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We investigate the ground-state and low-temperature properties of the integrable version of the Penson-
Kolb-Hubbard chain. The model obeys fractional statistical properties, which give rise to fractional elementary
excitations and manifest differently in the four regions of the phase diagram U / t versus n, where U is the
Coulomb coupling, t is the correlated hopping amplitude, and n is the particle density. In fact, we can find local
pair formation, fractionalization of the average occupation number per orbital k, or U- and n-dependent average
electric charge per orbital k. We also study the scaling behavior near the U-driven quantum phase transitions
and characterize their universality classes. Finally, it is shown that in the regime of parameters where local pair
formation is energetically more favorable, the ground state exhibits power-law superconductivity; we also
stress that above half filling the pair-hopping term stabilizes local Cooper pairs in the repulsive-U regime for
U�Uc1=−2t cos�n� /2�.
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I. INTRODUCTION

Twenty years ago, Haldane1 formulated a generalized
dimensional-independent version of fractional statistics
based on state counting methods, i.e., a generalized exclusion
statistics, suitable to describe interacting many-particle sys-
tems in condensed matter. The elements of the statistical ma-
trix interaction, g��, are defined by the linear relation

�D� = − �
�

g���N�, �1�

which determines the variation in the available single-
particle states to species �, i.e., �D�, caused by a set of
allowed changes ��N�� on the number of occupied single-
particle states of the species �fractional elementary excita-
tions�. Subsequently, Wu2 �see also Refs. 3 and 4� developed
the notion of an ideal excluson gas, whose thermodynamic
properties interpolate continuously between that of a nonin-
teracting Bose gas �g��=0� and that of a noninteracting
Fermi gas �g��=����. In addition, this formalism has the
advantage of including Bethe-Ansatz solvable models as a
special case, where the two-body phase shift is transmuted
into the statistical interaction.4–8 The importance of general-
ized exclusion statistics, however, lies to a considerable ex-
tent in the several attempts to account for a variety of
condensed-matter phenomena using generalized exclusion
statistics, such as: fractional quantum Hall effect,1,2,9 low-
temperature properties of Luttinger liquids,10 Mott
insulator,11 transport through a one-dimensional wire within
the Landauer-Büttiker approach,12 trapped two-dimensional
Bose gas with a repulsive delta-function interaction,13 and
adsorption of polyatomics.14 Further, other Hamiltonian
models obeying fractional exclusion statistics have been
studied, such as: multicomponent Sutherland model,15

quantum Calogero model,16 model describing one-
dimensional relativistic fermions interacting with the Toda
array of N scalar fields,17 Hubbard model with infinite-range

interaction,18 exclusion statistics and signature of strongly
interacting anyons,19 strongly interacting one-dimensional
Bose gas,20 gas of neutral fermionic atoms at ultralow tem-
peratures with the attractive interaction tuned to Feshbach
resonance,21 phase transitions and pairing signature in
strongly attractive Fermi atomic gases,22 entanglement en-
tropy in the Calogero-Sutherland model,23 statistical correla-
tions in an ideal gas of particles,24 and many-spinon states
and representations of Yangians in the SU�n� Haldane-
Shastry model.25

Recently, the authors26 have shown that the exactly solv-
able Hubbard chain with bond-charge interaction is mapped
onto an ideal gas of three species of exclusons. Remarkably,
the statistical matrix for this model with on-site interaction is
the same found for the Hubbard model with infinite-range
interaction.18 In addition, we have shown that the map was
crucial in clarifying several physical aspects of the model.
On the other hand, considerable progress has been made to
elucidate the underlying physics of the Hubbard model,27

and several of its variants, after Anderson’s suggestion28 that
the single-band Hubbard model could be the starting point to
explain high-Tc superconductivity,29 possibly associated with
short-ranged pairing formation in real space. An interesting
modified version of the Hubbard Hamiltonian that has been
studied in order to turn light on this subject is the Penson-
Kolb-Hubbard �PKH� model,30–35 which is a variant of the
model put forward by Penson and Kolb �PK�,36 just before
the announcement of the discovery of high-Tc superconduc-
tivity, as an alternative to the attractive-U Hubbard model.

Since the proposal of the PK model, some controversy
concerning the equivalence between the two above-referred
models has been noticed in the context of numerical exact
diagonalization and renormalization-group studies.30,37 In
any event, further strong evidence,38,39 including also results
using density-matrix renormalization-group and Luttinger-
liquid approaches, point to the conclusion that the one-
dimensional PK model at half filling with nonzero attractive
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pair-hopping amplitude exhibits no phase transition �it takes
place at zero pair-hopping amplitude Y, characterized by an
essential singularity for the spin gap, �s�e−�t/Y�: the ground
state �GS� displays nonzero �zero� spin �charge� gap with
charge and superconducting correlation functions governed
by power-law behavior, in agreement with results for the
attractive-U Hubbard chain. On the other hand, in the repul-
sive case a spin-gap transition occurs at a finite value of the
pair-hopping integral, such that the charge gap closes and a
spin gap opens.38

These studies have been extended to higher dimensions
and for electron densities away from half filling;40,41 in the
strong-coupling regime some discrepancies between the two
models have been pointed out and attributed to the nonlocal
pairing mechanism in the PK model. We also mention that
rigorous results point to the equivalence of the models,42 as
far as the superconducting phase is concerned, and that in the
PK model the superconducting condensation can only hap-
pen for 	 pairing at zero wave vector �local Cooper pairs�.

The inclusion of Coulomb interactions, in addition to the
pair-hopping term, as in PKH model,30 opens the possibility
of studying 	-pairing induced superconductivity even in
systems for which the standard Coulomb interactions are
repulsive. In fact, the PKH model has been studied by sev-
eral authors using a variety of techniques, such as, real-
space renormalization group,31 Bethe-Salpeter equation,32

continuum-limit field theory �bosonization�,33 and Hartree-
Fock approximation.34,35

We also stress that for the standard on-site repulsive Hub-
bard model Yang showed43 that the 	-pairing mechanism
give rise to metastable states,44 although the idea was largely
used to obtain a more deep understanding of the Hubbard
model45,46 and to proposals of integrable extended repulsive
or attractive Hubbard models with phases exhibiting stable
	-pairing states.47 Moreover, generalizations of 	 pairing for
high-spin fermions have been suggested,48 and the connec-
tion between 	-pairing quantum entanglement and off-
diagonal long-range order clarified.49 Lastly, in an experi-
mental context, it has been suggested50 that 	 pairing, with
nonzero momentum of the Cooper pairs, and d-wave
superconductivity may coexist in the Fulde-Ferrel-Larkin-
Ovchinnikov phase.

In this work, we consider the integrable version of the
PKH chain.51 In Sec. II this model Hamiltonian is introduced
and its mapping onto an ideal excluson gas is discussed. In
Sec. III the GS phase diagram of the model is analyzed and
its quantum phases characterized with the help of fractional
statistics concepts. In particular, we calculate the 	-pairing
correlation function at zero wave vector43 and the GS energy
as a function of the twisted angle in the boundary conditions.
Section IV is devoted to obtain the universality class of the
several quantum phase transitions exhibited by the model.
Finally, concluding remarks follow in Sec. V.

II. MODEL AND EXCLUSION REPRESENTATION

The model we consider is defined on a linear chain of L
sites and expressed by the Hamiltonian51

H = − t �
�i,j�,


�1 − ni
̄�ci

† cj
�1 − nj
̄� + U�

i

ni↑ni↓

+ Y�
�i,j�

ci↑
† ci↓

† cj↓cj↑ − h�
i

�ni↑ − ni↓� , �2�

where �i , j� denotes nearest-neighbors sites, ci
�ci

† � are elec-

tron annihilation �creation� operators, ni
=ci

† ci
 is the num-

ber operator, 
= ↑ ,↓, 
̄�−
, t is the correlated hopping
amplitude, which allows motion of electrons from singly oc-
cupied sites to empty ones only,51 U is the on-site Coulomb
interaction,30 Y is the pair-hopping amplitude,36 and h
=g�BH /2 �g is the gyromagnetic factor and �B is the Bohr
magneton� is the interaction energy with the external mag-
netic field along the z direction �not considered in Ref. 51�.
We remark that the pair-hopping term stem from the off-
diagonal contribution of the Coulomb interaction in a general
tight-binding Hamiltonian as originally analyzed by
Hubbard,27,31 i.e., Y = �ii	e2 /r	j j�. Attractive �Y �0� intersite
pair hopping has been suggested to occur through various
mechanisms, such as, electron-lattice coupling or hybridiza-
tion effect.52 From now on, we confine to the case

Y = − t �3�

so that the resulting model is exactly solvable.51 In this case,
under open boundary condition, any sequence of ↑, ↓, and ↑↓
spins is a preserved quantity and labels invariant subspaces
of H.51 Let

N1 = �
i

ni↑�1 − ni↓�, N2 = �
i

ni↓�1 − ni↑� ,

N3 = �
i

ni↑ni↓ �4�

be the total number of single-up, single-down, and doubly
occupied sites, respectively. The spectrum in each invariant
subspace in the thermodynamic limit thus reads51

E�NA,N� = �
k

�knk + UN3 − h�N1 − N2� , �5�

where �nk� are Fermi quantum numbers, nk=0,1 per orbital,
with k= 2�

L �=− L
2 +1 , . . . , L

2 �, and

�k = − 2t cos k . �6�

Notice that the first term in Eq. �5� has a spinless character.
The total number of particles is given by

N = N1 + N2 + 2N3 �7�

and

�
k

nk = N1 + N2 + N3 � NA, �8�

where NA is the total number of singly and doubly occupied
sites. At fixed N1, N2, and N3 the degeneracy of E is deter-
mined by

g�N1,N2,N3� =
NA!

N1!N2!N3!
. �9�

Note that, since N2=NA−N1−N3,
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�
N1=0

NA−N3

g�N1,N2,N3� = 22NA−N
 NA

N − NA
� �10�

is the degeneracy of E in zero field and at fixed N3=N−NA
�see Eq. �8� of Ref. 51. In the presence of a magnetic field,
the grand-canonical partition function can be written in the
form

Z��,�,h;U� = �
NA=0

+�

�
N3=0

NA

�
N1=0

NA−N3 NA!e−��E−�N�

N1!�NA − N3 − N1�!N3!
,

�11�

where �=1 / �kBT� is the inverse temperature, � is the chemi-
cal potential, and E−�N=�k��k−�+h�nk+ �U−h−��N3
−2hN1. This sum is evaluated at once by using the binomial
theorem

Z��,�,h;U� = �
�nk�

e−��k��k−�ef f�nk = �
k

�1 + e−���k−�ef f� ,

�12�

where

�ef f��,�,h;U� = � +
1

�
ln�2 cosh��h� + e−��U−�� . �13�

As expected, for h=0 this effective chemical potential re-
duces to that reported in Ref. 51.

In Ref. 26, the authors have pointed out that the thermo-
dynamic properties of the model in Eq. �2� is that of an ideal
excluson gas with three fractional species, �nk,��,

�N�� � �
k

�nk,�� , �14�

identified as single-up ��=1�, single-down ��=2�, and
paired ��=3� carriers, coupled by the statistical matrix

�gkk�;��� = �kk��1 1 1

0 1 1

0 0 1
� �15�

with corresponding species energies �k,�, where

�k,1 = �k − h − � , �16�

�k,2 = �k + h − � , �17�

�k,3 = �k + U − 2� . �18�

We remark that the energy of species 3 has an additional
dispersive contribution, �k, which precludes any condensa-
tion phenomenon, as observed in the Hubbard model with
bond-charge interaction studied in Ref. 26. Clearly, the first
term of the product form in Eq. �15�, i.e., �kk�, gives a fer-
mionic character to the momentum degrees of freedom while

the 3�3 matrix represents nontrivial effects associated with
spin degrees of freedom. In fact, the grand canonical free
energy is given by

� = −
1

�
�
k,�

ln�1 + wk,�
−1 �

= −
1

�
�

k

ln�1 + e−��k,1 + e−��k,2 + e−��k,3�

= −
1

�
ln Z , �19�

where Z is given by Eq. �12� and wk,� satisfies the
Haldane-Wu distribution1,2

�1 + wk,���
�=1

3 
 wk,�

1 + wk,�
�g��

= e��k,�. �20�

We can also verify that the thermal average occupation num-
ber of the fractional species, �nk,��, satisfies the exclusion
relation2

�nk,��wk,� = 1 − �
�=1

3

g���nk,�� , �21�

where

�nk,�� =
e−��k,�

1 + �
�=1

3

e−��k,�

, �22�

�nk� =
1

e���k−�ef f� + 1
, �23�

and the grand-canonical energy reads

�E� − ��N� = �
k,�

�k,��nk,�� . �24�

We remark that �nk� obeys a Fermi-type distribution with
�ef f given by Eq. �13�.

III. GROUND-STATE PHASE DIAGRAM AND
FRACTIONAL ELEMENTARY EXCITATIONS

In Fig. 1�a� we show the GS phase diagram in zero field
calculated in the U / t−n plane,51 where n�N /L is the par-
ticle density, obtained by minimizing the GS energy with
respect to the fractional species; note the absence of particle-
hole symmetry around n=1. In this figure,

Uc1

t
= − 2 cos
n�

2
�,

Uc2

t
= − 2 cos�n��,

Uc3

t
= 2

�25�

are critical lines separating distinct quantum phases and Uc2
and Uc3 intersect at the quantum critical point �QCP�. The
plot of the chemical potential as a function of n is illustrated
in Fig. 1�b� for U= t. Note that the plateau is associated with
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region �II�, and its edges separate region �II� from regions �I�
and �III� �see Ref. 51, including temperature effects�.

Region �I� is a nonentropic metallic phase �however, see
the 	-pairing correlation function below� in which only the
fractional species 3 is energetically favorable

�nk,1� = �nk,2� = 0, �26�

�nk,3� = ��Uc1 − �k� , �27�

where ��x� is the step function. Therefore, the Fermi surface
is defined by the k vectors ��kF1�, where

kF1 =
n�

2
. �28�

The GS energy per site is obtained from Eqs. �5� and �28�

E1�n�
L

= �
−kF1

kF1 dk

2�
�k +

nU

2
= −

2t

�
sin�n�/2� +

nU

2
�29�

and the GS chemical potential is given by

�1�n� =
��E1/L�

�n
=

U

2
− t cos�n�/2� . �30�

As expected, Eqs. �29� and �30� are in agreement with Eq.
�24�. Thus, the GS charge compressibility

�1
−1�n� = 
 ��1

�n
�

T=0
=

�t

2
sin�n�/2� �31�

is finite inside region �I� as well as in the limit U→Uc1
− . A

plot of the corresponding fractional elementary excitations
�FEE� for this phase is shown in Fig. 2�a�, for n=2 /3 and
U=−5t. In this figure, all k states in the interval �−kF1 ,kF1
are occupied; this band of exclusons 3 is separated from the
twofold spin-degenerate dispersive bands of exclusons 1 and
2 by the gap

�1 = �1 − U �32�

so that charge gapless excitations are composed of excita-
tions of species 3 across the Fermi surface ��kF1�. Notice
that in region �I� the system is characterized by zero �non-
zero� charge �spin� gap, in agreement with results for the PK
model.38

The 	-pairing correlation function for local Cooper pairs

G	�j,m� = ��0	cm↓
† cm↑

† cj↑cj↓	�0� , �33�

where 	�0� is the GS of the system, allows us to test the GS
superconducting properties in region �I�. In order to calculate
G	�j ,m�, it is useful to use a Jordan-Wigner-type transfor-
mation

dj � exp� i�

2 �
l=1

j−1

�nl↑ + nl↓��cj↑cj↓, �34�

which, acting in the subspace with no single carrier, satisfies
the anticommutation rules for fermionic operators: �dj ,dm�
= �dj

† ,dm
† �=0 and �dj

† ,dm�=� j,m. At low temperatures, these
local Cooper pairs obey a Fermi-type distribution, as in the
attractive-U Hubbard chain,53 with effective chemical poten-
tial �using Eq. �30� in Eq. �13�

�ef f ,1 = − 2t cos kF1 + O�kBT�2. �35�

In fact, this is consistent with our mapping onto an ideal gas
of three species of exclusons and the fact that, in region �I�
and low T, �k�nk��N3 �see Eqs. �8� and �23�. In terms of
the Fourier transform of dj

†, defined by

dk
† =

1
�L

�
m

eikmdm
† , �36�

the GS in region �I� reads

-4

-2
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2

4

0 0.5 1 1.5 2

U

n
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(IV)

QCP
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Uc2

-2

0

2

0 0.5 1 1.5 2

µ

n

U = 1

(b)

Region (III) Region (II) Region (I)

FIG. 1. �Color online� �a� GS phase diagram in zero field �see
Ref. 51�. Capital letters I denote insulating phases, otherwise the
GS is metallic. Lines Uc1 and Uc2 are associated with MMT while
line Uc3 and the QCP are associated with MIT. �b� GS chemical
potential as a function of the band filling. The region of plateau
corresponds to values of n in region �II�, being associated to large
fluctuations in k space. �Energies in units of t.�
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FIG. 2. �Color online� Fractional elementary excitations in zero
field. �a� In region �I�, a gap �1=2 separates the band of exclusion
3 from the empty degenerate band of exclusions 1 and 2. �b� In
region �II�, the degenerate band of exclusions 1, 2, and 3 give rise to
an effective spinless band. �c� In region �III�, a gap �2=2 separates
the effective spinless band of exclusions 1 and 2 from the band of
exclusions 3 empty. �d� In region �IV�, the hopping motion is frozen
and then the GS is insulating. �Energies in units of t.�
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	�0� = �
	k	�kF1

dk
†	0� = 
 1

�L
�N3

� �
�ni�

�det�k1,k2, . . . ,kN3
;n1,n2, . . . ,nN3

�

� 	n1↓↑,n2↓↑, . . . ,nN3
↓↑�� , �37�

where 1�n1�n2� ¯ �nN3
�L and

det�k1,k2, . . . ,kN3
;n1,n2, . . . ,nN3

�

= �
P

�− 1�pP�eik1n1eik2n2 . . . eikN3
nN3� , �38�

where P is a permutation operator which generate all pos-
sible permutations of �n1 ,n2 , . . . ,nN3

� and p is the number of
interchanges in P, as expected in view of the mapping of H
onto a free spinless Fermi gas Hamiltonian with each exclu-
son 3 �local Cooper pair� carrying a charge 2e per orbital k

H − U�
i

ni↑ni↓ ↔ − t�
�i,j�

di
†dj � Hef f , �39�

and 	n1↓ ↑ ,n2↓ ↑ , . . . ,nN↓↑�↔ 	n1 ,n2 , . . . ,nN�. Now it is
straightforward to express G	�j ,m� in terms of dj and cj


G	�j,m� = ��0	dm
† dj	�0� − ��0	cm↓

† cm↑
† cj↑cj↓

� �exp� i�

2 �
l=m

j−1

�nl↑ + nl↓�� − 1�	�0� , �40�

where m� j is assumed. In the thermodynamic limit, how-
ever, only the first expectation value survives �see Appendix
A�

lim
L→�

G	�j,m� =
1

L
�

k

eik�j−m���0	dk
†dk	�0� =

sin kF1	j − m	
�	j − m	

,

�41�

which endows to the correlation function a critical power-
law behavior. On the other hand, the charge-density correla-
tion function reads

lim
L→�

Gc�j,m� = �dj
†djdm

† dm� − �dj
†dj��dm

† dm�

= − � sin kF1�j − m�
��j − m� �2

, �42�

which, as expected, coincides with that of the spinless free
Fermi gas, since each excluson 3 occupies only a single or-
bital k, i.e., kF1=N3� /L. The above results in Eqs. �41� and
�42� are in full agreement with Luttinger liquid properties of
the spinless Fermi gas.54

We now consider Hef f, Eq. �39�, on a ring with a twisted
� in the boundary conditions

Hef f = − t��
j=1

L−1

�dj
†dj+1 + dj+1

† dj� + e−2i�dL
†d1 + e2i�d1

†dL� ,

�43�

after the transformations cL

† c1
→e−i�cL


† c1
 and c1

† cL


→ei�c1

† cL
. Notice the phases �2� in Eq. �43� due to the

charge 2e of excluson 3. For −� /2���� /2 and an odd
number of doubly occupied sites N3, the momentum distri-
bution is symmetrical with respect to the origin, and thus the
GS energy reads55

E1��� = − 2t
sin�N3�/L�

sin��/L�
cos�2�/L� . �44�

On the other hand, for even N3 we may put E1 in the form

E1��� = − 2t
sin��N3 − 1��/L

sin��/L�
cos�2�/L�

+ 2t sin�2�/L�sin�N3�/L� , �45�

for −� /2���0, and

E1��� = − 2t
sin��N3 − 1��/L

sin��/L�
cos�2�/L�

− 2t sin�2�/L�sin�N3�/L� , �46�

for 0���� /2. However, E1��+��=E1��� is satisfied, as
expected in a superconducting ring.56 In Fig. 3�a�,
E1��� /E1�0� is plotted against � for L=10 and odd N3. For
the sake of comparison, in Fig. 3�b� we plot the same curve
for the free spinless Fermi gas with charge e per orbital k.
The energy shift57 �odd N3�

E1��� − E1�0� =
4t

�
sin�N3�/L�

�2

L
+ O�1/L3�

� D
�2

L
+ O�1/L3� �47�

allows to identify the GS Drude weight D as that of a free
spinless Fermi gas with effective charge 2e per orbital k

D =
4t

�
sin�N3�/L� , �48�

and also the persistent current58

I��� = −
�E1

��
= −

4vF1

�L
�, −

�

2
� � �

�

2
, �49�

where vF1=��ef f ,1 /�kF1=2t sin�N3� /L�. In contrast, for
even N3 the persistent current reads58

0.5
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1

0 0.5 1 1.5 2

E
(Φ
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E

(0
)

Φ/2π

(a)
0.5
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1

0 0.5 1 1.5 2

E
(Φ

)/
E

(0
)

Φ/2π

(b)

FIG. 3. �Color online� Normalized GS energy as a function of
the twisted angle �a� for the integrable PKH model and �b� for the
free spinless Fermi gas with charge e per orbital k. The number of
sites is L=10.
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I��� = −
vF1

�L�4� + 2� , −
�

2
� � � 0,

4� − 2� , 0 � � �
�

2
.� �50�

In closing our analysis of the GS superconducting properties
in region �I�, it is clear that the associated phenomena do not
sustain in the thermodynamic limit.59 However, in a mesos-
copic scale our results are an interesting example of power-
law superconductivity in a soluble model of strongly corre-
lated electrons, whose elementary excitations obey fractional
statistics. In a more realistic context, we should mention the
recent successful efforts in measuring persistent currents in
normal metal rings at very low T,60 in agreement with earlier
theoretical predictions.61

In region �II� the three fractional species coexist in equi-
librium in a metallic phase. In fact, using the chemical
potential51 �see also Eqs. �B1�, �B5�, and �B6� in Appendix
B

�2�T,n� = U + kBT ln�2�n − n��
2n� − n

� + ¯ , �51�

where

n� =
1

�
arccos�− U/2t� , �52�

in Eq. �22�, we find

�nk,1�T=0 = �nk,2�T=0 = 
2n� − n

2n� ���U − �k� , �53�

�nk,3�T=0 = 
n − n�

n� ���U − �k� . �54�

Therefore, the Fermi surface is defined by ��kF2�, where

kF2 = n�� . �55�

The GS energy per site is

E2�n�
L

= �
−kF2

kF2 dk

2�
�k + U�

−kF2

kF2 dk

2�
�nk,3�T=0

= −
2t

�
sin�n��� + �n − n��U , �56�

and thus the GS chemical potential is �2=U �see Fig. 1�b�,
in agreement with the T→0 limit of Eq. �51�. Hence the GS
charge compressibility �2

−1=0 is singular.51 However, this
singularity is not related to a spatial phase separation due to
absence of large fluctuations in density.62 In fact, it has been
noted51 that �2 diverges as T−1

�2�T,n� =
�n − n���2n� − n�

kBTn�
+ ¯ , �57�

where use of Eq. �51� has been made. After inserting Eq. �57�
into the well-known result from the fluctuation-dissipation
theorem62

��N�2 � �N2� − �N�2 = kBTL�2, �58�

we find that limT→0 �N��L so the fluctuations of density lie
within a peak centered around n. Notwithstanding, the sin-
gularity in �2 is caused by the GS entropy manifested in the
distribution of occupation of exclusions in order to fill an
orbital k �see Fig. 2�b� and entropy below with average oc-
cupation numbers given by Eqs. �53� and �54�. Indeed, each
k state in the interval �−kF2 ,kF2 is occupied either by exclu-
sions 1 and 2 with equal probability given by

p1 = p2 = 1 −
n

2n�
�59�

or by exclusons 3 with probability

p3 =
n

n�
− 1, �60�

in agreement with Eqs. �53� and �54�, respectively, such that

�nk,1�T=0 + �nk,2�T=0 + �nk,3�T=0 = 1, �61�

as required by Eqs. �8� and �23� for �ef f ,2�T=0�=U. The GS
entropy S=−��F /�T�T=0, where F=�N+� is the Helmholtz
free energy �see Eq. �B8� in Appendix B reads

S = kB ln�2�N1�+�N2� �NA�!
��N1� + �N2��!�N3�!� , �62�

where use of the Stirling approximation ln N ! =N ln�N /e�
and �see Eqs. �53� and �54�

�N1�T=0 = �
k

�nk,1�T=0 = 
2n� − n

2
�L = �N2�T=0, �63�

�N3�T=0 = �
k

�nk,3�T=0 = �n − n��L , �64�

have been made. Note that 2�N1�+�N2� counts the total spin
degeneracy while the remaining term enclosed between
square brackets is due entirely to degeneracy of the available
states in k space. In this phase, the three dispersive bands of
exclusons collapse into an effective single band of spinless
fermions, as illustrated in Fig. 2�b� for n=1, U= t, and kF2
=n���=2� /3�; gapless excitations are composed by excita-
tions of the three species of exclusons across the Fermi sur-
face ��kF2�. We also emphasize that formula �62� applies to
all phases illustrated in Fig. 1�a� and confirms that in region
�I� the entropy is zero.

A striking consequence of the GS entropy is better dis-
cussed in connection with the index characterizing the nature
of the Fermi-surface singularity.63 The Fermi surface suitable
to electronic systems exhibiting non-Fermi-liquid behavior is
defined by the k vectors that mark singularities in

�nk↑�T=0 � �nk,1�T=0 + �nk,3�T=0 �65�

and

�nk↓�T=0 � �nk,2�T=0 + �nk,3�T=0, �66�

�in our case, step discontinuities at k= �kF2�. In zero field,
we obtain with help of Eqs. �53� and �54�
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�nk↑�T=0 = �nk↓�T=0 =
n

2n�
��U − �k� � 	�kF2

	��U − �k� ,

�67�

where

�kF2
= lim

	→0+
��nkF2−	,
�T=0 − �nkF2+	,
�T=0 �68�

characterizes the step singularities. In Fig. 4�a� we plot
�nk
�T=0 as a function of k for n=2 /3 and U= t /2 and in Fig.
4�b� we plot 	�kF

	 versus U / t for n=2 /3 �extended to re-
gions �I� and �III�. Note that the average electric charge per
orbital k is U dependent only for Uc1�U�Uc2

�Q� = e�nk,1�T=0 + e�nk,2�T=0 + 2e�nk,3�T=0

= e�nk↑�T=0 + e�nk↓�T=0

= 2e	�kF2
	 , �69�

which interpolates between the integral values 2e �region �I�
and e �region �III�. It is particularly interesting that we can
express the average electric charge in terms of 	�kF2

	 only,
since this result is well consistent with the original theoreti-
cal arguments of Haldane.63

In region �III� the fractional species 3 is absent, i.e.,
�nk,3�T=0=0, and we should note the fractional occupation of
the species 1 and 2

�nk,1�T=0 = �nk,2�T=0 =
1

2
��Uc2 − �k� , �70�

which implies the Fermi surface ��kF3�, where

kF3 = n� . �71�

The GS is equivalent to that of the U=� Hubbard chain,51

i.e., the phase is metallic with the GS entropy given by �see
Eq. �62�

S3 = kB ln 2�N1�+�N2�, �72�

the total energy per site reads

E3�n�
L

= −
2t

�
sin�n�� , �73�

and

�3�n� = − 2t cos�n�� . �74�

Note that the charge compressibility inside region
�III� is finite: �3

−1�n�=2�t sin�n�� with limU→Uc2
+ �3

−1�n�
=limn→n� �3

−1�n�=��4t2−Uc2
2 �see Eq. �52�. In Fig. 2�c� a

plot of the FEE for this metallic phase is depicted for n
=1 /3, U= t, and kF3=n��=� /3�. It should be noticed that the
effective single band of spinless fermions is filled by exclu-
sons 1 and 2 in the interval �−kF3 ,kF3; the gap

�2 = U − �3 �75�

separates this band from that of empty exclusons 3.
Finally, in region �IV� the hopping motion is frozen and

then the GS is equivalent to that of the Hubbard chain in the
atomic limit.51 The three fractional species coexist with GS
average occupation numbers given by

�nk,1�T=0 = �nk,2�T=0 =
2 − n

2
, �76�

�nk,3�T=0 = n − 1, �77�

for k� �−� ,�, which implies �NA�=L, �N1�+ �N2�=2L−N,
and �N3�=N−L. Therefore, the phase is insulating with GS
entropy �Eq. �62� given by

S4 = kB ln�22L−N L!

�2L − N�!�N − L�!� , �78�

the total energy per site is

E4�n�
L

= �n − 1�U , �79�

since the kinetic term in Eq. �5� vanishes, and �4=U. In Fig.
2�d� a plot of the FEE for this full band insulating phase is
shown for n=3 /2 and U=3t.

Now, following the development presented for region �II�,
here with n�=1, we find, using Eqs. �59� and �60�

p1 = p2 = 1 −
n

2
�80�

and

p3 = n − 1, �81�

which implies the following average charge per orbital k:

�Q� = ne , �82�

as expected, this n-dependent result can also be obtained
with help of Eqs. �76� and �77�.

IV. SCALING PROPERTIES

We now provide a scaling study of the U-driven quantum
phase transitions exhibited by Hamiltonian �2�. The scaling
form of F in the vicinity of a quantum critical point when
U−Uc is the dominant energy scale can be written as59

0

0.5

1

πkF2

<n
kσ

> T
=

0

k

(a)

U = t/2

n = 2/3

|∆νkF2
|

0

0.5

1

320-2-3 Uc2/tUc1/t

|∆
ν k

F
|

U/t

(b) n = 2/3

Region (I) Region (II) Region (III)

FIG. 4. �Color online� �a� Fractional average number of elec-
trons of spin 
= ↑ ,↓ in region �II� displaying step singularity of
magnitude 	�kF2

	 at the wave vector kF2. �b� Magnitude of the step
singularity in �nk
�T=0 across regions �I�, �II�, and �III�.
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Fsing

L
= 	U − Uc	2−�FU
 T

	U − Uc	z ,
h

	U − Uc	�+�� , �83�

where �, �, �, , and z are critical exponents, ��z is the
crossover exponent, and the scaling relations z=�+� and
2−�=�d+z� hold. However, if kBT dominates the energy
scale, one can also write59

Fsing

L
= T1+�d/z�FT
 	U − Uc	

T1/�z� ,
h

T
� , �84�

where FU and FT are scaling functions.
Our starting point to calculate Fsing in the various regimes

of interest is the grand-canonical free energy, Eq. �19�, in the
convenient form below

� = −
L

�
�

−2t

2t

d�
���ln�1 + 2e−���−�� + e−���+U−2�� ,

�85�

where


��� �
1

L
�

k

��� − �k� =
1

��4t2 − �2
�86�

is the lattice density of states, followed by the elimination of
� in favor of n through

n = −
1

L

 ��

��
� , �87�

Fsing is then derived from F=�N+� by neglecting nonsin-
gular terms.

A. U-driven metal-metal transition

1. Transition between regions (I) and (II)

We shall begin by discussing the U-driven metal-metal
transition �MMT� between phases �I� and �II� separated by
the critical line U=Uc1 �see Fig. 1�a�.

In region �I�, one has e���−U��1 so that the simplified
form �1�− 1

��kln�1+e−���k+U−2�� is sufficient to calculate
the asymptotic form for F1 à la Sommerfeld when 	U−Uc1	
dominates the energy scale as T→0, i.e., �1= U

2

− t cos�n� /2�+
�2�kBT�2 cos�n�/2�

24t sin2�n�/2� +¯. Therefore, the singular
part of F inside region �I� and in the vicinity of the critical
line U=Uc1 can be cast in the form

Fsing,1

L
= −

��U − Uc1�2

12t sin�n�/2��
 kBT

U − Uc1
�2

+ ¯� , �88�

which implies �=�=0, �==z=1, and crossover exponent
�=1. We note that Fsing,1 is dominated by gapless excitations
around k=kF1= n�

2 �see Fig. 2�a� as �1→0+

�k,�=1,2,3 = ��k − U�U=Uc1
� �2t sin kF1��k − kF1� � �k − kF1�z,

�89�

being consistent with the dynamical exponent z=1. The spe-
cific heat C=− T

L � �2F
�T2 � in region �I� follows from Eq. �88�:

C1 =
�kB

2T

6t sin�n�/2�
+ ¯ , �90�

which is the low T free Fermi gas result, except for a �1/2�
factor; indeed, although a excluson 3 carries two particles per
orbital k �local Cooper pair�, which explains the filling factor
�n /2�, its kinetic energy is that of a spinless particle. More-
over, the thermal mass mT�C /T�	U−Uc1	2−�−2z

�=	U−Uc1	0� is consistent with the scaling prediction. On the
other hand, we find that the spin susceptibility reads

� = −
1

L

 �2F

�h2�
h=0

= lim
h→0

�
��N1� + �N2��T,h

L
, �91�

which implies that this magnetic response is a measure of the
average local magnetic moment defined by51,64 �0

=limL→�� 1
L�i�ni↑−ni↓�2�=n−2�N3� /L= ��N1�+ �N2�� /L.

Therefore, in the same regime of Eq. �88�, � is exponentially
small in region �I�

�1 =
n

kBT
e−	Uc1−U	/�2kBT� + ¯ , �92�

due to the cost in energy �spin gap� �1=�1−U= 	U−Uc1	 /2
separating the band of exclusons 3 from the twofold spin-
degenerate dispersive bands of exclusons 1 and 2 �see Fig.
2�a�.

We now take

mUc1
�

��N1� + �N2��T=0,h=0

L
�93�

as the order parameter for this MMT, i.e., the GS expectation
value of local magnetic moment. A plot of this quantity as a
function of the normalized interaction is shown in Fig. 5�a�
for n=1 /2. The critical behavior of mUc1

is obtained by not-
ing that n�, Eq. �52�, can be expanded in powers of U / t in

0

0.5

1

-2 10Uc1/t

m
U

c1

U/t

n = 1/2

(a)

Scaling region 0

0.5

1

-2 1-1 Uc2/t

m
U

c2

U/t

n = 1/2

(b)

Scaling region

0

0.5

2.51.5 Uc3/t

m
U

c3

U/t

Scaling region

n = 3/2

(c)

FIG. 5. �Color online� Typical plots of mUc1
, mUc2

, and mUc3
as a function of the normalized interaction. These quantities exhibit the

proper behavior to signal ��a� and �b� the U-driven MMT and �c� the U-driven MIT.
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the vicinity of the critical line U=Uc1, but now inside region
�II�

n� =
n

2
+

U − Uc1

2�t sin�n�/2�
+ ¯ . �94�

Then, using Eq. �63�, we obtain

mUc1
=

U − Uc1

�t sin�n�/2�
+ ¯ , U → Uc1

+ , �95�

in agreement with �=1. Note, from the plot in Fig. 5�a�, that
mUc1

=0 inside region �I�, where U�Uc1.
On the other hand, in order to derive the singular part of F

inside region �II� and in the vicinity of U=Uc1, we insert the
expansion Eq. �94� into Eq. �B8� �see Appendix B� to obtain

Fsing,2

L
= −

�U − Uc1�2

�t sin�n�/2��
 kBT

U − Uc1
�2

� ��2

12
+ ln2
U − Uc1

t
��

− 
 kBT

U − Uc1
�ln
U − Uc1

t
� + ¯� , �96�

which implies the same universality class of Fsing,1 in Eq.
�88�; and that, unlike Eq. �90�, in region �II� the specific heat
and mT display U-dependent scaling logarithmic correction,
consistent with d=z�=1� �Ref. 59� and with the special char-
acter of this singular ��−1=0� and entropic �see Eqs.
�62�–�64� metallic phase

C2 =
�kB

2T

6t sin�n�/2��1 +
12

�2 ln2
U − Uc1

t
� + ¯� . �97�

Moreover, the spin susceptibility reads

�2 =
U − Uc1

�tkBT sin�n�/2�
−

2

�t sin�n�/2�
ln
U − Uc1

t
� + ¯ ,

�98�

which is derived after using Eqs. �94� and �B1�–�B7� in order
to calculate ��N1�+ �N2��T,h=0 �see Eq. �91�. We stress that,
although �2 in Eq. �91� is dominated by the U-induced
Curie-type contribution, the Pauli component is the one to
be identified with the expected scaling behavior �2�	U
−Uc1	−��=	U−Uc1	0�, here enhanced by a U-dependent loga-
rithmic factor.

We shall now consider the singular part of F at U=Uc1
and T→0 �see Eq. �C7� in Appendix C

Fsing,Uc1

L
= −

�kBT�2

4�t sin�n�/2���2

3
+ ln2�r2�� −

nkBT

r
+ ¯ ,

�99�

where

r =
A

lim
l→�

�l
, A =

�tn sin�n�/2�
2kBT

, �100�

and �1=ln�A�, �l+1=ln�A /�l��l=1,2 ,3 , . . .�. As predicted by
Eq. �84�, one finds that Fsing /L�T1+d/z�=T2� with
T-dependent logarithmic singularities consistent with the d
=z�=1� case.59 We can thus obtain the quantum critical be-
havior of the specific heat, C�Td/z�=T�,

CUc1
=

�kB
2T

6t sin�n�/2��1 +
12

�2 ln2
 kBT

t
� + ¯� �101�

and of the spin susceptibility, using Eqs. �C1� and �C5� and
proceeding as before, ��T�d/z�−1�=T0�

�Uc1
=

2

�t sin�n�/2�
ln
 t

kBT
� + ¯ , �102�

both at the line U=Uc1. We should notice that the above
results for the specific heat and the susceptibility are Fermi-
liquid like, but again the special character of the metallic
phase in region �II� gives rise to T-dependent logarithmic
singularities.

The vanishing behavior of mUc1
at U=Uc1 in the presence

of a magnetic field, h / t�1, defines the exponent �

mUc1
�h� =

��N1� + �N2��T=0,h

L

= lim
T→0

1

L
�

k

��nk,1� + �nk,2��T,h

= lim
�→�

1

L�
k

1 + e−2�h

e���k−h−�� + 1 + e−2�h + e���−h−Uc1� ,

�103�

where use of Eqs. �16�–�18� and �22� has been made. Next,
we substitute �=Uc1+h+�� in the above equation, with X
=lim�→� e��� finite, to obtain

��N1� + �N2��T=0,h

L
=

1

X + 1
�

−2t

Uc1+2h

d�
���

=
1

X + 1

n

2
+

h

�t sin�n�/2�
+ ¯� .

�104�

The value of X is calculated by using Eq. �7�

n =
��N1� + �N2��T=0,h

L
+ 2

�N3�T=0,h

L
, �105�

where

�N3�T=0,h

L
=

X

X + 1
�

−2t

Uc1+2h

d�
���

=
X

X + 1

n

2
+

h

�t sin�n�/2�
+ ¯� �106�

and use of Eqs. �16�–�18� and �22� has also been made. Now,
by inserting Eqs. �104� and �106� into Eq. �105�, one obtains
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after some algebra: X=�tn sin�n� /2� /4h. Therefore,

mUc1
�h� =

2h

�t sin�n�/2�
+ ¯ , �107�

in agreement with the scaling prediction �=1.

2. Transition between regions (II) and (III)

We now consider the transition between metallic phases
separated by the critical line U=Uc2. Inside region �III� one
has e���−U��1 and thus �3�− 1

��kln�1+2e−���k−�� is the
starting point to calculate the Sommerfeld-type expansion for
F3. The singular part of F inside region �III� when 	U−Uc2	
dominates the energy scale reads

Fsing,3

L
= −

��U − Uc2�2

12t sin�n�� �
 kBT

U − Uc2
�2

+ ¯� , �108�

which reduces to that of Eq. �88� by replacing Uc2→Uc1 and
n�→n� /2. The reason for the later substitution is because
the effective single band of spinless fermions in region �I� is
formed by one excluson 3 per orbital k while in region �III�
each orbital k is filled by two exclusons, 1 and 2, both with
fractional occupation 1/2. As a consequence, this U-driven
MMT is in the same universality class of the above transi-
tion. If we approach the critical line U=Uc2 from region
�III�, C is now obtained from Eq. �108�

C3 =
�kB

2T

6t sin�n��
+ ¯ , �109�

in agreement with the thermal response of a spinless Fermi
gas. In the same regime, � is dominated by the Curie re-
sponse

�3 =
n

kBT
+ ¯ , �110�

due to the cost in energy �2=U−�3= 	U−Uc2	 separating the
effective single band of spinless fermions filled by exclusons
1 and 2 from the empty band of exclusons 3 �see Fig. 2�c�
and Eq. �92� for the opposite case.

In contrast to the previous U-driven MMT, however, we
take as the order parameter the quantity

mUc2
=

�N3�T=0

L
, �111�

i.e., the GS density of doubly occupied sites, whose plot as a
function of U / t for n=1 /2 is shown in Fig. 5�b�.

Inside region �II� and near the critical line U=Uc2, the
singular part of F can be calculated by using the expansion

n� = n −
Uc2 − U

2�t sin�n��
+ ¯ �112�

into Eq. �B8� �note that similar calculation was made to ob-
tain Eq. �96�

Fsing,2

L
= −

�Uc2 − U�2

4�t sin�n���
 kBT

Uc2 − U
�2

� ��2

3
+ ln2
Uc2 − U

t
��

− 2
 kBT

Uc2 − U
�ln
Uc2 − U

t
� + ¯� �113�

with corresponding U-dependent scaling logarithmic correc-
tion to the specific heat and thermal mass

C2 =
�kB

2T

6t sin�n���1 +
3

�2 ln2
Uc2 − U

t
� + ¯� . �114�

In the same regime, the calculation of � at low T is as fol-
lows. First, we calculate ��N1�+ �N2��T,h=0 by using the Tay-
lor expansion for �, Eqs. �B1�–�B5�, along with Eq. �112�.
So, by inserting the result in Eq. �91�, we find

�2 =
n

kBT

1 −

Uc2 − U

�tn sin�n��
+ ¯� +

1

�t sin�n��
ln
Uc2 − U

t
�

+ ¯ , �115�

where both Curie and Pauli-type contributions with
U-dependent corrections are found.

It is interesting to obtain Fsing /L at U=Uc2 �see Eq. �D8�
in Appendix D

Fsing,Uc2

L
= −

nkBTx1

2
−

�kBT�2

4�t sin�n����2

3
+ ln2�2x1�� + ¯ ,

�116�

where x1=limk→� x1
�k�, x1

�k+1�=−
kBT ln�2x1

�k��
n�t sin�n�� , k=0,1 ,2 ,3 , . . .,

and x1
�0�=

2kBT

n�t sin�n�� are chosen to guarantee convergence. It
follows that the quantum critical behavior of the specific heat
is

CUc2
=

�kB
2T

6t sin�n���1 +
3

�2 ln2
 kBT

t
� + ¯� , �117�

which should be compared with the expression given by Eq.
�101�. The quantum critical behavior of the magnetic spin
susceptibility, Eq. �91�, is found by calculating ��N1�
+ �N2��T,h=0 using the chemical potential at U=Uc2 from Ap-
pendix D, and proceeding as in previous case

�Uc2
=

n

kBT
+

1

�t sin�n��
ln
 kBT

t
� + ¯ . �118�

Note that the Curie term dominates the magnetic response of
the system; however, it is interesting to note that the negative
Pauli term has the appropriate scaling dependence ���T0�,
enhanced by a T-dependent logarithmic singularity.

In the preceding discussion, we have performed the ex-
plicit calculation of the exponent � based on the fact that
mUc1

couples itself directly with the external magnetic field h
�see Eq. �107�. In the present case, however, there is an
important difference since mUc2

=0 at U=Uc2 and T=0. In
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such case, the standard procedure is to add to the Hamil-
tonian H the term −hUc2

�ini↑ni↓, where hUc2
is the scaling

field coupled to mUc2
. In fact, one does get

mUc2
=

hUc2

2�t sin�n��
+ ¯ , �119�

in agreement with �=1.

B. U-driven metal-insulator transition

The critical line U=Uc3 separates the metallic phase �re-
gion �II� from the insulating one �region �IV�. Inside region
�II� and near the critical line U=Uc3, the singular part of F at
n=1 when 	U−Uc3	 dominates the energy scale is obtained
by using the expansion

n� = 1 −
1

�

Uc3 − U

t
�1/2

−
1

24�

Uc3 − U

t
�3/2

+ ¯ ,

�120�

in Eq. �B8�

Fsing,2

L
= − 
 2t

3�
�
Uc3 − U

t
�3/2

��1 −
3

4

 kBT

Uc3 − U
�ln
Uc3 − U

t
� +

3

8

 kBT

Uc3 − U
�2

���2

3
+

1

4
ln2
Uc3 − U

t
�� + ¯� , �121�

which implies that this metal-insulator transition �MIT� is in
the same universality class as that of the spinless free Fermi
gas:18,26 �=�=�==1 /2, z=2, and crossover exponent �
=1. Note the U-dependent logarithmic corrections, even
though in this case one has d�z. The exponent z=2 is con-
sistent with gapless excitations around k=kF2=� �see Fig.
2�b�

�k,�=1,2,3 = ��k − U�U=Uc3
� − t�k − kF2�2 � �k − kF2�z.

�122�

The corresponding specific heat is

C2 =
kB

2T

2�t

Uc3 − U

t
�−1/2

� ��2

3
+

1

4
ln2
Uc3 − U

t
�� + ¯ ,

�123�

and the thermal mass mT��Uc3−U�−1/2 ln2�
Uc3−U

t � is in
agreement with scaling prediction mT�	U−Uc3	2−�−2z�=	U
−Uc3	−1/2�.

Further, inside region �II�, but away from half-filled band,
i.e., n−1� �Uc3−U� / t, the universality class of the U-driven
MIT is the same as that for the n=1 case. In fact, using
expansion Eq. �120� again in Eq. �B8�, the singular part of F
in the scaling region reads

Fsing,2

L
= − 
 2t

3�
�
Uc3 − U

t
�3/2

��1 −
3

2

 kBT

Uc3 − U
�ln
4�n − 1�

�2 − n�2 � +
3

8

 kBT

Uc3 − U
�2

���2

3
+ ln2
4�n − 1�

�2 − n�2 �� + ¯� , �124�

and the corresponding specific heat is given by

C2 =
kB

2T

2�t

Uc3 − U

t
�−1/2��2

3
+ ln2
4�n − 1�

�2 − n�2 �� + ¯ ,

�125�

where n-dependent logarithmic corrections should be no-
ticed. The spin susceptibility in the scaling region is calcu-
lated by using expansion Eq. �120� in order to calculate �;
proceeding as before, we obtain

�2 = 
2 − n

kBT
��1 −

2

��2 − n�
Uc3 − U

t
�1/2

+ ¯�
+

1

�t

Uc3 − U

t
�−1/2

ln
4�n − 1�
�2 − n�2 � + ¯ , �126�

whose scaling part is in agreement with �=1 /2.
For this transition, we take, in both cases �n=1 or n�1�,

mUc3
=

�N3�T=0

L
− �n − 1� �127�

as the associated order parameter. The reason to subtract n

−1 is that
�N3�T=0

L =n−1 at U=Uc3 �see Eq. �64� for n�=1. In
Fig. 5�c�, mUc3

versus normalized interaction is plotted for
n=3 /2. Note from the plot that mUc3

=0 for U�Uc3. The
critical behavior of the order parameter can be obtained at
once by using Eq. �120� into Eq. �64�

mUc3
=

1

�

Uc3 − U

t
�1/2

+ ¯ , U → Uc3
− , �128�

in agreement with �=1 /2.
We are now interested in obtaining the singular part of F

at U=Uc3. Away from half-filled band �n�1�, we find �see
Eq. �E10� in Appendix E

Fsing,Uc3

L
= −

t

2�

 kBT

t
�3/2�

0

+� d�

��
ln�1 + e−�/y0� + ¯ ,

�129�

where

y0 =
4�n − 1�
�2 − n�2 , �130�

in accordance with Eq. �84� for z=2, i.e., Fsing,Uc3
/L�T3/2.

We have also checked the prediction Fsing,Uc3
/L�T3/2 at n

=1 �see Appendix E�. It is interesting to write the explicit
form of the corresponding quantum critical behavior of C
�Td/z�=T1/2�
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CUc3
=

3kB

8�

 kBT

t
�1/2�

0

+� d�

��
ln�1 + e−�/y0� + ¯ �131�

and of the scaling part of ���Td/z−1�=T−1/2�

�Uc3
=

2 − n

kBT
−

P

t

 kBT

t
�−1/2

+ ¯ , �132�

where

P =
2 − n

� � �2 − n�2��

8�n − 1�
+

4n�n − 1�
�2 − n�3 �

0

� e−���

�e−� + y0�2d�� ,

�133�

calculated by using Eqs. �E1� and �E5� in order to obtain the
total number of single-up and single-down occupied sites in
zero field, as required by Eq. �91�.

Finally, it should be noticed that inside the Mott phase, in
which U�2t, n=1, and e���−U��1 �activated regime�, F is
given by

FMott

L
= − kBT ln 2 −

t

�4 4�

 kBT

t
�5/4

e−�U−2t�/2kBT + ¯ .

�134�

The corresponding specific heat thus reads �note the misprint
in the signal of the �7/4� T power in Ref. 51

CMott =
kB

�4 4�

U − 2t

2t
�2
 kBT

t
�−7/4

e−�U−2t�/2kBT + ¯ .

�135�

We also remark that several additional features of the
T-dependent specific heat were studied in great detail in Ref.
51.

Finally, as in Ref. 26, the scaling analysis of the model
allows us to predict power law or logarithmic singularities
associated with the critical lines using the scaling form for
the free energy in Eq. �83�: 1

L � �S
�U �N,T=0�	U−Uc	1−�−z. In

fact, for the MMT �1−�−z=0�

1

L

 �S

�U
�

N,T=0
= −

kB

�t sin�n�/2�
ln
U − Uc1

t
� + ¯ ,

U → Uc1
+ , �136�

1

L

 �S

�U
�

N,T=0
=

kB

2�t sin�n��
ln
Uc2 − U

t
� + ¯ , U → Uc2

− ,

�137�

and for the MIT �1−�−z=−1 /2�

1

L

 �S

�U
�

N,T=0
=

kB

2�t

Uc3 − U

t
�−1/2

ln
4�n − 1�
�2 − n�2 � + ¯ ,

U → Uc3
− , n � 1. �138�

Interestingly, universal properties of quantum phase transi-
tions were studied in the framework of quantum-information
theory,65 where singularities similar to the ones above play a
relevant role.

V. SUMMARY AND DISCUSSION

In this paper we have studied the GS and low-temperature
properties of the integrable version of the Penson-Kolb-
Hubbard model on a linear chain. An interesting feature of
the model is the absence of particle-hole symmetry around
n=1. The model displays fractional statistical properties
which manifest in the several thermodynamic responses we
have examined. In particular, we draw attention to the fact
that the fractional elementary excitations, which follow di-
rectly from the map of the model onto an ideal excluson gas,
are essential to clarify the nature of various physical proper-
ties of the system. For instance, the divergence of the GS
charge compressibility signals the presence of strong degen-
eracy in the distribution of occupation of exclusons in k
space; further, a striking feature of this entropic phase is the
U-dependent effective electric charge associated with a non-
trivial step singularity in the Fermi surface.

We have also calculated the Helmholtz free energy in the
vicinity of the several U-driven quantum phase transitions
exhibited by the system, thus allowing us to determine their
universality classes, including several U- and n-dependent
logarithmic corrections, as well as T-dependent logarithmic
singularities. In particular, for the U-driven MMT associated
with the dynamic exponent z=1, we mention the superlinear
temperature dependence T ln2 T in the quantum critical be-
havior of the specific heat at the critical lines U=Uc1=
−2t cos�n� /2� and U=Uc2=−2t cos�n��. Moreover, the
Pauli spin susceptibility is strongly enhanced by a
T-dependent logarithmic singularity at U=Uc1; while at U
=Uc2 the Curie term dominates the magnetic response �pres-
ence of local magnetic moments� with a negative Pauli term
due to the T-dependent logarithmic singularity. Remarkably,
we have also found U-dependent logarithmic correction to
the specific heat near the QCP �n=1� of the MIT and
n-dependent logarithmic corrections to the specific heat near
the MIT line U=Uc3=2t. On the other hand, both at the QCP
and at the line U=Uc3, the T-dependent quantum critical be-
havior is in full agreement with scaling.

Finally, in the region of the GS phase diagram where local
Cooper pair formation is most favorable, we have shown that
the GS exhibits power-law superconductivity, in agreement
with previous results for the Penson-Kolb model; we also
stress that above half filling the pair-hopping term stabilizes
local Cooper pairs in the repulsive-U regime for U�Uc1.
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APPENDIX A: DERIVATION OF EQ. (41)

In this appendix we shall prove that

lim
L→�

N3→�

��0	cm↓
† cm↑

† cj↑cj↓S�m, j�	�0� = 0, �A1�

where 	�0� is given by Eq. �37�; N3 /L=� �the density of
doubly occupied sites�, m and j are kept constant; and
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S�m, j� =

�1 − exp� i�

2 �
l=m

j−1

�nl↑ + nl↓���
2

. �A2�

The introduction of the numerical factor 2 in the denomina-
tor of Eq. �A2� is a matter of convenience.

We begin by noting that

S�m, j�	n1↓↑,n2↓↑, . . . ,nN3
↓↑� = 	n1↓↑,n2↓↑, . . . ,nN3

↓↑� ,

�A3�

if there is an odd number of doubly occupied sites between m
and j−1. Otherwise, S�m , j�	n1↓ ↑ ,n2↓ ↑ , . . . ,nN3

↓↑�=0.
Therefore,

S�m, j�	�0� = 
 1
�L

�N3

� �
�ni�

��det�k1,k2, . . . ,kN3
;n1,n2, . . . ,nN3

�

� 	n1↓↑,n2↓↑, . . . ,nN3
↓↑�� , �A4�

where the prime in the sum indicates that only the set of
integers satisfying the additional restriction discussed right
below Eq. �A3� are taken. Moreover, it is easily verified that
a dummy variable must be equal to j, otherwise cj↑cj↓ acting
on S�m , j�	�0� would produce the null vector. So

��0	cm↓
† cm↑

† cj↑cj↓S�m, j�	�0�

= 
 1

L
�N3� �

n1�n2=j�¯�nN3

��det�k1,k2, . . . ,kN3
;n1,n2

= j, . . . ,nN3
�

�det��k1,k2, . . . ,kN3
;n1,n3, . . . ,m, . . . ,nN3

�

+ �
n1�n2�n3=j�¯�nN3

��det�k1,k2, . . . ,kN3
;n1,n2,n3

= j, . . . ,nN3
�det��k1,k2, . . . ,kN3

;n1,n2,n4, . . . ,

�m, . . . ,nN3
� + ¯ + �

n1�n2�¯�nj=j�¯�nN3

�

��det�k1,k2, . . . ,kN3
;1,2, . . . , j − 1, j, . . . ,nN3

�

�det��k1,k2, . . . ,kN3
;1,2, . . . ,m, . . . , j, . . . ,nN3

�� .

�A5�

The above sums cannot be evaluated in closed form so in this
point we make use of the approximation

	det�k1,k2, . . . ,kN3
;n1,n2, . . . , j, . . . ,nN3

�

�det��k1,k2, . . . ,kN3
;n1,n2, . . . ,m, . . . ,nN3

�	

� 	det�k1,k2, . . . ,kN3
;n1,n2, . . . , j = m, . . . ,nN3

�	2,

�A6�

which is justified in view of the mapping Eq. �39� and
the fact that the correlation function Gc�j ,m�, Eq. �42�, de-

cays as 1 / 	j−m	2. We thus proceed to find a majorant M so
that

	det�k1,k2, . . . ,kN3
;n1,n2, . . . ,nN3

�	2 � M �A7�

for all set �ni� of N3 integers. It follows from Eq. �37� that

	det�k1,k2, . . . ,kN3
;n1,n2, . . . ,nN3

�	2

LN3
�A8�

is the probability of finding paired carriers in the sites
n1 ,n2 , . . . ,nN3

. So, we identify the probability Eq. �A8� to
M /LN3, which implies

M

LN3
�

1�n1�n2�¯�nN3
�L

�1� = 1, �A9�

and thus

M =
LN3


 L

N3
� = eL�1−��ln�1−��eN3 ln N3 �A10�

for L ,N3→�. We now return to Eq. �A5� in order to obtain

	��0	cm↓
† cm↑

† cj↑cj↓S�m, j�	�0�	

� eL�1−��ln�1−���N3� �
n1�n2=j�n3�¯�nN3

��1�

+ �
n1�n2�n3=j�¯�nN3

��1� + ¯

+ �
n1�n2�¯�nj=j�¯�nN3

��1�� . �A11�

Each sum is equal to the total number of combinations of L
elements N3 such that there is an odd number of elements
between m and j−1, and np= j�p=2,3 , . . . , j�. This total
number of combinations can be written as

H�j,m,p�
 L − j

N3 − p
� , �A12�

where H�j ,m , p� is a L-independent function. We now return
to Eq. �A11�

	��0	cm↓
† cm↑

† cj↑cj↓S�m, j�	�0�	 � eL�1−��ln�1−���N3

� �
p=2

j

H�j,m,p�
 L − j

N3 − p
� .

�A13�

In the thermodynamic limit, one has

FRACTIONAL STATISTICS AND QUANTUM SCALING… PHYSICAL REVIEW B 82, 125126 �2010�

125126-13




 L − j

N3 − p
� =

e−L�1−��ln�1−��e�j−p�ln�1−��

�N3
e−pL�1−�ln N3�/L

�A14�

so that

0 � 	��0	cm↓
† cm↑

† cj↑cj↓S�m, j�	�0�	

� �
p=2

j

H�j,m,p�e�j−p�ln�1−��e−pL�1−�ln N3�/L. �A15�

Now it is clear that

lim
L→�

N3→�

��0	cm↓
† cm↑

† cj↑cj↓S�m, j�	�0� = 0. �A16�

Notwithstanding the approximation Eq. �A6�, we argue that
this result remains exact in view of the exponentially small
dependence e−�¯L in Eq. �A15�.

APPENDIX B: DERIVATION OF � AND F IN REGION (II)

In this derivation, it is tacitly assumed that kBT is less than
any significant energy scale. The chemical potential is ob-
tained as the solution of Eq. �87�. As already mentioned, at
T=0 one has �2=U. So, finite-temperature corrections to �2
are obtained by using

�2�T,n� = U + �� �B1�

in the above equation. The substitution leads to the expres-
sion

�x + x2��
−2t

2t 
���d�

e���−U� + y
=

n

2
, �B2�

where

x � e���, y � 2x + x2, �B3�

and 
��� is defined by Eq. �86�. After integrating Eq. �B2� à
la Sommerfeld, we obtain


 x + 1

x + 2
��n� + kBT
�U�ln y

+

��U�

2
�kBT�2��2

3
+ ln2�y�� + ¯� =

n

2
. �B4�

We now expand �� in a Taylor series in kBT

�� = �kBT�B1 + �kBT�2B2 + ¯ , �B5�

and after placing Eq. �B5� in Eq. �B4� we arrive at

B1 = ln
2�n − n��
2n� − n

� �B6�

and

B2 = −
n
�U�

�n − n���2n� − n�
ln
4�n − n��n�

�2n� − n�2 � . �B7�

Now, F2 can be calculated up to O�kBT�2 by eliminating �2
in favor of n via Eq. �87�

F2

L
= n�2 +

�

L
= n�U + ��� −

1

�
�

−2t

2t

d�
���ln�1 + ye−���−U�

= �n − n��U −
1

�
�4t2 − U2 + kBT�n ln�2�n − n��

2n� − n
�

− n� ln�4�n − n��n�

�2n� − n�2 �� −
�kBT�2

2��4t2 − U2

���2

3
+ ln2�4�n − n��n�

�2n� − n�2 �� + ¯ , �B8�

after integrating twice by parts à la Sommerfeld.

APPENDIX C: DERIVATION OF EQ. (99)

The first step is to calculate the chemical potential at U
=Uc1. We begin by noting that at T=0 one has �Uc1
=−2t cos�n� /2�=Uc1, which is obtained from Eq. �30� by
taking the limit U→Uc1

− . Next we use

�Uc1
�T,n� = Uc1 + �� �C1�

at finite temperatures and proceed as described in Appendix
B to obtain an equation identical to Eq. �B4� with n�=n /2
and U=Uc1. However, it should be stressed that since kBT
now dominates the energy scale, we have a singular behavior
for x

lim
T→0

�1/x� = 0. �C2�

In fact, it turns out that x=O�kBT�−1. Therefore, by neglect-
ing terms of O�kBT�2 in Eq. �B4� �with the changes discussed
above�, we proceed to solve the simplified equation x ln x
=n / ��4kBT
�Uc1��=�tn sin�n� /2� / �2kBT��A, whose solu-
tion r is calculated by iteration: r=A / �liml→� �l�, where �l is
defined right below Eq. �100�. We now go on by writing the
solution of Eq. �B4� in the form x=r+�r. It is straightfor-
ward to get

�r = −

4kB Tr 
�Uc1��1 − ln r� + 2n + 
��Uc1��kBT�2r2��2

3
+ ln2�r2��

4kB Tr 
�Uc1� + n
. �C3�
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We are now in a position to obtain �� up to O�kBT�2

e��� = r
1 +
�r

r
+ ¯� �C4�

so that

�� = kBT ln r +
kBT

r
�r + ¯ . �C5�

Next we calculate FUc1

FUc1

L
= n
Uc1 + kBT ln r +

kBT

r
�r�

−
1

�
�

−2t

2t

d�
���ln�1 + pe−���−Uc1� + ¯ , �C6�

where p=2re�r/r+r2e2�r/r. After integrating twice by parts à
la Sommerfeld, we obtain

FUc1

L
= − nt cos�n�/2� −

2t

�
sin�n�/2� −

nkBT

r

−
�kBT�2

4�t sin�n�/2���2

3
+ ln2�r2�� + ¯ , �C7�

which does not depend on �r.

APPENDIX D: DERIVATION OF EQ. (116)

The calculation of the chemical potential at U=Uc2 is
quite similar to that presented in Appendix C. By using

�Uc2
= − 2t cos�n�� + �� �D1�

in Eq. �B2�, where �� stands for finite-temperature correc-
tions to �Uc2

, we find after integrating à la Sommerfeld an
equation identical to Eq. �B4� with n�=n and U=Uc2. As in
Appendix C, kBT dominates the energy scale and thus we
also obtain a singular behavior for x

lim
T→0

x = 0. �D2�

Using x=x1+x2, where x1=O�kBT� and x2=O�kBT�2, one ob-
tains

x + 1

x + 2
=

1

2
+

x1

4
+

2x2 − x1
2

8
+ O�kBT�3 �D3�

and

ln y = ln�2x1� +
x1

2
+

x2

x1
+ O�kBT�2. �D4�

By inserting these expansions into Eq. �B4� �with the
changes discussed above�, we find

x1 = −
kBT ln�2x1�
n�t sin�n��

, �D5�

whose solution is written right below Eq. �116� and

x2 =

nx1
2 − 2�kBT�x1�1 + ln�2x1�
�Uc2� − 2
��Uc2��kBT�2��2

3
+ ln2�2x1��

4kBT
�Uc2�
x1

+ 2n

. �D6�

Therefore, FUc2
is given by

FUc2

L
= n�Uc2 + kBT ln�x1 + x2� −

1

�
�

−2t

2t

d�
���ln�1 + ye−���−Uc2� + ¯ . �D7�

After integrating twice by parts à la Sommerfeld, we get

FUc2

L
= −

2t

�
sin�n�� − nkBT ln 2 −

nkBTx1

2
−

�kBT�2

4�t sin�n����2

3
+ ln2�2x1�� + ¯ . �D8�

APPENDIX E: DERIVATION OF FÈT3Õ2 AT U=Uc3

First we calculate the chemical potential

�Uc3
= 2t + �� , �E1�

where �� denotes finite-temperature corrections. Equation
�B2� for U=2t is the starting point to calculate ��. After
integrating it by parts, one obtains

�
−2t

2t �e���−2t���1/��arccos�− �/2t�d�

�e���−2t� + y2 =
�n − 2�x + n

2x�x + 1�2 .

�E2�

So, unless � is very close to 2t, the integrand is utterly neg-
ligible at low temperatures. This property allows us to make
use of the expansion
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1

�
arccos�− �/2t� = 1 −

1

�

2t − �

t
�1/2

+ ¯ , � → 2t−.

�E3�

Inserting this into Eq. �E2� and making the change in vari-
able �=��2t−��, we obtain after neglecting exponentially
small terms

�2 − n�x2 + �4 − 3n�x + 2�1 − n�
2x�x + 2��x + 1�2

=
1

�

 kBT

t
�1/2�

0

� e−���d�

�e−� + y�2 + O�kBT/t�3/2. �E4�

First, we consider the case n�1 so that Eq. �E4� can be
solved by iteration

x = x0 + A
 kBT

t
�1/2

+ ¯ , �E5�

where

x0 =
2�n − 1�

2 − n
�E6�

and

A =
8n�n − 1�
��2 − n�4�

0

� e−���d�

�e−� + 2x0 + x0
2�2 . �E7�

In this case, FUc3
reads

FUc3

L
= n�2t + kBT ln
x0 + A�kBT

t
�� − 2t − kBT ln y

−
1

�
�

−2t

2t

d�
���ln�1 + �1/y�e���−2t� + ¯ . �E8�

Since the integrand is exponentially small away from �=2t,
we can use the expansion


��� =
1

2��t�2t − �
+ ¯ �E9�

in the integral to capture the dominant term

FUc3

L
= 2t�1 − n� + �n ln x0 − ln y0kBT

−
t

2�

 kBT

t
�3/2�

0

+� d�

��
ln�1 + e−�/y0� + ¯ ,

�E10�

where y0=2x0+x0
2=4�n−1� / �2−n�2.

Let us now return to Eq. �E4�. For n=1, one has

1

2�x + 2��x + 1�
=

1

�

 kBT

t
�1/2�

0

� e−���d�

�e−� + y�2 + O�kBT/t�3/2.

�E11�

It should be noticed that x ,y→0 as T→0. In this case

�
0

� e−���d�

�e−� + y�2 � −
ln y

y
, �E12�

and therefore

x � 
 kBT

t
�1/2

ln
 kBT

t
� . �E13�

We now calculate FUc3
at n=1

FUc3

L
= 2t + kBT ln x −

1

�
�

−2t

2t

d�
���ln�1 + ye−���−2t�

= − kBT ln�2 + x� − kBT�
−2t

2t

d�
���ln�1 + �1/y�e���−2t�

+ ¯ . �E14�

Finally, after inserting the expansion Eq. �E9� and the
asymptotic form in Eq. �E13� into Eq. �E14�, we obtain
Fsing,Uc3

/L�T3/2.
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