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Magnetocrystalline anisotropy of a GaAs-type semiconductor is theoretically investigated for the case of a
strong, ultraquantum, magnetic field, zero temperature, and a high level of donor or acceptor doping. At these
conditions, the crystal magnetization is expected to be mainly determined by conduction electrons or holes. So
the magnetization value and the value of its anisotropy are determined by the �anisotropic� energy of the
ground carrier Landau level. Analytical formulas for the magnetization revealing the crystal symmetry are
obtained.

DOI: 10.1103/PhysRevB.82.125201 PACS number�s�: 75.20.Ck, 71.70.Di, 75.30.Gw

The magnetic anisotropy effect is the deviation and de-
pendance of the sample magnetization from/on the direction
of the magnetic field H. There are several mechanisms of
this effect: the crystal lattice, the sample shape, and the stress
mechanisms.1 The magnetic anisotropy due to the lattice
structure is called the magnetocrystalline anisotropy and will
be considered in this study. The magnetocrystalline aniso-
tropy can be bond with the anisotropic shape of molecules of
the crystal �for dielectrics�2 or with the spin-orbit interaction
of the microscopic magnetic moments with the lattice poten-
tial �for metals�.3 The effect has been experimentally inves-
tigated for many solids: nonmetallic diamagnets and
paramagnets,2 Van Vleck paramagnets,4 ferromagnets and
antiferromagnets,1,3,5 normal metals,6 ferromagnetic thin
films,3,7 and, recently, for magnetic semiconductor alloys
Ga1−xMnxAs.8,9

In this paper we will theoretically investigate the magne-
tocrystalline anisotropy of a donor or acceptor doped GaAs-
type semiconductor. The enough high level of doping when
carriers may be considered as an ideal Fermi gas is
supposed.10 For example, for n-InSb the typical doping level
is 1014–1017 cm−3 for this case to be held.11 For simplicity,
we will consider the ultraquantum limit and low tempera-
tures, when only the bottom of the lowest spin sublevel of
the ground Landau level is occupied. In this case the sample
magnetization is expected to be mainly determined by con-
duction electrons or holes12 and, consequently, the magneto-
crystalline anisotropy is ruled by the band anisotropy �not
only by spin-orbit terms�. Analytical formulas for anisotropic
corrections to the magnetization are derived.

First, let us consider the donor doped semiconductor. In
the case of ultraquantum magnetic field and enough low tem-
perature an inequality kHlm�1 is held for the equilibrium
electrons, where kH is the wave vector in the H direction and
lm=�c� /eH is the magnetic length.13 The electron Landau
levels in a GaAs-type semiconductor do not have any aniso-
tropy in the first, K2, �linear by H� approximation

En,�
K2 = ��c�n +

1

2
� �

g�BH
2

, �1�

where �c=eH /m�c is the cyclotron frequency. Due to kHlm
�1, the term �2kH

2 /2m� being the kinetic energy of the mo-
tion along the magnetic field direction is omitted in En,�

K2 . The

inequality kHlm�1 leads to a relation K̂�1 / lm. Thus, the
perturbation theory first-order corrections from K4 terms in
the electron effective mass Hamiltonian to Landau levels’
energies are quadratic by H.

In an uniform magnetic field the effective mass
Hamiltonian in the fourth order by the kinematic moment

K̂=−i�� /�r�+ �e /�c�A has the form14,15

Ĥ =
�2K̂2

2m�
+

1

2
g�B�H · �̂� + Ĥ4,is + Ĥ� + Ĥ� + ĤSO. �2�

Here �2K̂2 /2m� is the main �K2� term, g �B�H ·�� /2 is the

Zeeman term, and Ĥ4,is are the nonparabolic K4, but isotropic
terms. The other terms in Eq. �2� are anisotropic. The term

ĤSO is the Dresselhaus spin-orbit K3 term which in presence
of an external magnetic field looks as follows

ĤSO=���̂�K̂� · �̂�, where � is the Dresselhaus constant,

	̂i�K̂�= K̂i+1K̂iK̂i+1− K̂i+2K̂iK̂i+2 �see Ref. 16 on the problem

of choosing the order of the noncommuting operators K̂j in
	̂i�. The coordinate axes are assumed to be parallel to the

	100
 crystallographic axes. The term Ĥ� is a K4 anisotropic

spin-dependent term: Ĥ�=
��̂�K̂� · �̂�, where �̂i�K̂�=HiK̂i
2. It

leads together with the ĤSO term to an electron g-factor an-

isotropy in zinc-blende lattice semiconductors. The term Ĥ�

is a K4 anisotropic but spinless term: Ĥ�=��K̂x
4+ K̂y

4+ K̂z
4�. It

can be called the effective mass anisotropy term.

The perturbation theory first-order corrections from ĤSO
are linear by kH. In the ultraquantum fields they are far
smaller than the perturbation theory second-order corrections

from ĤSO which do not vanish at kH→0.13 Thus, for the

typical energy of the ĤSO term corrections we have:
��H�= �� / lm

3 �2 /��c=e2m��2H2 /c2�4. This value is quadratic

by H. We conclude that the Ĥ� and Ĥ� terms in the pertur-

bation theory first order and the ĤSO term in the perturbation
theory second order should be taken into account to describe
the anisotropy of the electron spectrum.17

In the case when the Zeeman splitting is far greater than

the typical values of the Ĥ� and ĤSO terms, the spin-orbit
corrections of the wave function will be small. So the elec-
tron spin states can be classified on the base of the property
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of the spin in the state under discussion to be approximately
codirected or approximately contradirected with the H direc-
tion �“+” and “−” states, correspondingly�. Keeping in mind
the examples of GaAs, GaSb, and InSb we will consider
g�0. So the electron spin is codirected with the H direction
at the ground state, i. e. the ground state is the 0+ state.

A calculation of the contribution from the Ĥ� term in the
Landau levels’ energies was performed in Ref. 14

�
E
�n,� = � �n +
1

2
� e


c�
H2�1 − P4�h�� , �3�

where h=H /H, P4�h�=hz
4+hy

4+hz
4 is the Oh �and Td� group

anisotropic invariant of the fourth order by h. The Ĥ� energy
corrections are equal for both spin sublevels. They were cal-
culated in Ref. 18. But the answer only for the difference
��
E��1− �
E��0� was presented there. Here we have calcu-
lated the correction �
E��n for n=0

�
E��0 =
3e2�

4c2�2H
2�1 + P4�h�� . �4�

A technique used for this calculation is analogous to the

technique of the ĤSO contribution calculation described in
details in Ref. 13. According to the results of Ref. 17, the

ĤSO energy corrections must have the form

�
E��n,� = ��H��rn,� + sn,�P4�h� + tn,�P6�h�� , �5�

where P6�h�=hx
2hy

2hz
2 is the Oh �and Td� group anisotropic

invariant of the sixth order by h. Calculations analogous to
one made in Ref. 17 for ��
E��n,+− �
E��n,−� give:
r0,+=−3 /16, s0,+=−13 /16, and t0,+=−23�5 /8�. Summarizing
Eqs. �3�–�5�, we obtain for the ground-state energy

E0,+
K4 = E0,+

K2 + 
E0,+
is + 
E0,+

anis,

where E0,+
K2 =�H is the main K2 term,

�= �e� /2m�c�+ �ge� /4m0c� is the conduction electron mag-
netic moment absolute value, 
E0,+

is =��H2 is the isotropic
K3,4 correction to E0,+

K2, and the anisotropic K3,4 correction

E0,+

anis has the form


E0,+
anis = A

Hx
4 + Hx

4 + Hz
4

H2 + B
Hx

2Hy
2Hz

2

H4 ,

A =
1

2

e


c�
+

3

4

�e2

c2�2 −
13

16

e2m��2

c2�4 , B = − 23
5

8

e2m��2

c2�4 .

�6�


E0,+
is contains isotropic contributions both from the H4,is

term in Eq. �2� and from the Ĥ
, Ĥ�, and ĤSO terms within
the basis �1, P4�h� , P6�h��. As the typical values of nonpara-
bolicity terms in Eq. �2�: ��H�, � / lm

4 , and 
H / lm
2 , are far

smaller than the character values of the quadratic terms:
�2 /m�lm

2 and 
g
�BH �this is the criterion of using the effec-
tive mass approximation for the ultraquantum case when

K̂�1 / lm�, the inequalities 
E0,+
is,anis�E0,+

K2 are carried out.
In the ultraquantum limit, EF���c, and at low tempera-

tures, kBT� 
g
�BH, ��c, only the lowest spin sublevel of

the n=0 Landau level is occupied and the free energy of the
electron gas has the form �Eq. �19.5� in Ref. 12�

F = neE0,+�H� + 
F�H,T,V,Ne� . �7�

Here ne=Ne /V is the conduction electrons’ concentration.
The first term in Eq. �7� is the sum of the ground energies of
all electrons. The 
F term is a correction to the first term due
to the electron one-dimensional �1D� dispersion, correspond-
ing to the electron motion in the H direction with the wave
vector kH. The value of 
F substantially depends on the tem-
perature. Using Eq. �19.5� in Ref. 12, we have obtained that
in a K2 approximation


F = neC�T�EH

if kBT�EH, where EH=EF�EF /��c�2, C�T� is a dimension-
less constant about unity, and


F � −
nekBT

2
ln� kBT

EH
�

if kBT�EH. Due to the inequalities E0,+�EH and
kBT���c, the term 
F is small relative to the first term in
Eq. �7�. Note that this is also true for the neE0,+ and 
F
terms’ derivatives by H.

The magnetization should be calculated as follows:
M=−�F /�H. The first term neE0,+ in Eq. �7� is mainly linear
by H when the main K2 terms K2 /2m� and �B��̂ ·H� /2 pre-
vails in the electron Hamiltonian. Therefore the saturation of
the sample magnetization versus H must be approximately
achieved: M�H�→M0=−ne�h. For example, this effect was
observed in Ref. 19 for metallic compound LaRhIn5 with
small Fermi pockets.

The anisotropic corrections to 
F are caused by the aniso-
tropy of the 1D density of states function �Eq. �12.3� in Ref.
12� and, thus, by the anisotropy of the n=0 Landau level 1D
dispersion E0,+�kH ,H�. This dispersion is calculated on the
base of Hamiltonian �2� �as the ground state energy E0,+

K4�H��.
Owing to the time inversion symmetry, it does not contain
the odd degree terms by kH and has the form

E0,+�kH,H� = E0,+
K4�H� + +

�2kH
2

2m�
+ a�H�kH

2 + b�H�kH
4 ,

�8�

where a�H� and b�H� are due to the K4 terms in Eq. �2�. It is
seen that a�H� is proportional to lm

−2 multiplied by a K4 con-
stants, for example, �. Thus, comparing Eqs. �1�, �6�, and
�8�, we conclude that the anisotropic part of the dispersion
E0,+�kH ,H� and, consequently, the anisotropic part of 
F are
of the same relative order as the anisotropic corrections to
E0,+�H�. Using this fact and the inequality 
F�neE0,+, it
was proved that the anisotropies of F and M are mainly
caused by the anisotropy of E0,+.

Substituting Eq. �6� into the definition of M, we obtain for
the magnetocrystalline anisotropy: M=M0+
M, where

M=−2ne��Hh+
Manis, 
Manis=
M�+
M
+
M� is
the anisotropic part of the magnetization,

Mp=−���
Ep�0,+ /�H�anis, p=� ,
 ,�
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Manis = 2neAH�− 2v3�h� + P4�h�h�

+ 2neBH�− hxhyhzv2�h� + 2P6�h�h� , �9�

v3�h�= �hx
3 ,hy

3 ,hz
3�, and v2�h�= �hyhz ,hxhz ,hxhy�. It may be

useful to extract the components 
M� and 
M� from 
Manis
that are parallel and perpendicular to the H direction.

Estimations of the value of the effect proposed are pre-
sented in Table I. In the last four rows of Table I the maxi-
mum variations of the anisotropic part of each mechanism
contribution to 
M� relative to M0 are presented.

Let us make some comments how the “exotic” band pa-
rameters used in Table I were taken from the experimental
data. The value of � for GaAs and InSb was extracted from
the cyclotron resonance measurements �the paper20 for GaAs
and the paper21 for InSb�. In these papers the data on the
Landau levels anisotropic shifts, different for different levels,
were expressed in terms of the effective mass anisotropy. We
have reinterpreted this Landau level shifts on base of Eq. �4�
and analogous equation for n=1 to find the � parameter. The
value of 
 for GaAs was extracted from the experimental
data of Refs. 18, 20, and 22 on the anisotropy of the cyclo-
tron resonance line 0�→1� spin splitting. A detailed analy-
sis of extracting of 
 from the data of Refs. 18, 20, and 22
was done in Ref. 17. Briefly speaking, it was based on
Eqs. �3� and �5�. The value of 
 for InSb was taken from the
spin-resonance measurements,23 where the anisotropy of the
ground Landau level spin splitting was measured and
presented in the form of the g factor anisotropy. We have
reinterpreted this n=0 level splitting anisotropy on base
Eq. �3� to extract 
. The values of � for GaAs, GaSb, and
InSb was taken from the spin relaxation data presented in the
review.24 The value of � for GaSb was taken from the
Shubnikov-de Gaas effect measurements discussed in
Ref. 25. In that work the experimental data on the anisotropy
of the frequencies of the magnetoresistance oscillations were
analyzed in terms of the effective mass anisotropy. We have
reinterpreted the effective mass anisotropy obtained in Ref.
25 on the base of the formula for the electron dispersion:

E�k�=�2k2 /2m�+ Ĥ��k�, to find the � value.
We would like to emphasize that the signs of the param-

eters 
 and � in Table I are indeed correct. The positive sign

of � follows from the cyclotron resonance data20,21 or from
the Shubnikov-de Gaas measurements data25 treated in terms
of the effective mass anisotropy and is the same as the effec-
tive mass sign. As follows from the data in Ref. 18, the sign
of 
 in GaAs is the same as the sign of g1 in the term

g1K̂2�H · �̂�. The positiveness of 
 and g1 has been verified
by us on the basis of the 14-band model formulas in Ref. 15
and is in agreement with the experiential data discussed in
Ref. 17. As follows from the analysis of the spin-resonance
experiment,23 the sign of 
 in InSb is opposite to the g-factor
sign. Thus, 
 is also positive in InSb. Note that the sign of �
is not important for the obtained answer in Eq. �9�.

A magnetocrystalline anisotropy of an acceptor doped
semiconductor can be studied in a similar manner. For holes,
there are anisotropic terms in the K2 effective mass Hamil-
tonian already. The K2 hole Hamiltonian may be expressed in
the form26,27

Ĥ = Ĥis + Ĥanis,

Ĥis = − ��̃1 + �5/2��̃2�K̂2 + 2�̃3�
i

K̂i
2Ĵi

2 + 4�̃3�
�i,j�

�K̂i,K̂j�

��Ĵi, Ĵj� + 2�BK�Ĵ · H� ,

Ĥanis = 2��̃2 − �̃3��
i

K̂i
2Ĵi

2 + 2�Bq�
i

HiĴi
3, �10�

where �Â , B̂�= �ÂB̂+ B̂Â� /2, i=x ,y ,z, �i , j�
= �x ,y� , �x ,z� , �y ,z�, Ĵi are the 3/2 angular momentum opera-
tor matrixes, and �̃i, K, and q are the K2 valence band pa-
rameters ��̃i= ��2 /2m0��i, where �i are the dimensionless
Luttinger parameters�. As it is true that 
�2−�3
��3 and
q�K for many semiconductors, the anisotropic Hamiltonian

part Ĥanis can be treated as a perturbation to the isotropic one

Ĥis. As for electrons, in the enough high magnetic field only
the bottom of the ground Landau level subband is occupied.
Thus, it can be proved that, as for electrons, we can put
kH=0 for holes in that subband and F=nhEg�H�, where nh is
the hole concentration and Eg is the energy of the ground
hole Landau level.

The ground Landau level within the Hamiltonian Ĥis is26

Eg
is =

− �̃1 + �̃3

lm
2 +

�BKH
2

�if K�0� and a wave function

�g = �−1/4 exp�− �2/2��0,1,0,0�T

corresponds to it. Here � is the oscillator coordinate and the
wave function is written in the standard basis �m

3/2 �Ref. 27�
in the “magnetic” coordinate system x� ,y� ,z� �in this coor-
dinate system H �ez�, see Ref. 13�. Following to Ref. 13, we

have expressed the vector components K̂i, Ĵi, and Hi in the
crystallographic coordinate system through the vectors com-

ponents K̂i�, Ĵi�, and Hi� in the magnetic coordinate
system

TABLE I. The conduction band parameters and the values of the
different contributions to the magnetocrystalline anisotropy for
n-doped GaAs, GaSb, and InSb �H=10 T�.

GaAs GaSb InSb

m /m0 0.067 0.041 0.014

g −0.44 −8 −49.5

�, eV Å3 24 187 220


, eV cm2 Oe−1 6.5�10−23 7.23�10−21

�, eV Å4 670 2900 2.19�104


M
 /M0 7.75�10−4 0.0274


M� /M0 1.83�10−3 5.74�10−3 0.0190

�
M��h4 /M0 1.50�10−5 4.05�10−4 8.40�10−5

�
M��h6 /M0 2.40�10−5 6.45�10−4 1.34�10−4
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ax = cos � cos �az� + sin �ax� + sin � cos �ay�,

ay = cos � sin �az� − cos �ax� + sin � sin �ay�,

az = sin �az� − cos �ay�,

where a=K̂, H, or Ĵ. In the magnetic coordinate system, the

matrixes Ĵi have the standard form and Hx�,y�=0, Hz�=H,

K̂x�=−�, K̂y�=−id /d�, and K̂z�=0. All these formulas were

substituted in Ĥanis and then the first-order perturbation

theory correction 
Eg
anis= 	�g
Ĥanis
�g
 to the energy Eg

is was

calculated. As the formula for Ĥanis contains fourth-order
vector components expressions, the function 
Eg�h� is the
fourth order polynom. An exact calculation gives


Eg
anis = DHP4�h� ,

where

D =
e�

2m0c
�3

2
��2 − �3� −

9

8
q� .

Thus, a corresponding anisotropic correction to the magneti-
zation M=−nh�Eg /�H contains the fourth-order term by h
only, does not depend on H and has the form


Manis = − nhD�4v3�h� − 3P4�h�h� . �11�

As for n-type semiconductor, it may be useful to extract the
components 
M� and 
M� from 
Manis. For example,

M� =−nhDP4�h�h. The magnetization orbital �
M�� and
g-factor �
Mq� anisotropic parts for the three semiconductors
with small values of ��2−�3� are shown in Table II. All band
parameters are taken from the book.27 In the last two rows of
Table II the maximum variations of the anisotropic part of
each mechanism contribution to 
M� relative to
M0=−nh�Eg

is /�H are presented. It is seen from Tables I and
IIthat the free hole magnetization anisotropy is far greater
than the free electron one.

Let us discuss the question of separating the lattice and
the free carriers parts of the sample magnetization. The mag-
netic field is expected to be extremely high when the lattice
part of the magnetization is saturated. This comes from the

nonquantum criterion5 e2 /ratom
2 ��e /c�vatomH saying that the

atomic force acting on a core electron is of the same order as
the Lorentz force. Thus, for the fields discussed we
have Mcore=�coreH. For example, for n-doped InSb with
ne=2�1017 cm−3 the saturated conduction electrons part of
magnetization M0 is equal to the linear by H extrapolated
low field susceptibility magnetization �measured in Ref. 11�
at H=10 T �in the low fields limit the main part of M is the
lattice contribution11�. Thus, below this field, but when
��c�EF the conduction electrons part of the magnetization
is greater than the core electrons part of magnetization. The
origin of this situation, when the conduction electrons or
holes contribution to the magnetization prevails on the core
electrons contribution in strong magnetic fields, is the small
value of the carrier effective mass, m��m0, and, thus, the
inequality ���B for the magnetic moments of free carriers
and core electrons.12 Finally, as it was done in Ref. 11, mea-
surements on a large set of samples with different levels of
doping may let extract the free carriers part of the magneti-
zation and its anisotropy after analyzing the dependencies
M�ne�.

It should be noted that core electrons of doping element
atoms can give a contribution to the magnetization as well.
In particular, the spin-orbit coupling of doping atom core
electrons with the crystal field can give a contribution to the
magnetization anisotropy. This effect can be studied on the
base of calculation of the crystal field effect on the fine struc-
ture of the doping atom terms, analogously to the theory Ref.
28 of the magnetocrystalline anisotropy in 3d-4f intermetal-
lics. Here we only mention that for a light doping element,
with atoms not heavier than the lattice atoms �thus, with
vatom

dop �vatom�, the doping atom core electrons contribution to
the magnetization per one doping or lattice atom is of the
same order as the lattice atom core electrons contribution
discussed above.

Let us briefly discuss the experimental techniques to mea-
sure the proposed magnetocrystalline anisotropy. Usually, the
precision of a technique increases with the increase of the
sample volume as in each technique the value of the signal is
proportional to the magnetization absolute value. In Ref. 11
the Guye method based on the measuring of the force acting
on a long sample in a nonuniform magnetic field was used.
Its precision was about 2% what approaches to the necessary
level for n-doped semiconductors and is enough for p-doped
semiconductors �see Tables I and II�. There are some force
methods to measure the difference between M��h�� and
M��h�� directly.2 It exists modifications of the Gyue method
with better precision based on vibrating and rotating
samples.4 If a sample has a good facet, it is possible to use
the magnetic Kerr effect technique.7 The superconducting
quantum interference device �SQUID� magnetometer, which
was used to measure the magnetization and its anisotropy of
the dilute magnetic semiconductor alloys9,29,30 recently, has a
very high precision. For example, the precision of the Quan-
tum Design MPMS 5XL SQUID magnetometer used in Ref.
31 is in the range of 10−9 emu for H=0 to �5 T.

In conclusion, we would like to mention that the proposed
effect of the anisotropy of M can be employed as a new
method to determine the semiconductor band parameters �,

, �, �2,3, and q �see Eqs. �9� and �11��.

TABLE II. The valence band parameters and the values of the
different contributions to the magnetocrystalline anisotropy for
p-doped GaAs, GaSb, and Ge.

GaAs GaSb Ge

�1 6.8 13.1 13.3

�2 2.3 4.5 4.2

�3 2.9 6 5.6

K 1.2 3.5 3.3

q 0.04 0.06


M� /M0 0.22 0.42 0.32


Mq /M0 0.011 0.01
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