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We put forward a two-terminal valley filter based on a bulk graphene sheet under the modulations of both a
local perpendicular magnetic field and a substrate strain. When only one of the two modulations is present, no
valley polarization can be generated. A combination of the two modulations leads to a different �but not
opposite� shifts of the K and K� valleys, which could be utilized to generate a valley-polarized current. The
degree of the valley polarization can be tuned by the strain strength and the inclusion of a scalar potential. The
valley polarization changes its polarity as the local magnetic field switches its direction.
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I. INTRODUCTION

The peculiar band structure renders graphene a rapidly
rising star of low-dimensional materials since its experimen-
tal discovery in 2004.1,2 As a flat layer of carbon atoms ar-
ranged in a honeycomb lattice, a graphene material, if in
neutrality, has a Fermi surface consisting of two degenerate
and inequivalent valleys �K and K�� at the corner of the
Brillouin zone. The two valleys are related by the time-
reversal symmetry. Near each valley point, the bands extend
linearly, allowing a massless Dirac-spinor description for el-
ementary excitations in bulk graphene. Such a band character
gives rise to many remarkable features of both graphene it-
self and graphene-based nanostructures, which could be ex-
ploited to create novel nanoelectronic and spintronic devices.

Among those features of graphene is Klein tunneling,
which leads to the absence of backscattering and thus limits
the on-off ratios of graphene-based transistors. An approach
to circumvent the Klein tunneling aims at modulating the
transverse motion of Dirac electrons. This can be realized,
for examples, by means of inhomogeneous magnetic fields3–5

and substrate strains.6 Local magnetic fields can be created
by depositing nanomagnetic elements on top of graphene
films as the way in semiconductor heterostructures.7,8 The
effect of strains on the band structures and optical phonons in
graphene samples has been examined experimentally by Ra-
man spectroscopy.9–11 It has been demonstrated theoretically
that the uniaxial strains up to 15% make no significant
changes on the graphene band structure.12

As a counterpart of electronic spin in spintronics, the val-
ley degree of freedom in graphene has been suggested as
information carrier.13 The operation of valley-based elec-
tronic devices requires the generation of an uneven valley
distribution of electrons. Intervalley coupling is suppressed
in a clean bulk graphene sample. Several schemes for valley
filters have been proposed, which concern confined
systems13,14 formed between two zigzag graphene nanorib-
bons, staggered sublattice potentials,15 and the trigonal warp-
ing effect of graphene bands far away from the Dirac

points.16,17 All of these proposals focus on an all-electrical
control of valley polarization. In this work, we put forward a
tunable valley filter based on bulk graphene under the modu-
lations of both the substrate strains and magnetic fields.

II. MODEL AND FORMALISM

We begin with the comparison between spintronics18 and
valleytronics. It is well known that electronic spin can mani-
fest itself through the coupling to an external magnetic field,
especially in semiconductors with a large g factor. In con-
trast, the intervalley scattering in graphene is negligible even
for magnetic fields up to 104 T. The spin-orbit interaction
�SOI� provides a way to manipulating the spin states of
charge carriers by their orbital motion. Due to the time-
reversal symmetry, the SOI alone cannot generate a spin po-
larization in two-terminal waveguide systems when the out-
going lead supports only one orbital mode.19 In valleytronics,
the in-plane strain plays a similar role as the SOI in spintron-
ics. The strain-induced pseudomagnetic field in graphene has
opposite signs for the K and K� valleys. As we will show, the
elastic deformation alone cannot produce a valley polariza-
tion in two-terminal graphene devices. When a magnetic bar-
rier is applied to a strained graphene film, the shifts of the K
and K� valleys are neither identical nor opposite, which can
be utilized to construct a valley filter.

As shown in Ref. 2, a mechanical in-plane strain in
graphene can be described by a gauge vector potential AS�r�.
The projection of AS�r� along the zigzag �armchair� direction
of the graphene lattice, denoted as ASZ �ASA�, can be ex-
pressed as

ASZ + iASA = �
n

�t�r,n�exp�− iK · n�

=c��uZZ� − uAA� � + �− 2uAZ� �i� . �1�

Here �t�r ,n� is the strain-induced changes �at the position r�
in the hopping amplitude t along a given nearest-neighbor
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vector n, K is the wave vector of the Dirac point K, c�0 is
a constant, and uZZ� , uAA� , and uAZ� are the components of the
strain tensor in the lattice coordinate system ZoA. The am-
plitude of the strain can be estimated as ��t� / t with t
�3 eV. The strain considered in our work is assumed to be
homogeneous in a given direction which is taken as the y
axis, i.e., uij�r�=uij�x ,y=0� with i , j� �x ,y	. The y axis may
deviate from the armchair direction with an angle � �see Fig.
1�a��. Such a strain distribution can be induced by a uniform
tension along the x direction, applied on the substrate rather
than the graphene �which adheres to the top of the
substrate�.9 We rotate the strain tensor uij through an angle
−� to obtain ASZ and ASA. The components of AS in the xoy
coordinate system are then given by


ASx

ASy
� = c
 cos 3� sin 3�

− sin 3� cos 3�
�
uxx − uyy

− 2uxy
� . �2�

This expression respects the symmetry of the graphene lat-
tice.

The inclusion of a magnetic barrier introduces a magnetic
vector potential AM�r�. We assume that the magnetic barrier
is created by a ferromagnetic metal �FM� stripe, which is in
parallel with the y direction and has a magnetization along
the x axis, placing on the top of the graphene film �see Fig.
1�a��. The magnetic vector potential in the Landau gauge is
thus of the form AM�r�=AM�x�ey. When a scalar potential
U�r�=U�x� is further considered, the low-energy Hamil-
tonian for electrons in a given valley reads

H� = vF� · �p + eAM + �AS/vF� + U�0, �3�

where vF�0.86�106 m /s is the Fermi velocity, p
= �px , py� is the in-plane momentum of electrons in graphene,
�x and �y are Pauli matrices, �= �1 for the K and K� val-

leys, and �0 is the 2�2 unit matrix. Note that in our formu-
lation the x component of AS can be removed by a local
unitary transformation u�x�=exp�−i��−�

x ASx�x��dx� / �	vF��.
The value of ASy depends both on the strain uij and the angle
�.

Since the system is invariant translationally along the y
direction, the transverse wave vector ky is conserved. We use
t��E ,ky� to denote the transmission amplitude of electrons
incoming from the � valley with energy E. For a general
profile of the vector potential AM�x�, AS�x� and the scalar
potential U�x�, the transmission amplitude can be calculated
numerically by means of the scattering matrix method.20 At a
low temperature TK, the valley-resolved conductance is
given by

G��EF� =
2e2

h

 dE

− � f

�E



−�E�/	vF

+�E�/	vF

�t��E,ky��2
dky

2
/Ly
, �4�

where EF is the Fermi energy, Ly is the sample size along the
y direction, and f�E�= �1+exp��E−EF� / �kBTK��	−1 is the
Fermi-Dirac distribution function. The valley polarization is
defined as

P =
G+1 − G−1

G+1 + G−1
. �5�

The operation S= i�yC �C is the operator of complex conju-
gation� transforms the Hamiltonian H��AM� to H−��−AM�.
Such an observation results in19

�t−��E,ky ;AM��2 = �t��E,− ky ;− AM��2. �6�

The combination of Eqs. �4�–�6� yields that the polarity of
the valley polarization is reversed �P→−P� as the magnetic
barrier switches its direction �AM →−AM�. Particularly, in
the absence of the magnetic barrier �AM =0�, the valley po-
larization vanishes, which indicates that the strain alone can-
not generate a valley-polarized current in a two-terminal
graphene device. The inclusion of a magnetic barrier breaks
the symmetric relation between H+1 and H−1, allowing a val-
ley dependence of the conductance. Obviously, when the
strain-induced vector potential AS changes to −AS, the valley
polarization is also reversed.

In order to demonstrate the operating principle of the de-
vice, we set �=
 /2 and take a simplified gauge field AS�r�
as in Ref. 6,

AS�r� = AS��x���LS − x�ey , �7�

which accounts for a uniform perturbation �t�AS of the
hopping along the x direction, over a region x� �0,LS�. The
magnetic barrier is approximated to be of a double-spikelike
shape, for which the magnetic vector potential has the form

AM = AM��x − xM���LM + xM − x�ey . �8�

Here AM and LM represent the strength and width of the
magnetic barrier, xM =LS+D with D the distance between the
magnetic barrier and the strain region. The scalar potential U
is US �UM� in the strain �magnetic barrier� region and zero
otherwise. Note that UM can be tuned by the voltage applied
on the FM stripe. For convenience we use the units with a
length scale lB0

=�	 /eB0 and energy scale E0=	vF / lB0
,

which are 811 Å and 7.0 meV, respectively, for a typical
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FIG. 1. �Color online� �a� Schematic illustration of the consid-
ered graphene device with a dielectric layer and a substrate strain
�the left yellow shaded region with thicker bonds�. A FM stripe is
deposited on the dielectric layer to provide a local magnetic modu-
lation for electrons in the graphene plane. The substrate strain is
induced by a tension along the x axis which has an angle � with the
zigzag direction of the graphene lattice. In the calculations we take
�=
 /2. �b� and �c� Profiles of the total vector potential Ay�x� for
electrons in the K and K� valleys.
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magnetic field B0=0.1 T. For example, the conductance unit
is taken as G0=e2�Ly / lB0

� / �
h� and the temperature is in unit
of E0 /kB. The distributions of the total �dimensionless� vec-
tor potential Ay�x�=AM�x�+AS�x� for the two valleys are
shown in Figs. 1�b� and 1�c�.

For the simplified pontetial profile, the transmission can
be derived analytically. In a given region j �denoted in Fig.
1�b��, the vector potential Ay =Ayj and the scalar potential
U=Uj are constant, which enables us to introduce a longitu-
dinal wave vector of electrons with incident energy E and
wave vector ky,

kxj = sgn�Ej��Ej
2 − kyj

2 , �9�

where Ej =E−Uj, and kyj =ky +Ayj. Note that kx1=kx3=kx5
while kx2 is valley dependent. For the considered electron
transporting through the magnetic barrier region from the
left, the transmission and reflection amplitudes are given by

tM =
kx1kx4

kx1kx4 cos � + i�ky1ky4 − E1E4�sin �
, �10�

rM =
E1

−1�kx1 + iky1��ky1E4 − ky4E1�sin �

kx1kx4 cos � + i�ky1ky4 − E1E4�sin �
, �11�

where �=kx4LM. For the incidence from the right, the reflec-
tion amplitude becomes

rM� =
E1

−1�− kx1 + iky1��ky1E4 − ky4E1�sin �

kx1kx4 cos � + i�ky1ky4 − E1E4�sin �
. �12�

Note that �tM�2, �rM�2, and �rM� �2 are invariant under the sub-
stitution of both ky1→−ky1 and ky4→−ky4. The scattering
amplitudes for the same electron traversing the strain region,
denoted as tS;�, rS;�, and rS;�� , can be calculated from Eqs.
�10�–�12� with the replacement kx4→kx2, ky4→ky2, E4→E2,
and �→kx2LS. Because the considered problem is equivalent
to a double-barrier tunneling, the transmission amplitude
reads

t� =
tS;�tM exp�ikx1D�

1 − rS;�� rM exp�2ikx1D�
. �13�

For the transmission determined by Eqs. �10�–�13�, the gen-
eral result Eq. �6� can be verified.

III. NUMERICAL RESULTS AND DISCUSSIONS

In Fig. 2, we present the valley-dependent transmission
�t��2 as a function of the incident angle 
 and electron energy
E. To reduce the number of adjustable parameters, here and
hereafter we take the structural parameters as LM =LS=D
=1 and set AM =2 and UM =US without specification. The
appearance of the direction-dependent transmission blockade
and resonant tunneling can be explained from the condition
for the existence of evanescent modes in the magnetic barrier
or strain region.5,6 Since such a condition depends strongly
on the global profile of Ay, a large difference in the transmis-
sion spectrum is expected for the K and K� electrons. Actu-
ally, one can observe from Fig. 2 that under a suitable inci-
dent energy E, the K electrons can transmit through the

system in a broad region of the incident angle 
 while the K�
electrons are almost totally reflected in the whole region of 
.
The transmission can be further tuned by the strain strength.
For the case that AM �AS� is much larger than AS �AM�, the
angular anisotropy is caused mainly by the magnetic barrier
�strain�, as reflected from the transmission features of E�0.
Under the given parameters, the case AS=AM gives rise to the
strongest contrast for the transmission of K and K� electrons
with a positive energy.

The transmission difference between the K and K� elec-
trons can be reflected in the conductance. Figure 3 shows the
valley-dependent conductance and the corresponding valley
polarization. The zero-temperature conductance �not shown
here� exhibits a rich oscillation feature as a consequence of
the transmission resonances. At a relative high temperature
TK=0.5, the oscillations are washed out. The conductance for
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FIG. 2. �Color online� Contour plot of valley-dependent trans-
mission �t��2 for the K and K� electrons �left and right panels, re-
spectively� traversing the valley filter in Fig. 1�a�. We set US=3 and
take AS as 4 in top panels, 2 in middle panels, and 1 in bottom
panels.
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FIG. 3. �Color online� �a� Valley-dependent conductance and �b�
valley polarization for the valley filter in Fig. 1�a� plotted as a
function of the Fermi energy EF at a given temperature TK=0.5. We
set US=3. The value of AS is marked in each curve.
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EF�0 is determined dominantly by max�AS ,AM� and has a
weak valley dependence. We thus focus only on the case
EF�0. It can be seen that for EF�US, the conductance of
the K electrons is usually larger than that of the K� electrons.
This can be understood from the shifts of the Dirac point in
the magnetic barrier and the strain region, �kM and �kS,
which are in the same �opposite� direction for the K �K��
valley �see Figs. 1�b� and 1�c��. In comparison with the an-
tiparallel case of �kM and �kS, there are more available open
transmission channels for the parallel shifts. The conduc-
tance G� is suppressed when the transmission channel is de-
pleted by the vector potential. Note that in a broad energy
region, G+1 is finite while G−1 is rather small. This interest-
ing feature enables the generation of a valley-polarized in-
jection currents since the system filters out the K component
of the electron current. One can achieve a valley polarization
exceeding 80% together with a remarkable total conductance
�Fig. 3�b��. Similar to the spin current, the valley current in
the linear-response regime is characterized by �G=G+1
−G−1. Note that in the high Fermi-energy region �G varies
slowly with EF while P decreases monotonically.

A tunable valley-polarized source is desirable for val-
leytronic applications. The tunability of valley filtering for
the device shown in Fig. 1�a� is demonstrated in Figs.
4�a�–4�c�. The valley polarization can be tuned by both the
scalar potential US and the strain-induced vector potential AS.
For a given Fermi energy as in Fig. 4�a�, the valley polariza-
tion is nearly perfect in a wide region of US. The reason is
that the number of open channels responsible for the conduc-
tance G� depends on US. For a fixed US and EF, the valley
polarization shows a rapid increase with AS when �US−EF� is

small �see Fig. 4�b��. The difference between the two valley
conductances ��G� vanishes for the two limiting cases: AS
�AM and AS�AM �see Fig. 4�c��, as expected from the sym-
metry analysis. The maximum of �G and the AS position of
the maximum depend on both US and EF.

All results presented so far are calculated for a simplified
profile of the magnetic barrier. In realistic cases, the modu-
lated magnetic field varies smoothly on the scale of the
graphene lattice constant. For definiteness, we assume that
the FM stripe in Fig. 1�a� has a magnetization �0M =1.8 T
�achievable for Co or Dy material8�, a rectangular cross sec-
tion of width LM =1 and height h=0.6, and is placed at a
distance z0=0.2 to the graphene plane. In this case the gen-
erated fringe field can be obtained analytically.21 Further-
more, we take a smooth profile for the strain-induced gauge
potential: ASy�x�=AS���x�erf�x /b�+��LS−x�erf��LS
−x� /b�	 /2. Here erf�x� is the error function, b=0.1 and LS
=1. Such a gauge potential corresponds to an effective
pseudomagnetic field Bef f = ��dASy�x� /dx�ez. Note that it is
the total variation in ASy�x� rather than the detail of Bef f over
the edge smearing region that has a crucial influence on the
tunneling suppression.6 The valley-dependent vector poten-
tial Ay�x� for AS=2 is shown in Fig. 4�d�. A common feature
of the smooth and the simplified Ay distribution is that for the
K �K�� valley Ay�x� keeps �changes� its polarity from the
strain region to the magnetic barrier region. It is this com-
mon feature that leads to a similar behavior of valley filtering
for both kinds of Ay profiles �see Figs. 4�e� and 4�f��. The
reason is that under this condition the phase-space-related
tunneling suppression6 depends strongly on the valley degree
of freedom. This indicates that the detail of the magnetiza-
tion and strain profile has no drastic effect on the valley
polarization characteristics of the valley filter proposed here.

Finally, we would like to give some remarks. Our pro-
posal is based on bulk graphene and the energy spectrum
near the Dirac point. Note that most of the excitement about
graphene stems from the low-energy regime. Previous pro-
posals on valley filtering require either a precise tailoring of
the graphene nanoribbon samples or the band warping effect
far away from the Dirac point. The combination of a sub-
strate strain and a local magnetic field provides another path
for valley control. Short-range disorder mixing the two val-
leys will reduce the degree of valley polarization. The inter-
valley mean-free path is estimated to be of the order 1 �m.22

Thus the valley polarization considered here should be not
degraded substantially when realistic system parameters are
considered. The valley-polarized current may be detected by
a superconducting contact as in Ref. 23 and can be injected
to other valleytronic devices for further manipulation.

IV. CONCLUSIONS

In summary, we have examined the feasibility of generat-
ing a valley-polarized current in a two-terminal device based
on the bulk graphene material. The proposed valley filter
relies on the combination of the two ways utilized to control
the transverse motion of Dirac electrons: the local perpen-
dicular magnetic field and the substrate strain. Such a com-
bination shifts the K and K� valleys with different but not
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FIG. 4. �Color online� Valley polarization P and conductance
difference �G for the valley filter in Fig. 1�a� plotted as a function
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is TK=0.1. In all of the calculations, three values of the Fermi
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opposite displacements. For the valley polarization, its am-
plitude can be tuned by the strain strength and the inclusion
of a scalar electric potential while its polarity changes as the
local magnetic field switches its direction.
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