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Experimental determination of the state-dependent enhancement of the electron-positron
momentum density in solids
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The state dependence of the enhancement of the electron-positron momentum density is investigated for
some transition and simple metals (Cr, V, Ag, and Al). Quantitative comparison with linearized muffin-tin
orbital calculations of the corresponding quantity in the first Brillouin zone is shown to yield a measurement of
the enhancement of the s, p, and d states, independent of any parametrizations in terms of the unscreened
electron density local to the positron. An empirical correction that can be applied to a first-principles state-
dependent model is proposed that reproduces the measured state dependence very well, yielding a general
model for the enhancement of the momentum distribution of positron annihilation measurements, including
those of angular correlation and coincidence Doppler broadening techniques.
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I. INTRODUCTION

Positron annihilation is one of the key tools in modern
investigations of the Fermi surface (FS) of solids,' alongside
quantum oscillatory techniques, Compton scattering, and
angle-resolved photoemission. Unlike other methods, how-
ever, the positron probe itself plays a crucial role in the mea-
sured distribution, preferentially annihilating with those elec-
trons that are most able to screen its charge. In a typical
metal, free from vacancy-type defects, the electrons that are
most readily able to screen are, of course, those at the FS,
advantageously leading to an enhancement of the signal con-
tributed from electrons at the FS. Attempts to account for this
enhanced contribution have, for the most part, relied on de-
tailed studies of the electron-positron interaction within the
jellium model,>* which is now essentially well understood.*
However, such schemes are yet to achieve good agreement
with experiment when applied to a wide range of metallic
systems. Here, we consider this problem from an experimen-
tal perspective, measuring the state-dependent (SD) enhance-
ment factor for some simple elemental metals, and present a
phenomenological (and empirical) correction to the work of
Barbiellini, Alatalo, and their co-workers>° that offers excel-
lent agreement with experiment.

The complex many-body interaction between the positron
and the electron gas has been intensively studied for many
years.” When the positron enters a homogeneous electron
gas, the attractive Coulomb interaction polarizes the electron
gas in the vicinity of the positron, leading to a cusp in the
unscreened electron density at the positron’s position and the
associated enhancement of the partial annihilation rate of
those electrons that screen the charge. The theory of Kahana®
predicted a momentum-dependent enhancement in which the
enhancement increases toward the Fermi momentum, kg, and
corresponds to the increased capability of electrons near the
Fermi level to screen the positron’s charge, compared with
lower lying electron states. However, the inhomogeneity of
the electron gas in real lattices can have a strong influence on
the enhancement, even hiding the Kahana-type momentum
dependence.>’

It is worth pointing out that when considering enhance-
ment there are actually two separate but related issues.
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Firstly, in the context of calculating the correct positron life-
times in solids, the enhancement of the total electron density
needs to be properly described in order to calculate the pos-
itron annihilation rate. Secondly, a description of the en-
hancement is needed when calculating the two-photon mo-
mentum densities (which are the focus of the current paper).
The former problem is easier because the contact density can
be parametrized in terms of the local electron and positron
densities (using the many-body results for jellium) but the
latter is a more difficult problem since in the framework of
density-functional theory there is no formally exact way to
calculate the two-photon momentum density®® (and as such
all models in the literature are, in practice, empirical). Local-
density parametrizations in which the enhancement is param-
etrized as a function of the unscreened electron density, 7, at
the positron, have been introduced to account for the inho-
mogeneity of real systems. In these approaches, the enhance-
ment is usually expressed in terms of the electron-gas param-
eter, r,=(3/4mn)"3, of which it is a monotonically
increasing function for typical crystallographic electron den-
sities. Some popular choices are the expressions of Arponen
and Pajanne,® based on boson formalism and parametrized
by Barbiellini et al.,'% and those of Borofiski and Nieminen
(BN) (Ref. 11) which are based on an interpolation of Fermi-
liquid results due to Lantto.!? Jarlborg and Singh (JS) have
used a local-density approach to solve a two-body electron-
positron Schrodinger equation inside a spherical correlation
cell that yields good agreement with transition metals and
their alloys for both momentum densities'? and positron
lifetimes,!* and is a common choice to describe the enhance-
ment of the momentum distribution in metals.>'> More gen-
eral parametrizations have been proposed'®~!° that include
Kahana-type momentum or energy dependence to describe
the results of positron measurements. More recently,
theoretical prescriptions for the enhancement have been de-
veloped that represent a significant departure from the homo-
geneous electron gas or local-density approaches, based on,
for example, the generalized gradient approximation
(GGA),> Bloch-modified ladder,’” or weighted-density
approximation.?”

Owing to the different screening properties of d and s-p
electrons, efforts to include a character, or state-dependent
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enhancement function have been applied to several transition
metals and their alloys.'>2'-23 Sob applied such a scheme to
data measured on a polycrystalline FeAl alloy, finding a de-
enhancement of the d states by a factor of ~2.2 compared
with the s-p states,!” whereas the application of the same
procedure by Svoboda and Sob?! to CuZn was found to favor
a reduction by a factor of ~1.5. Theoretically, such explicit
state dependence is rarely included, although for flat d bands
it is implicitly present in any energy-dependent model. Re-
cently, Barbiellini and co-workers have developed a theoret-
ical and ab initio state-dependent prescription for calculating
the enhancement in a general system,>® which is based on
the state-dependent annihilation rates calculated within the
GGA. Although it has been demonstrated that the effects of
enhancement do not shift the location in k space of the Fermi
breaks in positron measurements,2* the influence of the the-
oretical treatment of the enhancement, when rigid-band-like
shifts are applied to the electronic structure and compared
with experiment, has not yet been investigated.

Here, we tackle the problem of describing the enhance-
ment of the positron annihilation rates from an experimental
perspective. Employing an SD model for the enhancement
similar to that of Ref. 5, we simultaneously fit both the FS
and the enhancement from ab initio electronic-structure cal-
culations to positron data directly in k space in order to
obtain a quantitative measurement of the enhancement in
metals. Additional comparisons with the calculational
scheme of Ref. 5 are used to quantitatively assess the appli-
cability of such an SD enhancement model for electron-
positron momentum distributions. In particular, the accuracy
of rigid-band-like approaches in obtaining more realistic rep-
resentations of the experimental FS are found to be sensi-
tively dependent on the particular enhancement employed in
the calculation.

The organization of this paper is as follows. In Sec. II, we
introduce the method employed in this paper. In Sec. III, we
apply this fitting technique to some 3d transition and noble
metals, namely, V, Cr, and Ag, and in Sec. IV we address the
simple metal Al. Finally, in Sec. V we apply and investigate
a correction to the existing theory of Ref. 5 that provides
useful predictive power as a general model of enhancement
in both transition metals as well as simple metals. The appli-
cation of this correction to Mo is shown to quantitatively
explain the difference in the momentum distributions of Cr
and isoelectronic Mo that is observed despite the similarity
in their FS.

II. METHOD

A. State-dependent enhancement

The quantity measured by two-dimensional angular corre-
lation of (electron-positron) annihilation radiation (2D-
ACAR) experiments is a once-integrated projection (along a
suitable crystallographic direction) of the so-called two-
photon momentum density, p**(p),

p?(p) = 2 n|C;l*dp-k-G), (1)
i,G

where n; is the electron occupation density of state i={j,k} (j
is the band index), C; g are the coefficients of a plane-wave
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expansion of the product of the electron and positron wave
functions in which G is a vector of the reciprocal lattice, and
the o function expresses the conservation of crystal momen-
tum. In a 2D-ACAR measurement, the 3D quantity ex-
pressed in Eq. (1) is integrated along a particular direction to
yield a 2D projection of p*>¥(p), and the projected axis is
usually chosen to be a suitable high-symmetry crystallo-
graphic axis. The FS enters Eq. (1) as discontinuous breaks
in the momentum density when p traverses i occupied
(n;=N) to i unoccupied (n,=N-1) (i.e., when the band
crosses the Fermi energy). The folding of crystallographi-
cally equivalent p points of momentum using the so-called
Lock-Crisp-West procedure? yields the “reduced momentum
density” (RMD), p*?(k),

PP (k) =2 |C 6l 2)
G

The C; g of Eq. (1) can be written in terms of the single-
particle electron and positron wave functions, ;(r) and

Pt(r), as
Cig= f &r exp[-i(k + G) - r]yP(r,r). (3)

Here, ¢°(r,r’) is the electron-positron pair wave function
for state i,

PP(r.r) = (e ) () y(r). 4)

where vy,(r) is the state-dependent positron enhancement fac-
tor (for the state i). Setting y=1 in Eq. (4) is equivalent to
the independent particle model (IPM), although it should be
noted that the effects of the positron wave function are still
included in that case. The usual parametrizations of the en-
hancement, for example, the BN or JS models, are based on
local-density parametrizations in which y;(r)=y(r) is a func-
tion only of the unscreened local-electron density at the lo-
cation of the positron. Other state-dependent prescriptions
exist (e.g., Refs. 18 and 19), although these have relied on
the empirical determination of the state dependence of the
enhancement.

Barbiellini et al.’ have proposed a theoretical prescription
for applying a state-dependent positron enhancement factor
to ab initio calculations of the electronic structure and mo-
mentum density. In their scheme, 7; is obtained through the
partial annihilation rates, such that

yi= NN, (5)

where \; is the partial annihilation rate of the state i includ-
ing correlation effects and )\}P M is the partial annihilation rate
due to the IPM. The total annihilation rate, N\, may be calcu-
lated from (here shown for the local-density approximation,
LDA),

A= mfcf &ra*(r)n(r)y(r), (6)

where r, is the classical electron radius, ¢ is the speed of
light, and n*(r) is the positron density. In their calculations,
the GGA was used for the calculation of \;, which success-
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FIG. 1. (Color online) The
state-dependent enhancement of
Ag from our model, shown for
two energy bands along the path
I'-X in the BZ. (a) The dispersion
of bands 1 and 6; (b) the enhance-
ment from our fit to the experi-

mental data; and [(c) and (d)] the
character of bands 6 and 1, re-

band 1 spectively. Note that band 6

—

crosses Eg, shown by the dotted
line in (a), above which the en-
hancement is unphysical.
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fully reproduces the experimental annihilation rates rather
well.10:26

B. Practical approach

We begin by computing the ab initio electronic structure
using the linearized muffin-tin orbital (LMTO) method,
within the atomic sphere approximation and including com-
bined correction terms.” The C, g coefficients of Eq. (3) are
then computed within the IPM [equivalent to setting y=1 in
Eq. (4)], unfolded in such a way as to resolve the individual
contribution owing to the atom index (n), and orbital angular
momentum quantum number (/),

Cle' =2 Cloms (7)
n,l

The momentum density in the first Brillouin zone (BZ) [i.e.,
the RMD, Eq. (2)] is computed for the IPM by

(E Cg,lzg,[n,[)

n,l

’ )

p}PM(k) = constant X 2
G

For the enhancement, we introduce the quantities v, that
describe the enhancement of a state of atomic species n and
of orbital angular momentum [ (I=s,p,d,f). These can then
be incorporated into the calculation of the RMD by

[ AIPM
(2 v 7n,ZCi,G,n,I)

n,l

p]SD (K) = constant X >, : (9)

G

Note that in the above equation, the y, multiply the C;¢ ,,
coefficients, which are inside the sum over included G vec-
tors, and so the RMD must be recomputed for each 7y, and
cannot be expanded into a sum of contributions to the mo-
mentum density from different / orbitals.

In this way, 7y, is a universal quantity, representing the
partial enhancement of a state with character /, independent
of r and k. The degree to which it is enhanced depends on
the coefficients of the wave functions in the LMTO calcula-
tion. The enhancement, then, of a pure state of atomic spe-

X

cies n and orbital character / is given by v, =%, ;. Note
that the band characters (atomic species and orbital charac-
ter) are strongly k dependent, and of course vary from band
to band due to hybridization with other states, so our en-
hancement model is a general state-dependent model for the
enhancement (see, for example, Fig. 1) but has its origins in
the convenient properties of the LMTO wave functions.

The contribution due to core annihilations is an important
consideration for positron lifetime calculations.?’” However,
the core contribution is small and relatively independent of &
across the first BZ, and can safely be omitted from this cal-
culation. Instead, the contribution from core states in the data
is described by a uniform background in the subsequent fit-
ting procedure.

C. Minimization procedure

In the rigid-band approach, the agreement between ex-
periment and theory is iteratively maximized with respect to
a rigid shift of one or more of the energy bands (typically
those that constitute the FS), until convergence at the mini-
mum of the goodness-of-fit parameter is achieved. This is
similar to the method of Ref. 15, however, there are some
important differences. In Ref. 15, the radial anisotropy of the
two-photon momentum density in p space served as the com-
parative quantity, and the enhancement was fixed to that cho-
sen in its initial calculation (in that case, the JS model was
used). Here, we perform our comparison in k space, corre-
sponding to the Lock-Crisp-West-folded data, and explicitly
include enhancement of the form outlined above (SD model)
in the fitting. The advantage of operating in k space (aside
from the smaller array sizes involved) is principally that we
are sensitive directly to the projected Fermi breaks, rather
than the many weaker FS signatures that are distributed
throughout the p-space spectrum. An additional consider-
ation, however, is the contribution from higher momentum
components (umklapp processes), whose enhancement has
presented a challenge for theoretical models (see, for ex-
ample, Ref. 7). It is noted that operating in k space involves
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the folding of the umklapp contributions into the first BZ,
both experimentally and theoretically, and that any nontrivial
behavior of these contributions is subsequently lost. How-
ever, we have checked our results with the equivalent
p-space spectra and, in particular, near the umklapp regions
(as well as its integral, which represents an analogue of the
coincidence Doppler broadening spectra). Crucially, we find
the data are equally well reproduced using such a k-space
approach as they are with the traditional JS model.

The fitting parameters constitute the energy shift, &;, for
each band in the fit (typically those that cross Ep), two scal-
ing parameters for each experimental projection, A,, and S,,,,
that approximately relate to the k-independent core contribu-
tion and the number of counts in the 2D-ACAR spectra,
respectively, and the enhancement parameters, 7, ;, of which
there are typically three for simple systems. These are simul-
taneously adjusted using the MINUIT package®® and the com-
puted k-space density is compared with the data until con-
vergence is reached. Note that we fit the ratios of the
enhancement parameters, absorbing their magnitude into the
scaling parameters (the absolute magnitude of the enhance-
ment parameters is indistinguishable from the scaling param-
eters in the data).

Our definition and treatment of the scaling parameters
have an important consequence. As mentioned above, we do
not treat the enhancement of the core electrons, preferring to
concentrate on the description of the shape of the RMD.
Such an approach means that good agreement can be ob-
tained with the IPM if we consider a negative contribution
from core annihilations. Whilst this is clearly unphysical, it
stems from the strong overestimation of the enhancement of
deeply bound electrons within the IPM. Here, we are most
interested in the band properties of the momentum distribu-
tion (i.e., its shape) and, in particular, its FS signatures. We
point out that in the following discussion, even when the
IPM appears to give reasonable agreement with our data, the
agreement with positron lifetime measurements (see, for ex-
ample, Refs. 14, 27, and 29) would be very poor, in contrast
to the other enhancement models that are addressed here.

III. TRANSITION AND NOBLE METALS

The transition metals and their alloys have traditionally
been the subject of the bulk of experimental investigations of
the FS, and a good description of the electron-positron mo-
mentum density and enhancement of such systems has been
vital in understanding 2D-ACAR, and indeed coincidence
Doppler broadening®3?3! data. The JS model was specifi-
cally developed with transition metals in mind and is gener-
ally thought to provide a good description of the enhance-
ment for d-electron densities (with r,~ 1.8).!3"1> Here, we
begin by applying the SD enhancement model described
above to some metals whose FSs have been accurately de-
termined via quantum-oscillatory methods (Ag and V) and
one whose FS is inaccessible to conventional FS probes
(paramagnetic Cr), first concentrating on the “raw” LMTO
calculations of the RMD. Comparisons are made with both
the IPM and the JS model for enhancement, as well as a
simplified version of the Barbiellini-Alatalo>® enhancement
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scheme. Following this, we rigidly fit the bands to the ex-
perimental data to obtain an experimental measurement of
the FS, in order to assess the sensitivity of this approach to
the FS.

Three 2D-ACAR projections ([100], [110], and [111])
were obtained from a single crystal of Ag at ~70 K,
with a resolution full width at half maximum of
0.71 mradx1.11 mrad in the p, and p, data axes, respec-
tively (corresponding to ~12% X 19% of the BZ of Ag). For
V, four projections were obtained along the [100], [110],
[210], and [211] directions at room temperature with a reso-
lution of 1.11 mrad X 1.33 mrad (with the exception of the
[110] direction, which was collected at ~24 K with reso-
lution 0.83 mrad X 1.11 mrad). Paramagnetic Cr was mea-
sured along the [100] and [110] directions at 353 K, well
above the Néel temperature (with a resolution function the
same as the room-temperature V measurements). For each
sample presented in this paper, the 2D-ACAR spectra have
been carefully checked to confirm the absence of any defect
or impurity signatures in the spectra.

LMTO calculations were performed over 1505 k points in
the irreducible wedge of the face-centered-cubic BZ for Ag,
and over 6201 k points in the irreducible wedge of the body-
centered-cubic BZ for V and Cr. For each material, the RMD
was computed for both the IPM and the JS parametrizations
of the enhancement, and convoluted with the appropriate ex-
perimental resolution function. This was compared to the
experimental data with adjustments only to the scaling pa-
rameters, S,, and A,,. The SD model of the enhancement was
then obtained by simultaneously fitting the orbital enhance-
ment factors, ;. In each case, a goodness-of-fit parameter,
X’.q» Was computed as a weighted average of that from each
experimental and theoretical projection. Comparisons were
also made for the raw band calculation with the model of
Refs. 5 and 6 by computing the annihilation rates associated
with each orbital both within the GGA (Ref. 10) and IPM,
where the enhancement of each orbital in this model is the
ratio of these annihilation rates. However, it should be noted
that this scheme still invokes a parametrization of the en-
hancement in terms of the electron-gas parameter. To com-
pare with our experimental values, we integrate over all k
states to obtain the annihilation rate from all electrons of
orbital quantum number /. In Eq. (6), this corresponds to
substituting the (partial) electron density due to each s, p, d,
and f orbitals, n,(r) for n(r) to obtain \; in the GGA, rather
than the method of Ref. 5 in which n;(r) is used. In the
following, we refer to this as the simplified Barbiellini-
Alatalo (SBA) model (in which the “simplified” reflects the
integration over all k states).

A. Raw band calculations

For the raw band calculations, the comparison between
theory and experiment depend on (i) a good ab initio de-
scription of the electronic structure, and in particular the FS,
and (ii) a reliable understanding of the electron-positron en-
hancement factor. The well-known FS of Ag consists of just
a single sheet that is only slightly perturbed from the free-
electron sphere, most notably along the [111] direction where
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c)

FIG. 2. (Color online) Comparison between experimental k-space momentum density for (a) Ag [100] projection, (b) V [110] projection,
and (c) Cr [110] projection and the computed raw band calculation of the RMD for IPM, JS, and SD models. High-symmetry points in
projection have been labeled. Note that in (a) the horizontal and vertical axes are (110) crystallographic axes; the (100) axes are along the

diagonal.

the FS intersects with the BZ boundary to form a neck at the
L point of the BZ. Band structure calculations within the
LDA reproduce the precise measurements of quantum
oscillations®>** very well and it therefore provides an excel-
lent candidate in which to test models for the enhancement,
for which the JS model would be an obvious choice. As
demonstrated by Fig. 2(a) and 3(a), the experimental data are
well described by the raw band calculations of the RMD in
which even the IPM (including only positron wave-function
effects) works reasonably well. Quantitatively, as demon-
strated in Table I, the JS enhancement model is found to
improve the agreement between experiment and theory, par-
ticularly near the projected I'X and L points of the BZ. How-
ever, the current SD model is able to bring the theoretical
RMD into much closer agreement with the data by de-
enhancing the s and d states relative to the p states. For Ag,
the bands below Ep are predominantly d bands, with some
hybridization with the Ss state, but the band that crosses Eg
has substantial p character. The de-enhancement of d states
relative to the sp bands is well known'? and is attributed to
the relative localization of d electrons, particularly near the
top of the d bands. That the p enhancement appears to be
quite strong can be explained by a Kahana-type momentum
enhancement in which those electron states nearest kp are
most enhanced. In Fig. 1 the measured SD enhancement is
plotted along I'-X, accompanied by the band dispersion and
character. As can be seen from Fig. 1(b), the enhancement of
band 6 grows substantially as the band approaches the Fermi
level, replicating the Kahana-type momentum dependence of
the enhancement. This is captured in our model by the en-
hancement of the p-like states; as demonstrated by Fig. 1(c),
the enhancement of both bands 1 and 6 closely follow their
respective p character. Note that, owing to the weak contri-
bution from high-lying f states, a good quantification of their
enhancement is not possible.

The situation is more complicated for V and Cr, for which
the details of the near-Ey electronic structure, including the
precise dimensions of the FS, are either not well reproduced
by our band calculations (V) or have not been accurately
determined (paramagnetic Cr). Figures 2(b) and 2(c) show
representative 2D-ACAR projections of V and Cr (along the
[110] direction), respectively, compared with the correspond-
ing theoretical quantities. The FS of V is composed of two
sheets. The first sheet (originating from band 2 of predomi-
nantly 3d character) forms a small I'-centered hole octahe-
dron that encloses ~0.12 holes and has remained unobserved
in quantum oscillation data, although its presence has been
confirmed by 2D-ACAR measurements® 7 [this sheet is
visible in the experimental data in Fig. 2(b) at the projected
I'N point]. Band 3, on the other hand, experiences appre-
ciable hybridization with the 4p states above Ey and forms a
I'-centered jungle-gym hole FS as well as some hole ellip-
soids that are centered at N. These N-hole ellipsoids can be
clearly seen in the data of Fig. 2(b) at the projected N point
of the BZ, where the density experiences a local dip due to
their presence. These features in the IPM and JS calculations
are predicted to be substantially too large and too strong [see
Fig. 3(b)], and the enhancement of the high-density sur-
rounding region is not well reproduced. Although, as pointed
out by Jarlborg and Singh, the enhancement is expected to be
less important for a less-full d band, the JS enhancement is
actually found to perform worse than the IPM for V (see
Table 1), at least in the shape of the distribution (positron
lifetime predictions are substantially better described by the
JS model'#). V was used as a test material by Jarlborg and
Singh in their presentation of the JS enhancement model, in
which they comment that the IPM already provides a reason-
able description of the momentum density,'* and that their
model offered only weak improvement. However, their com-
parisons were made with electronic-structure calculations
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FIG. 3. (Color online) The raw band RMD of (a) Ag, (b) V, and
(c) Cr shown in Fig. 2, shown here along a path in the BZ.

where the bands had been rigidly shifted to agree with de
Haas-van Alphen (dHvA) measurements of the N-hole
ellipsoids.* Indeed, in Fig. 3(b) it is obvious that the dimen-
sions of the dips in the momentum density along NH-N-HN
are incorrectly placed with respect to the data. In Sec. III B,
we address such inconsistencies by rigidly shifting the bands
to improve agreement between experiment and theory.

Cr neighbors V in the periodic table, having an extra elec-
tron, yet its paramagnetic FS has remained relatively unex-
plored experimentally, principally owing to the emergence of
an ordered spin-density wave phase below ~312 K, where
the high temperature precludes quantum oscillatory measure-
ments in the paramagnetic phase, and strong spin fluctuations
appear to suppress the measurement of the nested sheets in
the ordered phase.*’ Theoretically, the FS is composed of
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TABLE 1. The results of the fit between the different parametri-
zations of the enhancement and the data. For the SD model, the v,
for each state obtained from the fit is also given, normalized to
¥,=1. The v, for the SBA model are determined from the partial
annihilation rates described in Eq. (5). The errors in the fit of the 7,
of the SD model are ~ *0.01. Note that the higher statistical pre-
cision of the V data yields a relatively large Xfed parameter.

Vs Yy Yd Yr szed

Ag IPM 12.51
JS 10.37

SD 0.81 1.00 0.81 (0.76) 6.57

SBA 0.92 1.00 0.64 (1.08) 8.98

\'% IPM 19.74
JS 26.56

SD 0.69 1.00 0.78 (0.57) 13.32

SBA 0.97 1.00 0.83 (1.02) 32.86

Cr IPM 8.15
JS 5.82

SD 0.82 1.00 0.54 (0.87) 2.54

SBA 0.97 1.00 0.80 (1.03) 5.09

three sheets, the first of which (band 3) contributes some
small electron “lenses” midway between I' and H. Band 4
forms some N-hole ellipsoids and H-centered octahedra,
whereas in band 5 there is a I'-centered electron “jack.” Mo-
lybdenum, isoelectronic to Cr, shares a similar FS topology
in which the N-hole ellipsoids and the electron jack can be
clearly visualized in the [110]-projected k-space density of
2D-ACAR measurements.*!#2 For Cr, these features, shown
in Fig. 2(c) near the projected N points, are obscured in the
measurement, presumably owing to enhancement effects.*3
Indeed, the N-hole ellipsoids are more evident in the IPM
and JS projected densities than they are in the data. Overall,
the agreement between the IPM and JS calculations of the
RMD and the data is reasonable (see Table I) but is particu-
larly poor near the projected N points of the BZ as well as
midway along the NH-I'N path [see Fig. 3(c)]. Here, the
knobs of the electron jack project on top of one another, and
the IPM and JS do not predict the de-enhancement of the
momentum density very well in this part of the BZ.

The application of the SD model, however, considerably
improves the agreement between experiment and theory by
substantially de-enhancing the s and d states. In Figs. 3(b)
and 3(c), this can be most clearly seen at the projected N
points of the BZ, as well as the momentum density near the
I'N points. For both V and Cr, the hybridization of the va-
lence states with the unoccupied 4p states indicates the im-
portance of the p electrons in deciding the topology of the
FS, and their proximity to Fr means they have a strong im-
pact on the enhancement of the momentum density in 2D-
ACAR measurements. Previous noniterative comparisons of
orbital-weighted band theory and 2D-ACAR data have been
made in p space for V (Ref. 23) in which a de-enhancement
of the s and d states by ~0.8 relative to the p states was
favored. Our results are close to these, where we obtain 0.69
and 0.78 for s and d states, respectively, corresponding to a
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slightly greater de-enhancement of the lower lying s states.
Similarly for paramagnetic Cr, Matsumoto and Wakoh?? es-
timated (also noniteratively) that the Crd states were de-
enhanced by ~0.67 relative to the sp states (which were
considered together). Our results correspond well with their
findings, where we obtain 0.82 and 0.54 for s and d states,
relative to the p states. The stronger enhancement of the Cr s
states (compared with V) may be explained by the higher
occupation of the 4s states in Cr (they are almost twice as
occupied in Cr).

Finally, we comment on the predictions for state enhance-
ment made by the SBA model. Apart from Ag, which has a
much higher d electron density than either V or Cr, the or-
bital enhancement ratios are predicted to be very similar (see
Table I), with a weak de-enhancement of the s states and a
modest de-enhancement of the d states relative to the p
states. For Ag, a rather more exaggerated de-enhancement is
predicted for the d states. Qualitatively, these results are in
agreement with our measured values but differ substantially
in magnitude and lead to a slightly higher szed parameter than
the current SD model. Nevertheless, the SBA model provides
better agreement with the data than either the IPM or the JS
model for Ag and Cr, supplying a more robust predictive
scheme for computing the enhancement in 2D-ACAR mo-
mentum distributions. That it does not fair so well for V is
mostly accounted for by the rather larger corrections to the
LDA band structure that are required for V, a topic that will
be returned to in the next section. Here, we emphasize that
the SBA model is expected to improve the agreement with
the data over the IPM or JS models when extensions to the
LDA, such as nonlocal potentials** or self-energy
corrections,® that improve the description of the FS are in-
cluded. The most probable origin for the discrepancy be-
tween the SBA scheme and our measured SD enhancement is
the omission of a Kahana-type energy dependence or mo-
mentum dependence in the predictive scheme of Ref. 5. As
already highlighted, some of the results for the enhancement
in the current SD model, particularly the apparent strong p
enhancement in V and Cr, reflect a Kahana-type enhance-
ment of those electron states near Ex. In our model, where a
state is not too dispersive in energy, this is naturally captured
by enhancement of that state. The authors of Ref. 5 comment
that the Kahana-type energy or momentum dependence
appears to be less important than the state dependence
from their results, a conclusion that this work substantiates,
but these results suggest that including such enhancement
could produce a good improvement in the agreement be-
tween experiment and theory. In Sec. V, we apply just such
an energy-dependent term to the SBA enhancement factor
and demonstrate the improved predictive capacity of such a
model.

B. Rigid-band fit

In 2D-ACAR investigations of the FS, the traditional
method of extracting the FS from experimental data is to
contour the data at a level that corresponds to extrema in the
first derivative of the data, and it is well known that enhance-
ment effects do not shift the location of these breaks.2* While
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FIG. 4. (Color online) Comparison between experimental data
for (a) V [110] projection and (b) Cr [110] projection and the rigid-

band fit to the RMD for the SD model, shown in the same way as
Fig. 2.

first-principles calculations are often able to make excellent
qualitative predictions about the nature of the Fermi surface,
when subject to detailed scrutiny in light of precise experi-
mental data it is often found that quantitative differences
exist. Shortcomings in the approximations used in the calcu-
lations (e.g., exchange-correlation functional, neglect of rela-
tivistic effects) mean that in reality it is difficult to get the
Fermi surface correct. These differences can often be re-
duced or eliminated by small shifts of the relevant bands
with respect to the Fermi level, and it has recently become
feasible, and indeed quite common, to “tune” a band-
theoretical calculation in this way (e.g., see Refs. 15, 46, and
47). Such an approach requires an accurate description of the
positron enhancement, if conclusions regarding details of the
ES itself are to be drawn from such a fit, and we now turn
our attention to investigate the behavior of our SD model
applied to such detailed FS studies.

For the rigid-band fit of the electronic structure, the Fermi
level for each band near Ey was fitted to the data. In the case
of the SD enhancement model, the orbital enhancement fac-
tors were fitted simultaneously. The x2, was computed as
before, and the number of electrons enclosed by the fitted FS
(i.e., the occupied fraction of the Brillouin zone) was ob-
tained.

The results of the rigid-band fit to the data are displayed
in Fig. 4 and demonstrate substantial improvement over the
corresponding raw band calculations of Fig. 2. In Table II,
the x4 is shown for each fit, along with the fitted orbital
enhancement factors for the SD model. Beginning with some
general comments, we note that the orbital enhancement pa-
rameters obtained in the SD model are only moderately
adapted as a consequence of including the bands in the fit,
and the same general trends are observed. Additionally, it is
noteworthy that in almost every case the shift in the energy
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TABLE II. The results of the rigid-band fit between the different
parametrizations of the enhancement and the data, presented in the
same way as Table I. The shifts in the energy bands for each fit are
shown in Table III

% Y, Ya ¥ Xiea

Ag IPM 5.53
1S 4.84

SD 08 100 085  (0.76)  4.09

v PM 7.77
JS 8.40

SD 061 100 063 (049 379

Cr IPM 2.52
JS 1.85

SD 0.83 1.00 0.61 (1.27) 1.28

band (see Table III) is found to be smallest for the SD model
(with the exception of band 3 of V).

Figure 5 shows the RMD along the same path through the
BZ as in Fig. 3, and we will now concentrate in more detail
on the agreement between experiment and theory. As indi-
cated by the small change in electron count of the shifted
bands, the change in the FS itself is small, owing to the
appreciable dispersion of band 6 at Ef, and the shift in the
Fermi wave vector is Akp~0.02 (27/a) (just ~15% of the
resolution function).

The improvement is much more dramatic for V [Fig. 5(b)]
in which the size of the N-hole features in the data is now
well described by all of the enhancement models, stemming
from opposite shifts in bands 2 and 3. After rigidly shifting
the bands, the IPM and JS demonstrate similar shifts of the
energy bands and a similar goodness-of-fit parameter, lead-
ing to an excess in occupied volume of 0.14 and 0.10 of an
electron. The improvement in the SD model is more pro-

TABLE III. The shifts in the energy bands for each of the rigid-
band fits. Also shown is the change in electron count in the BZ due
to the fit. Note that for Cr band 5 (that just grazes Eg) is completely
expelled by all of the fits. The errors in the shifts of the bands are in
each case =1 mRy.

Band shifts/mRy Electron +/—

Ag Band 6
IPM -21.2 +0.08
IS -18.3 +0.07
SD -14.2 +0.05
\Y Band 2 Band 3
IPM +22.3 -15.8 +0.14
JS +26.5 -154 +0.10
SD +18.8 -16.4 +0.17
Cr Band 3 Band 4 Band 5
IPM -25.1 +15.6 +13.2 -0.02
JS -22.9 +12.2 +13.2 -0.01
SD -18.5 +5.0 +13.2 0.02

PHYSICAL REVIEW B 82, 125127 (2010)

S
N

=
IS

—_
)

121

momentum density (arb. units)

=3
=

momentum density (arb. units)

4
'S

e
o

momentum density (arb. units)

‘

I

I

|

| L
I

|

I I
I I
| |
I I
I I
I I
I I
I I
I I
| |
I I
I I
I I
I I
I I
I I
| |
I I
! |

HN N NH TN N TN

FIG. 5. (Color online) The rigid-band fit to the RMD of (a) Ag,
(b) V, and (c) Cr shown in Fig. 4, shown here along a path in the
BZ.

nounced, however. The d bands are well known to be placed
too low by the LDA with respect to sp bands. As noted in
Ref. 15, band 2 (of predominantly d character) is pushed up
in energy by the fit toward the higher p character of band 3,
which is pulled down by the fit, correcting this tendency.
The energy shifts of the bands are also in good agreement
with quantum oscillations. Comparing the semiaxis radii of
the ellipsoids with high-quality dHVA parametrizations (see
Table IV), we find much improved correspondence with ex-
periment than the raw calculation, and indeed they compare
favorably with the shifts of Ref. 15. The differences in the
results of Ref. 15 and the current k-space approach reflect
the different sensitivity of the two techniques to specific fea-
tures of the data (for example, compare the N-P radius with
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TABLE IV. Comparison of the semiaxis radii (in units of 27/a)
of the N-hole ellipsoids from our raw LMTO calculation and the
fitted SD momentum density for V. Comparisons are made with the
high-precision parametrizations of dHvA data of Ref. 38 as well
with the fitting technique (also applied to 2D-ACAR data) em-
ployed by Ref. 15. The errors reflect the error in locating the mini-
mum of the fit with respect to the shift in the bands. Note that the
dHVA radii rely on the assumption of perfect ellipsoids.

Direction LMTO Ref. 38 dHVA SD fit Ref. 15 fit
N-P 0.257 0.223 0.224 +0.002 0.245
N-I' 0.254 0.212 0.204 +0.002 0.231
N-H 0.168 0.176 0.146 £0.001 0.160

the N-H radius). It is also worth mentioning that the jungle-
gym FS also originates from band 3, and that this will also
contribute to the shifts of this band, and so considering the
orbits about the N ellipsoids alone may be misleading. Un-
fortunately, there is a dearth of data for this sheet of FS, and
comparisons are hard to draw. As a final point, quantum os-
cillations appear to be relatively insensitive to the FS of band
2, whereas we find a strong dependence of our fit to that
band, in agreement with other positron studies in V.3>36

Finally, for Cr [Fig. 5(c)], the data are reasonably well
described by the SD model throughout the BZ, whereas the
IPM and JS models struggle near the I'N points in both the
raw band calculations and the rigid-band fits. In the absence
of high-precision FS data for paramagnetic Cr, owing to the
ordering temperature (T~ 312 K) of the spin-density wave,
a robust comparison can instead be made of the nesting vec-
tor of the paramagnetic FS that is widely believed to deter-
mine the ordering (and has remained difficult to establish
experimentally). High-resolution neutron-diffraction mea-
surements have established the ordering vector to be
Q=(0,0,0.9516)(27/a) (see Ref. 39 and references therein).
Our raw LMTO calculations predict [via a computation of
the static susceptibility, xo(q), see, for example, Ref. 48] a
nesting vector q~0.930(27/a) (see Fig. 6), which is rather
smaller than the neutron measurements. Since quantum
oscillations are precluded in the paramagnetic phase
(and have recently remained unobserved from the relevant
FS sheets in the ordered phase owing to strong spin-
fluctuation-induced scattering®?), the only data on the FS that
has been capable of extracting this nesting vector have been
some recent angle-resolved photoemission measurements on
Cr(110) thin films,***° in which a nesting vector of
q~0.950+0.005(27/a) is reported, in very good agreement
with neutron measurements. Our rigid fit to the data
(Fig. 6) culminates in a FS nesting vector of
q~0.950+0.002(27/a), where the error quoted is the com-
bined error from shifting the two bands to match the experi-
mental results, representing the highest-precision experimen-
tal confirmation of the relevant dimensions of the FS of
paramagnetic Cr from a bulk measurement. In contrast to
this excellent agreement, the shifts of the bands obtained
using the IPM and JS models suggest nesting vectors of
q~0.924+0.002(27/a) and q~0.932+0.002(27/a), re-
spectively.
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FIG. 6. (Color online) The real (top) and imaginary (bottom)
parts of the static susceptibility, xo(q), of paramagnetic Cr, calcu-
lated for the raw band LMTO calculations as well as the results of
the rigid-band fit to the data with the IPM, JS and SD models of
enhancement. The dashed vertical line represents the peak in the
real part of the susceptibility. The inset shows a slice of the FS
through the (001) plane, with the arrow depicting the nesting that
gives rise to the peak in Jmy,(q) between the hole (outer, red) and
electron (inner, blue) FS sheets.

The conclusions we draw from this section are the follow-
ing. First, our approach provides a robust empirical means of
measuring the orbital electron-positron enhancement factors
that are truly state dependent (i.e., k dependent). Second, this
measurement is not so strongly dependent on the accuracy of
the band calculation, being rather more sensitive to the over-
all shape of the momentum distribution. Third, simultaneous
fitting of the energy bands and the orbital enhancement lead
to a tuned FS that is in better agreement with other FS data
than is the raw band calculation, as well as in good agree-
ment with previous p-space fitting approaches. Finally, the
band shifts that are required to reproduce experimental data
(that is in better agreement) are generally smaller for the SD
model than the other approaches investigated here, indicating
that artificially large rigid shifts in the bands can develop as
a consequence of an inadequate description of the
enhancement.

IV. SIMPLE METALS

We now turn to the other regime of enhancement, in
which the bands, of sp character, are closer to the nearly
free-electron model. Aluminum and the alkali metals (and
their alloys) provide a more stringent test for the SD model.
The electron-gas parameter of Al is r;=2.65, above the point
at which the JS (which does not conserve the low-density
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rigid fit

FIG. 7. (Color online) Comparison between experimental data
for Al projected down the [111] axis and the computed RMD for
IPM, JS, and SD models. (a) The raw LMTO band calculation and
(b) the results of the rigid fitting of the energy bands. The high-
symmetry points in projection (I'L, X, and W) are shown in (a), and
the boundary of the first BZ is marked by the dotted line.

limit) and the BN (which does) begin to diverge; as a con-
sequence JS is not expected to perform well here.

The FS of Al is composed of two bands, one which forms
a I'-centered hole sheet from band 2 that lies completely in
the first BZ and from band 3 a so-called “dismembered mon-
ster” that consists of square electron rings that run the length
of the edges of the first BZ except at the corners (W
points).’! Two 2D-ACAR projections along the [110] and
[111] directions were measured at room temperature and
compared with LMTO calculations performed over 1505 k
points in the irreducible BZ using the IPM, JS, and SD en-
hancements as before.

In Fig. 7, the data for the [111] projection are shown
alongside the LMTO calculations of the RMD. The FS struc-
ture can be clearly seen in the data (shown in the bottom
right panel), where the low density in the center reflects the
band 2 hole sheet, and the higher density at the edges of the
projected BZ come from the electron rings of band 3. At the
corner of the projected BZ (near the W point), the particu-
larly high region is due to the projection of the rings in
neighboring zones along the (111) directions. As can be seen
in the left panels of Fig. 7, the IPM and JS models are par-
ticularly poor at describing the enhancement at the edges of
the zone that connect these strong features. Moreover, a
small local peak at I'L that is predicted by both IPM and JS
is not observed at all in the data. Quantitatively, as might be
expected from the electron density of Al, the JS model fairs
poorly for the raw band calculation, and even worse than the
IPM (see Table V). The SD model, however, does an excel-
lent job of describing the RMD of Al, correctly accounting
for the absence of the local peak at I'L and the connectivity
of the strong features near W, and leading to an almost order-
of-magnitude improvement in the x7, parameter. Here, the s
states are de-enhanced substantially, presumably owing to
them lying very low in energy. Unlike the previous
d-electron systems, the de-enhancement of the (unoccupied)
d states is not observed for Al.

When the bands are fitted, the agreement between data
and theory for each model is very good. However, for the
IPM and JS models the local peak at I'L persists, albeit at a
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TABLE V. The results of the fit between the different parametri-
zations of the enhancement and the data for Al, shown in the same
way as Table II. The band shifts that accompany the rigid-band fit
are shown in Table VL.

Ys Yy Ya Y szed
Raw band
IPM 15.40
JS 17.20
SD 0.53 1.00 (1.29) (0.60) 2.29
Rigid fit
IPM 3.93
JS 3.92
SD 0.60 1.00 (1.09) (0.72) 2.12

much weaker amplitude. Moreover, consistent with the pre-
vious conclusions, the shifts in the energy bands are substan-
tially larger for the IPM and JS models than the SD model
(see Table VI), leading to an electron excess of ~0.21 (over
a single FS sheet). For the SD model, this discrepancy is
much reduced, at just 0.07 electrons. Similarly to Ag, the FS
of Al is already well described by the LMTO calculation, and
comparisons with quantum oscillatory data’>>3 agree with
the raw band and SD rigid-band fit to within Akg
~0.03(27/a) (~15% of the resolution function).

V. PHENOMENOLOGICAL MODEL

Given the above results, we aim to find a phenomenologi-
cal model that imparts predictive capability on the calcula-
tion of the RMD. Taking the SD fitted FS as a baseline, we
attempt to improve on the SBA model of the enhancement.
The predictions of the SBA enhancement are, in general,
satisfactory, offering a similar description of the experimen-
tal RMD (in some cases slightly better, in others slightly
worse) to the JS enhancement model. The predictions of the
SBA model can be understood largely from the perspective
of the localization of the states in which s and p states expe-
rience similar enhancement over the IPM, with the s states in
transition metals slightly less than p due to their slightly
more localized nature in these systems. The d states are en-
hanced much less in the transition metals, associated with the
greater localization, and the increasing localization as the d
band becomes more filled is reflected by the greater de-
enhancement of the d states in Ag when compared with ei-
ther Cr or V.

The Kahana model for enhancement, applied to a
homogeneous electron gas and parametrized in terms of
(k/kg)?, is not expected to work well for d-band systems, in
which the effects of the crystal lattice can completely hide
the Kahana nature. For this reason, Mijnarends and Singru
(MS) (Ref. 16) proposed a scheme parametrized by
e=(E-E,,)/(Er—E,,), where E, is the energy at the bot-
tom of the conduction band,

y=a+be+cé, (10)

where a, b, and ¢ are constants determined by the electron-
gas parameter r,. For a parabolic s band this is identical to
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TABLE VI. The shifts in the energy bands for each of the rigid-
band fits of Al.

Band shifts/mRy Electron +/—

Band 2 Band 3
IPM -39.2 -30.0 +0.21
JS -40.0 -33.7 +0.22
SD -11.9 -10.2 +0.07

Kahana’s formalism. MS demonstrated the applicability of
their prescription for the case of Cu in which substantial
improvement was found (in p space) with this description.
The SBA model accounts for the variations in enhancement
due to the localization of a particular orbital, and its overlap
with the positron wave function, but does not consider the
proximity of a state to the Fermi level, leading to an overes-
timation of the enhancement of more tightly bound, filled s
electron shells. Adding such a scheme to the SBA model was
not found to universally explain the variations in enhance-
ment for our experimental data without different choices of
the constants a, b, and c [in fact, following MS, we choose to
set a=1 in Eq. (10) so that b—b/a and c—c/a].

Of particular interest in this analysis is the enhancement
for V and Cr, which are neighbors in the periodic table and
would therefore, from the perspective of a homogeneous
electron gas, be expected to follow similar trends in their
enhancement owing to their similar electron density. As can
be seen in Table II the measured enhancement of V and Cr is
quite different, and yet V and Cr can each be well approxi-
mated by a calculation of the other’s electronic band struc-
ture, with a simple extrapolation of Ey to account for the
different band fillings (i.e., the rigid-band approximation
works well). The usual prescriptions for enhancement, in
terms of the electron density, or even a MS-type energy-
dependent enhancement, fail to predict such different shell
enhancements. Substituting the measured SD enhancement
parameters for Cr into the V calculation, and vice versa, is
not found to describe the data well, enforcing the idea that
the enhancement is substantially and fundamentally different
for these two elements. Since V and Cr are electronically
very similar, exhibiting the same body-centered-cubic struc-
ture, the largest difference between the two is in their band
filling and FS. In V, Ef lies close to a peak in the d density of
states with appreciable (~20%) p character, leading to a to-
tal number of states at Ep of N(Ep)=23.80 states/Ry/atom. In
paramagnetic Cr, on the other hand, the additional electron
places Ef in a valley between the bonding and antibonding d
states with N(Eg)=9.52 states/Ry/atom. It follows that the
number of electrons that are capable of screening the posi-
tron impurity (and thus lead to the enhancement of the anni-
hilation rate) in V and Cr is very different, and cannot be
captured by considerations of the electron density or energy
alone. However, such a concept does provide a route to un-
derstanding the different SD enhancement models in V and
Cr, and the different constants b/a and c¢/a in Eq. (10) that
are required to explain the data.

In order to test such a correction to the enhancement, we
apply a MS-type enhancement to the SBA model, which is
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TABLE VII. The linear component of MS-type energy-
dependent enhancement (b/a) obtained by fitting the SBA model to
the data. N(ER) is given in units of states/Ry/unit cell, and the qua-
dratic term, ¢/a, in Eq. (10) is set to 0. The x2, parameter is given
before (SBA) and after (SBA-MS) the application of the MS-type
enhancement.

SBA SBA-MS

X?ed N(EF) bla X?ed
v 20.41 23.80 0.700 4.30
Cr 2.50 9.52 0.202 1.39
Ag 4.71 3.60 0.042 4.50
Al 7.90 5.04 0.589 2.28

then fitted to the experimental data. According to Kahana’s
theory, the quadratic part of the enhancement parametrization
is fairly weak, with ¢/a=0.138 for metallic densities, and
can be well approximated by just a linear component (b/a).
Here, we adopt just this linear energy enhancement, and set
¢/a=01in Eq. (10), leaving just a single fitting parameter that
is capable of adjusting the shape of the computed RMD,

Ysea-ms = Yspall + (b/a)e]. (11)

The results of such a model, which we refer to as SBA-MS
enhancement, are found to enormously improve the agree-
ment between data and theory for all materials (see Table
VII), leading to xZ, parameters that approach the SD model
investigated in Sec. III. Moreover, for the three transition-
metal elements addressed in this paper, this linear component
of energy enhancement is found to scale with the density of
states at the Fermi level (Table VII), providing an empirical
model for the enhancement of d-band elements and com-
pounds. For s-p electron metals, the enhancement is found to
more closely resemble Kahana’s parameters, and two re-
gimes emerge—Kahana’s prediction for s-p simple metals,
and a N(Eg)-dependent set of parameters for d electron met-
als. It is interesting to compare our results for an MS-type
enhancement to those applied by Matsumoto and Wakoh for
Cr,?? in which they obtain a factor b/a~0.15 in a nonopti-
mized approach, very close to our 0.20. On the other hand,
Genoud,” employing an MS-type enhancement indepen-
dently for s, p, and d electrons in V, obtained b/a=0.1-0.2
for s and p electrons, also in a nonoptimized way, which is
somewhat smaller than the optimum b/a=0.70 that we find.
Here, as for the SD model, the core annihilations are de-
scribed as a flat background in k space, and it is worth point-
ing out that the SBA-MS model, in its current (valence) for-
mulism, would not be expected to work well for core
annihilation rates. For coincidence Doppler broadening spec-
tra, a satisfactory core momentum distribution in p space can
be obtained using other methods (e.g., Refs. 5 and 6).
Armed with such a model for the enhancement, we can
now assess its validity for another metal, specifically the d
electron metal Mo, for which we have just a single [110]
projection available, insufficient to permit a reliable fit of the
y; parameters of the SD model. Instead, we apply the

125127-11



LAVEROCK et al.

momentum density (a.u.)
momentum density (a.u.)

HN N NH TN N TN N NH TN N T'N

o
F4

FIG. 8. (Color online) Comparison between experimental data
and the corresponding theoretical quantities in the raw IPM and
rigid-band fit SD models of enhancement for (a) Cr and (b) Mo. The
RMD is shown along a path in the BZ in (c) and (d) for Cr and Mo,
respectively.

SBA-MS model to the data in which the v,’s are computed
from the partial annihilation rates of state / and the energy-
dependent enhancement is provided from N(Ep)=7.6 states/
Ry/atom and our preceding fit. For comparison, we also com-
pute the IPM and JS RMD. Both the JS and SBA models of
enhancement, by themselves, offer negligible improvement
over the IPM, which already provides a reasonable descrip-
tion of the data, and the application of the SBA-MS model
improves the agreement only modestly by ~4%. However,
lending freedom to the linear component b/a is not found to
provide any additional improvement, emphasizing that the
original IPM calculation was already satisfactory.

One of the unresolved questions of 2D-ACAR in transi-
tion metals is why the k-space density of Cr and Mo (pro-
jected along the [110] direction) appear so different, despite
the apparent similarity of their isoelectronic and isostructural
FS topology*® [see Figs. 8(a) and 8(b)]. In Ref. 43,
maximum-entropy filtering techniques were employed to as-
sess the FS breaks in both distributions, ruling out the FS
topology as an explanation; the question of whether positron
effects or consequences of the proximity to magnetic struc-
ture in Cr are to blame were left open and have remained so
despite several efforts to resolve the issue, both experimen-
tally and theoretically.’*® Here, we are able to solve this
issue, which stems from a strong overestimation of the en-
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hancement near I'N in Cr, previously highlighted in Fig. 3.
In Figs. 8(c) and 8(d), the RMD along a path in the BZ is
shown for both Cr and Mo for the 2D-ACAR data, and the
IPM and SBA-MS models of enhancement. It is clear that
the IPM (which resembles the JS model) looks similar for
both metals, eliminating positron wave-function effects
(which are included in the IPM) as responsible for the strong
difference in the data. On the other hand, the SBA-MS pre-
diction (which closely resembles our measured SD model),
accounts for the data very closely, unambiguously establish-
ing enhancement effects as the key.

VI. CONCLUSIONS

We have presented a detailed investigation of the positron
enhancement factor for several metals, providing a quantita-
tive measurement of the state dependence of the enhance-
ment. By combining this with a rigid shift of the energy
bands, we demonstrate that, when the band structure is opti-
mized to 2D-ACAR measurements, the precise location of
the Fermi breaks in k space is sensitively dependent on the
accuracy of the enhancement model used in the calculation.
Furthermore, we show that, by employing a state-dependent
model for the enhancement, much improved agreement be-
tween the tuned calculation and high-precision quantum os-
cillatory data can be obtained. In particular, for Cr our posi-
tron measurements yield a nesting vector that is in excellent
agreement with neutron measurements of the spin-density
wave ordering vector, with an estimated accuracy better than
0.5% of the BZ. Although alloys have not been investigated
here, this approach also allows for the contribution from dif-
ferent atomic sites to be separated in the experimental data,
allowing a determination of the fraction of annihilations
from each individual element’s hybridized wave functions
(for example, see Ref. 57). While the current method (SBA-
MS) was developed to assist in FS determination in metals,
the SBA scheme (without the MS extension) could also be
used in interpreting two-photon momentum distributions in
insulators and semiconductors.

Comparisons of our (empirical) model with other popular
models of the enhancement have been made, particularly
with the ab initio state-dependent model of Barbiellini, Ala-
talo, and co-workers,” for which a semiempirical energy-
dependent correction is proposed that is found to bring the
theory into much better agreement with the data. Such a
combined model therefore provides an accurate model for
the enhancement in momentum density measurements, such
as those of 2D-ACAR or coincidence Doppler broadening
techniques.
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