-electron mass
(m.) and a monotonic decrease in m* with increasing T (19%
from 140 to 300 K), as shown in Fig. 2(c). Similar RT values
of m" were obtained by other groups using indirect experi-
mental methods, including analysis of electric susceptibility
and Shubnikov de Haas measurements.?*2° However, a
larger RT m* value, 0.067m,, was observed via direct experi-
mental methods, such as cyclotron resonance, Faraday rota-
tion, and Faraday oscillation.?’-3* In addition, a significantly
smaller gradient in the monotonic 7-dependent decrease in
m* is typically observed,?’3*-32 consistent with the calcula-
tions of the dilatational change in the energy gap in GaAs by
Stradling and Wood.?? Overall, at room temperature, our
GaAs m™ is within 20% of literature values, and the esti-
mated error in m*, £0.019m,, is negligible compared to the
variations in the GaAsN m* (from 0.084m, to 0.164m,).

For GaAsN, m™ is larger than that of GaAs, and decreases
monotonically with increasing 7. Similar low-7 values for
m™ in GaAsN were reported in Refs. 7 and 9. The significant
T dependence of m™ in GaAsN is likely due to a nonparabolic
perturbation in the electron dispersion relation, leading to a
local increase in m*. In PbTeTL,3* a similar temperature de-
pendence of S and m™ were reported, and attributed to an
isolated T1 energy level in close proximity to the PbTe CBE.
In addition, a maximum of m* was observed at 230 K and
attributed to a resonance between the TI state and the PbTe
CBE.

In both GaAs and GaAsN, it appears that the phonon drag
component of § (for T<150 K), shown in Fig. 1, contrib-
utes to a small artificial increase in m". Indeed, significant
decreases in S are observed for 7<<150 K with the most
significant decreases for 7<<100 K. The lower S value leads
to an increase in Ey, and a subsequently smaller m™ [see Eqs.
(2) and (5)].
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FIG. 3. (Color online) Effective mass, m*, vs N composition, x,
for as-grown bulk GaAs;_,N,. “This work” values are given at RT;
Ibafiez et al. are extracted by Raman spectroscopy at 80 K; Masia et
al. from magnetophotoluminescence at 20 K; Young er al. from
magnetotransport at RT; Lindsay et al. from the LCINS model at
low T; and Shan et al. (dashed line) from the two-state BAC model
at low T. ®See Ref. 3. “See Ref. 7. 9See Ref. 4. °See Ref. 10. ‘See
Ref. 11.

The influence of x on m" is shown in Fig. 3. For
x<0.005, an increase in the m" with increasing x up to
x=0.04,>" and subsequent saturation beyond x=0.005 (Ref.
7) have been reported experimentally. The rapid increase up
to x=0.004 is in good agreement with the predictions of the
LCINS model.”! For x>0.005, the LCINS model predicts
nonmonotonic behavior of m* with increasing x, with a mini-
mum at x=0.010 and a maximum at x=0.018. The oscilla-
tory dependence of m" on x was explained by a strong hy-
bridization of states arising from N clusters near the CBE of
GaAs,' leading to a large locally increased m* in GaAsN.

Our RT m* values for GaAs;_,N, films are in good agree-
ment with low-temperature values predicted by the LCINS
model'® and those from other experimental reports.>’ For a
limited composition range (x=0.010—0.015), our RT m™ val-
ues are also in agreement with those predicted by the BAC
model.'! Indeed, the temperature dependence of m* is appar-
ently negligible. As the temperature is reduced from 300 to O
K, the relative energies of the nitrogen-induced localized
states and the CBE are shifted by approximately 36 meV.%
Since the x values investigated range from 0.001 to 0.019, a
negligible temperature dependence of the x values at which
the localized state-CBE resonance induced increase in effec-
tive mass is expected.

For the lowest x wvalues, x=0.001 and x=0.006
(m*=0.114m,) is consistent with the maximum at x=0.005
(m*=0.15m,), predicted by the LCINS model. In addition,
we find a local minimum at x=0.013 (m*=0.084m,), which
agrees very well with the LCINS-predicted minimum at
x=0.010 (m*=0.1m.). We also find a local maximum at
x=0.017 (m*=0.164m,) which is in very good agreement
with the LCINS-predicted maximum at x=0.018
(m*=0.18m,). Indeed, our observed nonmonotonic increase
in m* with x agrees very well with the x dependence
(maxima at x=0.004 and x=0.018, minimum at x=0.010)
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predicted by the LCINS model. Our m* values are also in
good agreement with experimental values from Masia et al.”
for x=0.014 but are significantly lower for x=0.011. The
discrepancy for x=0.011 can be resolved with corrections for
x from the interstitial model by Reason et al.,'> shifting m*
values by Masia et al. to higher x. In the very dilute limit, the
decrease in m*, reported by Young et al.,* is likely to be an
artifact of the parabolic band-structure assumption for highly
doped GaAsN.

IV. CONCLUSION

In summary, we have determined the T dependence of m”
for a set of GaAs;_,N, alloy films with x values ranging from
0 to 0.018. We observe a nonmonotonic dependence of m™ on

PHYSICAL REVIEW B 82, 125203 (2010)

x and an increasing m* T dependence with x, both of which
cannot be explained by a simple two-state BAC model. In-
stead, the data is in good agreement with the LCINS model,
which takes into account several N-related states and their
interaction with the GaAs CBE.
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