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We study the dependence of the plasmon dispersion relation of graphene on applied uniaxial strain. Besides
electron correlation at the random-phase approximation level, we also include local field effects specific for the
honeycomb lattice. As a consequence of the two-band character of the electronic band structure, we find two
distinct plasmon branches. We recover the square-root behavior of the low-energy branch, and find a nonmono-
tonic dependence of the strain-induced modification of its stiffness, as a function of the wave-vector orientation
with respect to applied strain.
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I. INTRODUCTION

Graphene is a two-dimensional �2D� single layer of car-
bon atoms, and can be thought therefore as the building
block of several sp2-bonded carbon allotropes, ranging from
three-dimensional graphite, to one-dimensional nanotubes, to
zero-dimensional fullerenes. Its recent experimental fabrica-
tion in the laboratory1 has triggered an enormous outburst of
both experimental and theoretical research. This is justified
by the peculiar electronic and structural properties of
graphene,2,3 largely due to its reduced dimensionality, as well
as to correlation effects. In particular, its linear quasiparticle
dispersion relation is analogous to that of relativistic mass-
less particles, obeying Dirac-Weyl equation, thus enabling to
study quantum relativistic effects in a condensed-matter
system.4,5

Most of the unusual electronic properties of graphene are
encoded in the electron polarizability, which has been stud-
ied within the Dirac cone approximation at zero6 and finite
temperature7 for pristine graphene, as well as for doped
graphene8,9. These results have been recently extended be-
yond the Dirac cone approximation10. The effect of spin-
orbit interaction in the electronic collective excitations of a
graphene layer with or without doping has also been consid-
ered in Ref. 11.

Here, we will be concerned on the dynamical polarization
of graphene within the full Brillouin zone �BZ� of the hon-
eycomb lattice. While electron correlations will be treated at
the random-phase approximation �RPA� level, we will ex-
plicitly include local field effects �LFEs�,12 which are char-
acteristic of the lattice structure of graphene. The importance
of LFE has been shown to be more important in graphene
than in bulk semiconductors, in connection with the static
dielectric properties of graphene.13 By discussing the singu-
larities of the polarizability, we will be able to identify the
collective modes of the correlated electron liquid. We will be
mainly interested in the plasmon modes, which dominate the
long-wavelength charge-density fluctuations. The role of
electron-plasmon interaction in renormalizing the �especially
low-energy� quasiparticle dispersion relation has been

emphasized,14,15 and plasmons in graphene are potentially
interesting for applications in nanophotonics.16

Specifically, we will be interested in the dependence of
the plasmon modes on applied uniaxial strain. This will en-
able to investigate the interplay between electronic and struc-
tural properties of graphene. It has been even suggested that
nanodevices based on graphene could be engineered on the
basis of the expected strain-induced modifications of the de-
formed graphene sheet �origami electronics�.17 Indeed,
graphene is also characterized by quite remarkable mechani-
cal properties. Despite its quasi-two-dimensional character, it
displays an exceptional tensile strength and stiffness.18 In
particular, recent ab initio calculations19–22 as well as
experiments23 have demonstrated that graphene can sustain
elastic deformations as large as 20%. The possibility of a
strain-induced semimetal-to-semiconductor transition, with
the opening of a gap, has been therefore studied.24–27 It turns
out that this critically depends on the direction of applied
strain, as is also confirmed by studies of the strain effect on
the optical conductivity of graphene.28–30

The paper is organized as follows. In Sec. II, we present
our model, based on a tight-binding description of the
graphene electronic band structure. We will then derive the
electronic polarization at RPA level, and explicitly include
local field effects. We will then derive and discuss the vari-
ous branches of the plasmon modes along a symmetry con-
tour of the first Brillouin zone, both numerically and analyti-
cally, in the limit of small wave vectors. The effect of applied
uniaxial strain will then be discussed in Sec. III. Summary
and concluding remarks will be given in Sec. IV.

II. MODEL

A. Tight-binding approximation

At the tight-binding level of approximation, the Hamil-
tonian for the graphene honeycomb lattice can be conve-
niently written as

H = �
R,�

t�a†�R�b�R + ��� + H.c., �1�

where a†�R� is a creation operator on the position R of the A
sublattice, b�R+��� is a destruction operator on a nearest-
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neighbor �NN� site R+��, belonging to the B sublattice, and
�� are vectors connecting NN sites on different sublattices,
�1=a�1,�3� /2, �2=a�1,−�3� /2, and �3=a�−1,0�, with a
=1.42 Å, the equilibrium C-C distance in a graphene sheet.2

In Eq. �1�, t�� t����, �=1,2 ,3, is the hopping parameter
between two NN sites. In the absence of strain, they reduce
to a single constant, t�� t0, with t0=−2.8 eV �Ref. 31�.

The dispersion relation of the valence ��=1� and conduc-
tion bands ��=2� is the solutions Ek� of the generalized ei-
genvalue problem,

Hkuk� = Ek�Skuk�, �2�

where

Hk = � 0 fk

fk
� 0

� , �3a�

Sk = � 1 gk

gk
� 1

� , �3b�

and �k=��=1
3 eik·��, fk=��=1

3 t�eik·��, and gk=��=1
3 s�eik·�� are

the usual �complex� structure factor, NN hopping, and over-
lap functions in momentum space, respectively. The hopping
parameters t� and overlap parameters s� can be expressed in
terms of appropriate pseudoatomic wave functions, which
we here take to be normalized Gaussian, with standard de-
viation �g.28,32 One finds

Ek� =
− Fk � �Fk

2 + 4Gk�fk�2

2Gk
, �4�

where the minus �plus� sign refers to the valence �conduc-
tion� band, and Fk=gkfk

� +gk
� fk and Gk=1− �gk�2. In the fol-

lowing, we shall also use the abbreviation �k�=Ek�−�, and

denote �̄=2 for �=1, and �̄=1 for �=2. Moreover, we also
set �A=�1+�2+�3=0, and �B=�3.

A small, albeit nonzero, value of the NN overlap gk has
the advantage of endowing valence and conduction bands
with the observed asymmetry. However, since gk	0.07�k
�1 �also under strain, within the range considered below, in
Sec. III�, we can safely retain only linear corrections to the
band dispersions, Ek�= � �fk�−Fk+O�gk

2�, and neglect them
altogether in the eigenvectors uk�.

Our tight-binding approximation is completed by an ap-
propriate choice of the Bloch wave functions. As in Ref. 32,
we shall use 	k�=N−1/2� j
�r−R j

��eik·Rj
�

, where 
�r� is a
Gaussian pseudoatomic orbital and R j

� are vectors of the �
=A ,B sublattices.

We can anticipate, at this stage, that some of the findings
of the present study would not be obtained within the cone
approximation. In particular, the tight-binding approximation
allows to include important features of the electronic band
dispersion, such as a finite bandwidth and the occurrence of
Van Hove singularities. These features will play an essential
role in deriving some of the characteristics of the plasmon
dispersion, which is the main goal of the present work.

B. Local field effects on the electron polarization

Within linear-response theory, plasmon modes can be de-
scribed as poles of the density-density correlation function,
i.e., the polarization. The RPA is then the simplest, infinite
order, diagrammatic procedure to include electron correla-
tions in the dielectric screening giving rise to the
polarization.33 Besides electron-electron correlations, another
source of k-space dependence of the dielectric function is
provided by LFEs.34 This is due to the generally atomic con-
sistence of matter and, in the case of solids, to the periodicity
of the crystalline lattice. An account of the LFE on the di-
electric function of crystalline solids dates back at least to the
original paper of Adler12 �see also Refs. 35 and 36�, and is
generalized below to the case of graphene, including both
valence and conduction bands.

We start by considering the polarization, which for a non-
interacting system at finite temperature T reads

�0�x,x�,i�m� = −1���−1�
i�n

�
k�

�
k���

	k�
� �x��G�

0�k,i�n�	k��x�	k���
� �x�G��

0 �k�,i�n + i�m�	k����x�� , �5�

where G�
0�k , i�n�= �i�n−�k� /�−1 is the Green’s function for the noninteracting system, and �n= �2n+1��kBT
�m

=2m�kBT� denote the fermionic �bosonic� Matsubara frequencies at temperature T, with  Planck’s constant and kB Boltz-
mann’s constant. Fourier transforming into momentum space, and performing the summation over the Matsubara frequencies,
one finds

�0�q + G,− q� − G�,i�m� = �2��2Ac
−1��q − q��

1

N
�

k���

Tk�,k−q���i�m��k − q���e−i�q+G�·r̂�k��k��ei�q+G�·r̂�k − q�� , �6�

where

Tk�,k−q���i�m� =
nF��k−q��� − nF��k��

i�m + �k−q�� − �k�

. �7�

Here, nF��� is the Fermi function, Ac=3�3a2 /2 is the area of
the Wigner-Seitz cell, q, q� belong to the first BZ �1BZ�, G,

G� are vectors of the reciprocal lattice, and LFE are embed-
ded in the Adler’s weights,12

�k − q���e−i�q+G�·r̂�k�

=� d2xe−i�q+G�·x	k��x�	k−q��
� �x�
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�
1

2

�− 1��−�� + ei��k−q−�k�−iG·�3�e−�g

2�q + G�2/4, �8�

where in the last line only the onsite overlap between pairs of
pseudoatomic orbitals, centered on either sublattices, has
been retained, on account of their localized character, we
have retained only the lowest �zeroth� order contributions in
the overlap function gk, and ei�k =−fk / �fk�. Using a more
compact notation, one may also write

�0�q + G,− q� − G�,i�m�

= �2��2Ac
−1��q − q�� � �

��

�q��G�Q��
0 �q,i�m��q�

� �G�� ,

�9�

where

Q��
0 �q,i�m� =

1

N
�

k���

uk�
� uk�

��uk−q��
�� uk−q��

�
� Tk�,k−q���i�m�

�10�

with uk�
� the components of uk� ��=1,2�, and

�q��G� = exp�− iG · �� − �g
2�q + G�2/4� �11�

are the LFE weights. The continuum limit is recovered when
G=G�=0.

Many-body correlations are then included within RPA,
yielding a renormalized polarization,

��q + G,− q� − G�,i�m� = �2��2Ac
−1��q − q��

� �
��

�q��G�Q���q,i�m��q�
� �G�� ,

�12�

where now

Q�q,i�m� = gsQ
0�q,i�m�
1 − gsAc

−1V�q�Q0�q,i�m��−1,

�13�

where matrix products are being understood and gs=2 is a
factor for spin degeneracy, and

V���q� = �
G�

�q�
� �G��V0�q + G���q��G�� �14�

is the renormalized Coulomb potential, V0�q�=e2 / �2�0�rq�,
now a matrix over band indices. Here, �r= ��r1+�r2� /2 de-
notes the average relative dielectric constants of the two me-
dia surrounding the graphene layer. These are air for sus-
pended graphene ��r1=�r2=�r=1�. In the case of a stronger
dielectric substrate, we expect therefore a softening of the
correlation effects on the plasmon frequency. It is relevant to
note that the renormalized potential already includes LFE.

C. Plasmons

Plasmons are defined as collective excitations of the elec-
tron liquid corresponding to poles of the retarded polariza-
tion,

��q,�� � ��q,− q,i�m → � + i0+� , �15�

where q�1BZ. Here and in what follows we shall restrict to
the case G=G�=0. Indeed, it is apparent from the definition
of ��q ,�� that its poles can only arise from the vanishing of
det
1−V�q�Q0�q ,��� in Eq. �13�, which already contains
LFE via the renormalized Coulomb potential, Eq. �14�. We
therefore define the dispersion relation ���q� of the �th plas-
mon branch as

�−1
q,���q�� = 0. �16�

This clearly involves vanishing of both real and imaginary
parts of the inverse polarization. It will be useful to define
the dispersion relation �̃��q� of damped plasmons through

Re��−1
q,�̃��q��� = 0. �17�

Correspondingly, the inverse lifetime �−1�q ,�� of such
damped plasmons is proportional to −Im ��q ,��, for �
= �̃��q�.

Figure 1 shows our numerical results for the plasmon dis-

FIG. 1. �Color online� Plasmon dispersion relation for doped
graphene ��=1 eV� at finite temperature �T=3 K�, not including
�top panel� and including �bottom panel� LFE. Results are shown
along a symmetry contour in the 1BZ, with �= �0,0�, M
= �2� /3a ,0�, and K= �2� /3a ,2� /3�3a�. Frequencies � are in
electron volt. The shaded background is a contour plot of
−Im ��q ,�� �arbitrary scale� while continuous lines are the disper-
sion relation of damped plasmons, �̃��q�, Eq. �17�, is shown as a
dotted line.
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persion relation in doped graphene ��=1 eV� at finite tem-
perature �T=3 K� along a symmetry contour in the 1BZ,
without LFE 
G�=0 in Eq. �14�, top panel� and including
LFE �bottom panel�. At small wave vectors and low frequen-
cies, one recognizes a square-root plasmon mode �1�q�
��q, typical of a 2D system.33 This is in agreement with
earlier studies of the dynamical screening effects in graphene
at RPA level, employing an approximate conic dispersion
relation for electrons around the Dirac points.8,9 Such a result
has been confirmed also for a tight-binding band,10,37 and is
here generalized with the inclusion of LFE. The effect of
spin-orbit interaction can be neglected, in the case of suffi-
ciently large chemical potential,11 as is here the case.

The high-energy �5–20 eV� pseudoplasmon mode, extend-
ing throughout the whole 1BZ, is rather associated with a
logarithmic singularity of the bare polarization Q0�q ,�� in
Eq. �13�, and therefore does not correspond to a true pole of
the polarization. This collective mode can be related to an
interband transition between the Van Hove singularities in
the valence and conduction bands of graphene, and has been
identified with a �→�� transition.10,38

At large wave vectors, specifically along the zone bound-
ary between the M and the K �Dirac� points, full inclusion of
LFE determines the appearance of a second, high-frequency
�20–25 eV�, optical-like plasmon mode �2�q�, weakly dis-
persing as q→0. Multiple plasmon modes are a generic con-
sequence of the possibility of interband transitions, whenever
several such bands are available. This is, e.g., the case of
quasi-2D quantum wells �2DQWs�, whose energy spectrum
is characterized by quantized levels in the direction perpen-
dicular to the plane of the well while electrons can roam
freely within the plane.33 In this case, collective modes arise
as zeroes of the determinant of the dielectric function. At low
temperatures, at most the two lowest subbands need to be
considered. One usually obtains a longitudinal “acoustic”
mode associated to intrasubband coupling, and a transverse
“optical” mode associated to intersubband coupling.39 Such a
situation is here paralleled by the case of graphene, the role
of the two subbands of 2DQW being here played by the
valence and conduction bands, touching at the Dirac points
in the neutral material. It should be noticed that the plasmon
mode due to interband coupling is exactly suppressed when
LFE are neglected. In 2DQW, the discrete nature of the elec-
tronic subbands is due to the real-space confinement of the
electron liquid in the direction perpendicular to the plane,
i.e., to the quasi-2D character of the quantum well. In
graphene, the origin of the two bands ultimately lies in the
specific lattice structure of this material. Therefore, the high-
energy, optical plasmon mode disappears in the absence of
LFE �Fig. 1, top panel�, as expected whenever the lattice
structure of graphene is neglected. In other words, while in
the absence of LFE only scattering processes with momenta
within the 1BZ are considered, LFE allow to include all scat-
tering processes with arbitrarily low wavelengths, thereby
taking into account the discrete nature of the crystalline lat-
tice. Such a structure needs not be considered in the case of
a 2DQW. Our finding of a high-energy optical plasmon
branch, as generic consequence of the two-band electronic
structure of graphene, should stimulate further investigation
of the electronic collective modes in graphene,37,40 in view of

the role of electron-electron correlations in interpreting elec-
tron spectroscopy for interband transitions.41

D. Asymptotic behaviors

In certain limiting regimes, one may derive the
asymptotic behavior of the polarization in close form. At low
energies ��� �t�� and small wave vectors �q→0, i.e., q�g
�1�, LFE can be neglected. The matrix product entering the
definition of the polarization through Eq. �13� then reduces
to

gsAc
−1V�q�Q0�q,�� = gsAc

−1V0�q��
��

Q��
0 �q,��

=
Ṽ0

qa

1

N�
k�

�T��k���q · �kEk�

�
�2

, �18�

where Ṽ0=gs�8� /3�3��a0 /a� Ry, a0 being Bohr’s radius,
and �T����−�nF��� /��→����, as T→0. In the latter limit,
the � function effectively restricts the integration over wave
vectors along the Fermi line. Whenever the cone approxima-
tion holds �i.e., for sufficiently low chemical potential and
strain; see Sec. III�, this can be taken as the constant-energy
ellipse in Eq. �17� of Ref. 28. The k integration in Eq. �18�
can then be performed analytically, and the retarded polar-
ization, Eq. �15�, then reads

��q,�� 	
gsAc

−1Ṽ0
−1�̃1

2q2a2

2�+2
− 2�1

2�q�
, �19�

where �+��+ i0+, and

�̃1 = �1

2
Ṽ0�����1/2

��qEq2/a� �20�

with gs���� the density of states at the Fermi level. To lead-
ing order in qa, from Eq. �19� one thus obtains

�1�q� 	 �̃1
�qa �21�

for the acousticlike plasmon dispersion relation. One thus
recovers the square-root behavior of the plasmon dispersion
relation, as is typical in 2D electron systems.33 Moreover,
one recovers the dependence of the coefficient �̃1�n1/4 on
the carrier density n, rather than �n1/2, as is the case for a
parabolic dispersion relation of the quasiparticles.9,42 The
acousticlike plasmon mode may be related to the Drude
weight,43 thus enabling the observation of strain effects from
optical measurements.44 In the case of graphene on a dielec-
tric substrate ��r�1�, one has a reduction in �̃1, thus a soft-
ening of the plasmon mode. From Eq. �19� one may also read
off the imaginary part of the retarded polarization, which
close to the acoustic plasmon mode 
���1�q�� reads

Im ��q,�+� 	 −
�

2
gsAc

−1Ṽ0
−1/2�̃1�qa�3/2�
� − �1�q�� .

�22�

We now turn to the asymptotic behavior of the second branch
of the plasmonic spectrum, �2�q�. We have already estab-

PELLEGRINO, ANGILELLA, AND PUCCI PHYSICAL REVIEW B 82, 115434 �2010�

115434-4



lished that it displays an optical-like character, with �2�q�
→�2�0�, as q→0. Here, �2�0� is greater than the distance
between the top of the conduction band and the bottom of the
valence band. At small wave vectors, it is useful to consider
the expansions of the relevant terms in Eq. �13�, which to
leading order in qi �i=x ,y� read

QAA
0 �q,�� 	 QAA�0,�� + �

ij

qiyij���qj , �23a�

QAB
0 �q,�� 	 − QAA�0,�� + �

ij

qizij���qj , �23b�

where yij���, zij��� are real valued functions of the fre-
quency �, and

QAA
0 
0,�2�0�� =

1

4N
�
k�

nF��k�̄� − nF��k��

�2�0� + �k�̄ − �k�

. �24�

The asymptotically constant value of the optical-like plas-
mon frequency is then implicitly given by

1 – 4QAA
0 
0,�2�0��gsAc

−1�
G

V�G�sin2�1

2
G · �3� = 0

�25�

whereas the imaginary part of the retarded polarization, close
to the second plasmon branch 
���2�0��, to leading order
in q, reads

Im ��q,�+�

	 − �gsAc
−1� 1

4N
�
k�

nF��k�̄� − nF��k��


�2�0� + �k�̄ − �k��2�−1

� �
ijhk

qiqh�zij − yij��zhk + yhk�qjqk�
� − �2�0�� .

�26�

In particular, it follows that the spectral weight of Im � close
to �2�0� decreases as �q4, as q→0, rather than as �q3/2, as
is the case for the acousticlike plasmon mode, Eq. �22�. This
justifies the reduced spectral weight associated with the sec-
ond plasmon branch at small wave vector in Fig. 1. In the
case of graphene on a dielectric substrate ��r�1�, inspection
of Eqs. �24� and �25� yields a reduction in �2�0�.

FIG. 2. �Color online� Plasmon dispersion relation for doped graphene at finite temperature ��=1 eV, T=3 K�, including LFE, with
strain applied along the �=0 �armchair� direction. Strain increases �from left to right, from top to bottom� as �=0, 0.075, 0.175, and 0.275.
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III. EFFECT OF STRAIN ON THE PLASMON DISPERSION
RELATION

We now turn to consider the effect of strain on the plas-
mon dispersion relation. As in Refs. 25 and 28, applied
uniaxial strain can be modeled by explicitly considering the
dependence on the strain tensor � of the tight-binding param-
eters t�= t���� through the vectors �� connecting two NN
sites ��=1,2 ,3�. A linear dependence of �� on � is justified
in the elastic limit. Such an assumption is however quite
robust, due to the extreme rigidity of graphene,18 and is sup-
ported by ab initio calculations.19,21

Below, the strain tensor � will be parametrized by a strain
modulus �, and by the angle � between the direction of ap-
plied strain and the x axis in the lattice coordinate system.
Specifically, one has �=0 
respectively, �=� /6� for strain
applied along the armchair 
respectively, zigzag� direction.

The main effect of applied strain on the band dispersion
relation is that of shifting the location of the Dirac points
�kD from their position �K at �=0. While valence and
conduction bands vanish linearly as q→ �kD for moderately
low applied strain, such an approximation breaks down at a
critical value of the strain modulus �, depending on the di-
rection � of applied strain, when �kD tends to either mid-
point M� of the 1BZ border. This has been described in terms
of an electronic topological transition since it is accompanied
by a change in topology of the Fermi line.28

Figure 2 shows the dispersion relation of the plasmon
branches studied in Sec. II C, including LFE, along a sym-
metry contour of the 1BZ, for strain applied along the arm-
chair direction ��=0�, with increasing strain modulus ��=0
−0.275�. The low-frequency, acoustic plasmon mode �1�q�
is not qualitatively affected by the applied strain. In particu-
lar, the dominant square-root behavior is independent with
respect to the opening of a gap. On the other hand, one
observes an increase in spectral weight associated with the
high-frequency, optical plasmon mode �2�q� at small wave
vectors. The overall flattening of the second plasmon branch
over the symmetry contour under consideration can be traced
back to the strain-induced shrinking of both valence and con-
duction bands. We also note the formation of a gap between
�2�q� and the pseudoplasmon mode corresponding to a loga-
rithmic singularity in Q0�q ,�� at q=K.

A qualitatively similar analysis applies to the case of
strain applied along the zigzag direction ��=� /6, Fig. 3�,
and for strain applied along a generic direction ��=� /4, Fig.
4�, with �2�q� dispersing more weakly as the strain in-
creases.

Finally, we turn to study the q dependence of the low-
frequency, acoustic mode �1�q���1�q ,�q� under applied
strain, where q= �q� and �q denotes the angle between q and
the x axis. Figure 5 shows then the dispersion relation of the
lower plasmon branch as a function of q for several values of
�q, for increasing strain applied along the armchair direction

FIG. 3. �Color online� Plasmon dispersion relation for doped graphene at finite temperature ��=1 eV, T=3 K�, including LFE, with
strain applied along the �=� /6 �zigzag� direction. Strain increases �from left to right, from top to bottom� as �=0, 0.075, 0.175, and 0.275.
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��=0�. While the overall square-root shape �1	 �̃1
�qa, Eq.

�21�, is maintained in all cases, one observes a stiffening of
such plasmonic mode with increasing strain and a maximum
of the coefficient �̃1, Eq. �20�, when �q−�	90°. The same
description qualitatively applies also to the cases of strain
applied along the armchair ��=� /6�, and along a generic
��=� /4� direction. Such a behavior can be justified analyti-
cally in the limit of no LFE �cf. Sec. II D�, and corresponds
to the strain dependence obtained for the optical
conductivity.28 Indeed, from Eq. �20�, one may notice that all
the strain dependence is contained in the modulus square of
the quasiparticle dispersion relation of the conduction band
at the Fermi level, ��qEk2 /a�. One finds

�̃1 � ��qEq2� = � cos2��q − ��
A2 +

sin2��q − ��
B2 �1/2

, �27�

where A and B denote the semiaxes of the constant energy
ellipse.28

A−2 =
1

2
�� − ��2 + �2� , �28a�

B−2 =
1

2
�� + ��2 + �2� �28b�

with

� = −
3

2
a2�t1

2 + t2
2 − 2t3

2� , �29a�

� =
3�3

2
a2�t1

2 − t2
2� , �29b�

� =
3

2
a2�t1

2 + t2
2 + t3

2� , �29c�

and

cos�2�� =
���

��2 + �2
, �30a�

sin�2�� =
���
�

�

��2 + �2
. �30b�

It follows that �̃1 attains its maximum values whenever �q
−�=� /2 �modulo ��, and its minimum values whenever
�q−�=0 �modulo ��. It turns out that �=� in the zigzag and
armchair cases �cf. Fig. 5� whereas ��� in the generic case.

IV. CONCLUSIONS

By studying the electronic polarization, we have derived
the dispersion relation of the plasmon modes in graphene.

FIG. 4. �Color online� Plasmon dispersion relation for doped graphene at finite temperature ��=1 eV, T=3 K�, including LFE, with
strain applied along the �=� /4 �generic� direction. Strain increases �from left to right, from top to bottom� as �=0, 0.075, 0.175, and 0.275.
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Besides including electron-electron correlation at the RPA
level, we have also considered local field effects, which are
specific to the peculiar lattice structure under study. As a
consequence of the two-band character of the electronic band
structure of graphene, we find in general two plasmonic
branches: �1� a low-energy, acousticlike one with a square-
root behavior at small wave vectors, and �2� a high-energy,
optical-like mode, weakly dispersing at small wave vectors.
This is generic to two-band systems, and might apply to
other two-band systems as well, such as MgB2, and is analo-
gous to the collective modes in two-dimensional quantum
wells. We also find an intermediate energy pseudoplasmon
mode, associated with a logarithmic �viz., nonpower-law� di-

vergence of the polarization, which can be related to an in-
terband transition between the Van Hove singularities in the
valence and conduction bands of graphene, and can be iden-
tified with a �→�� transition. We have next studied, both
analytically and numerically, the dependence of the plasmon
branches on applied strain. While the square-root character
of the low-energy mode at small wave vector is robust with
respect to applied strain, we find a nonmonotonic stiffening
as a function of the wave vector direction, the maximum
steepness occurring roughly when the latter is orthogonal to
the direction of applied strain. We have also studied the in-
fluence of applied strain on the high-energy, optical-like
plasmon branch.
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