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We theoretically study the dissipative dynamics of a quantum emitter placed near the planar surface of a
metal supporting surface-plasmon excitations. The emitter-metal coupling regime can be tuned by varying
some control parameters such as the qubit-surface separation and/or the detuning between characteristic fre-
quencies. By using a Green’s-function approach jointly with a time-convolutionless master equation, we
analyze the non-Markovian dissipative features on the qubit time evolution in two cases of interest: �i� an
undriven qubit initially prepared in its excited state and �ii� the evolution toward a steady state for a system
driven by a laser field. For weak to moderate qubit-metal coupling strength, and on time scales large compared
to the surface plasmon oscillation time, a Markovian approximation for the master-equation results to be
adequate to describe the qubit main optical properties: surface enhancements of rate emission, optical spectra,
and time-dependent photon-photon correlation functions. The qubit decay shows a crossover passing from
being purely dissipative for small qubit-surface distances to plasmon emission for larger separations.
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I. INTRODUCTION

Surface plasmons �SPs� on metals, a topic extensively
studied from many years ago,1,2 has recently received a
strongly renewed attention due to significant advances in
new experimental capabilities and numerical
developments.3,4 Great attention has been focused on the
emerging field of quantum plasmonic with the goal of mak-
ing devices for quantum information processing5,6 as single-
photon transistor7 or lasers.8 As a requisite for this goal, a lot
of effort has been devoted to get coherent coupling between
plasmons and a quantum emitter made of a solid-state qubit
�SSQ� as, for instance, a quantum dot, a single nitrogen va-
cancy �NV� center or a single molecule among others.

Strong coupling signatures of SSQ and SP have been ex-
perimentally observed both in spectroscopic as well as in
time-resolved studies. In spectroscopy, the anticrossing be-
tween exciton and plasmon features in optical spectra have
already been reported in systems such as organic
semiconductors,9 organic molecules placed in subwavelength
hole arrays,10 metallic nanowires,11 hybrid metal-
semiconductor nanostructures,12 and even in carbon
nanotubes.13 These anticrossings have been claimed to be a
manifestation of strong coupling between SSQ and SP. On
the other hand, ultrafast time-resolved signatures of strong
coupling in SSQ-SP systems have also been reported. An
enhancement of several orders of magnitude for the sponta-
neous emission rate in a time-resolved photoluminescence
measurement on a InGaN heterostructure close to a silver
thin layer has been reported.14,15 Additionally, recent experi-
ments which operate simultaneously with both Raman and
fluorescence signals coming from a single molecule in very
close proximity to a metal surface have allowed the indirect
measurement of ultrafast ��25 fs� dynamical features in
such SSQ-SP system.16

On the theoretical side, some progress has been made to
understand SSQ-SP coupling in different geometries using

different approaches. The first attempts were devoted to com-
puting the spontaneous emission rate enhancement of an
atom near an absorbing surface as given by the atom self-
energy in a near-field limit.17 More recently, a hydrodynamic
model18 has been used to study a single molecule coupled to
metallic nanoparticles. A transfer-matrix method has also
been used for simulating attenuated-reflection experiments.19

There are also some other interesting related works focused
in the surface-enhanced Raman scattering of quantum emit-
ters close to metallic nanoparticles,20 dielectric spheroids,21

or other more complex metallic structures.22–24 However, the
experimental setup which has risen the highest interest has
been the quantum emitter coupled to a metallic nanowire,11,25

where the generation of a single optical plasmon can be
achieved. Several theoretical studies on this system have
considered the full quantum behavior of plasmon modes.26–28

In particular, some attention has been devoted27 to non-
Markovian effects that can be important in the SSQ-
nanowire system because the spectral density J��� �carefully
discussed in the present work� is highly structured due to a
divergence at the edge of the SP density of states.

An open quantum system strongly coupled to a reservoir
displays a complex dynamics which, in general, requires a
description beyond simple Markovian theories.29,30 In order
to clarify the relevance of non-Markovian effects in SSQ-SP
systems, we concentrate in a quantum emitter close to a pla-
nar surface of a dissipative metal, a system conceptually sim-
pler than wires because it only has a single band of plasmons
with a density of states having a singularity at a frequency
�sp. We study the properties of the light emitted by the sys-
tem depicted in Fig. 1: a SSQ close to the planar metallic
surface which supports a plasmon field as well as some dis-
sipation mechanism. Strong SSQ-SP coupling could be ex-
pected when the qubit-surface distance is small compared
with a typical length scale as, for instance, the wavelength of
the emitted light. In order to understand the fundamental
mechanisms of SSQ-SP strong coupling, we restrict our-
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selves to consider just a single quantum emitter. However,
collective effects of many emitters coupled to the same plas-
mon field have been recently proposed31 as responsible for
the detection of the Rabi vacuum splitting in these systems.

We start by analyzing non-Markovian features in the
SSQ-SP optical features by using a time-convolutionless
�TCL� approach.32 We show that SSQ-SP dissipative evolu-
tion is determined by the rapidly varying structure of the
reservoir spectral function at a frequency close to �sp on the
order of a few electron volts in a normal metal. Therefore,
the time scale for non-Markovian effects reduces, at most, to
a few hundreds times per electron volt, i.e., typical times
under a picosecond. Consequently, we conclude that the ob-
servation of non-Markovian signatures in SSQ-SP systems
made with normal metals will indeed demand experimental
set ups at the edge front of present state-of-the-art ultrafast
technology. Beyond this short-time scale, rate emissions stay
constant and a Markovian approach becomes adequate for
computing population dynamics, optical spectrum, and
second-order coherence function. Here, both a Markovian
and a non-Markovian analysis are applied to a SSQ-SP sys-
tem under two different excitation schemes: first, we analyze
the spontaneous emission of a SSQ initially prepared in the
excited state. Second, the time evolution of a SSQ initially in
its ground state and driven by means of a coherent laser field
up to a stationary state is studied.

We take �=1 along this paper which is organized as fol-
lows: in Sec. II we introduce the Green’s tensor of the lay-
ered system and study its main properties, in particular, the
spectral density function. In Sec. III the time-convolutionless
method is briefly reviewed and the non-Markovian effects on
the SSQ-SP system dynamics are considered. In Sec. IV we
use the Markovian limit to calculate the optical properties of
the system. Finally, in Sec. V we summarize our results and
draw some conclusions.

II. GREEN’S TENSOR AND SPECTRAL DENSITY

Electrodynamics of a dissipative medium is described by

the Green’s tensor Ĝ�r ,r� ,�� which satisfies the Maxwell
equation. We study the system depicted in Fig. 1: a SSQ in
the upper-half space is embedded within a dielectric matrix
with a dielectric function that can be taken as real and con-
stant, �1, in the range of frequencies of interest. In the lower
half space, z�0, a dissipative metal is characterized by a
complex dielectric function �2��� that we take in a renormal-
ized Drude approximation,

�2��� = ���1 −
�p

2

��� + i�p�� . �1�

�� is the high-frequency limit of the metal dielectric func-
tion, �p is the bulk plasmon frequency, and �p is the Landau
damping constant.

The Green’s tensor for this layered geometry has two con-

tributions, Ĝ�r ,r� ,��=Ĝ0�r ,r� ,��+ĜR�r ,r� ,��, the direct
or free-space solution and the reflection contribution coming
from its interaction with the materials,2,32 with on-site zz
component,

GR,zz�r,r,�� = −
c2

4��2�
0

�

dq
q3

�1�q,��

	� �1�2�q,�� − �2����1�q,��
�1�2�q,�� + �2����1�q,���e−2�1�q,��z,

�2�

where �i�q ,��=�q2−�i����� /c�2 for i=1,2. The compo-
nents GR,xx ,GR,yy are also nonzero,2,33 however we do not
write them explicitly because they are not necessary in this
work.

All the parameters of the absorbing medium relevant to
the SSQ dissipative dynamics appear in the Green’s tensor

Ĝ�rQ ,rQ ,��, where rQ denotes the SSQ location. The action
of the absorbing medium on a SSQ with dipole moment p, is
completely described by the spectral density

J��� =
1

��0
p · ��2

c2 Im	Ĝ�rQ,rQ,��
� · p , �3�

which is related with the qubit-environment coupling g���
and the density of states of the environment 
��� by means
of J���=g2���
���. In order to compute the spectral func-
tion of a representative system, we use parameters for silver
in the range of frequencies of interest where �p=3.76 eV,
��=9.6, and �p=0.03�p,34 while for the dielectric constant at
the upper-half space we take �1=5. Since the density of
states has a singularity at �sp=�p

��� / ��1+���=0.81�p non-
Markovian effects associated with the structured reservoir
can be expected to occur around that inverse frequency.
Thus, we consider a SSQ with a dipole oriented along the z
direction and an energy splitting �0 slightly detuned with
respect to the singularity at the SP edge �sp. In particular, we
calculate J��� for �= �̄sp− �̄0=0.1, where the frequencies
have been normalized to the bulk plasmon frequency �̄sp
=�sp /�p and �̄0=�0 /�p.

In Fig. 2 we plot, for different values of the qubit-surface
renormalized separation z̄=z�p /c, the spectral density in
units of the spontaneous decay rate of the SSQ in free space
�0=�0

3p2 /3��0c3. Two main results can be identified: �i� a
strong reduction in J��� when the qubit gets farther from the
surface. This is a consequence of the exponential reduction
in the coupling, as a function of z, as indicated in Eq. �2�.

�ii� For small separations J��� is highly structured pre-
senting a strong peak close to the frequency �sp �vertical line
in Fig. 2�. This is a consequence of the singularity of the

FIG. 1. Schematic view of the system: a SSQ, with characteris-
tic frequency �0, is placed at a distance z of an infinite planar
metallic surface.
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density of SP states at small detunings �. For increasing
separation, J��� becomes much smoother and a reduced
maximum separates from �sp.

III. TIME-CONVOLUTIONLESS METHOD
AND NON-MARKOVIAN EFFECTS

The spectral density for the SSQ-SP system computed
within a purely classical scheme, can be used within a quan-
tum framework describing the dissipative dynamics of an
open quantum system. As it is well known, when the time
correlation between the system and the environment decay
much faster than the characteristic inverse dissipation rate,
memory effects can be neglected in the so-called Markovian
approximation, and the observables of the system are given
by analytical expressions. However, this time scale does not
represent the only one relevant to determine the system’s
evolution. When the environment correlation time is longer
than the inverse rate of the system-bath coupling, distinct
physics can arise at very short times. A SSQ in close prox-
imity to a dissipative metal surface supporting SP modes sees
a highly structured reservoir to which might be strongly
coupled. Thus, one can expect non-Markovian effects to be
significant in the qubit time evolution. Many works27,32,35–46

have been devoted to treat this problem at different levels of
precision and sophistication. Here, we chose to work within
a TCL framework32 to capture non-Markovian effects to the
lowest order in the SSQ-SP coupling strength. This method
has already been applied to consider the spontaneous decay
of a two-level system coupled to a general structured
reservoir.32 For SSQ-SP systems, the strong variation in J���
occurring for frequencies close to �sp, implies that dynami-
cal features in time scales from femtoseconds to picoseconds
are expected.

A. Time-convolutionless method

What is of interest for us of the TCL method can be
sketched as follows.32 It consists in transforming the typical

non-Markovian integrodifferential equation for the reduced
density matrix into a local in time evolution equation by
making use of a power expansion technique of the Nakajima-
Zwanzig type. As a result, a master equation for a qubit is
obtained with time-dependent decay rate ��t� and Lamb shift
S�t�,

d
�t�
dt

=
i

2
S�t�	
�t�,�+�−
 +

��t�
2

		2�−
�t��+ − �+�−
�t� − 
�t��+�−
 . �4�

Time-dependent rates can be calculated within a perturbative
expansion. In order to calculate them, a first step is to Fourier
transform the spectral density,

f�t� =� d�J���ei��0−��t. �5�

The lowest order non-Markovian effects, i.e., the so-called
post-Markovian behavior, are contained in the second-order
contributions to ��t� and S�t� given by

�2�t� =
1

2
�

0

t

dt1Rf�t − t1� , �6�

S2�t� =
1

2
�

0

t

dt1If�t − t1� , �7�

where R and I denote real and imaginary parts, respectively.

B. SSQ spontaneous decay

We start by considering the situation where an undriven
SSQ is prepared in its excited state from which decays emit-
ting a photon to the vacuum or to the SP field. There are two
possible situations depending on the sign of the detuning �
between SP �̄sp and the SSQ �̄0 renormalized frequencies.
The time evolution of the excited state population is given
by32

n1�t� = n1�0�e−�0
t �2�s�ds �8�

with n1�0�=1 and the decay rate obtained from Eq. �6�.
At this stage, we want to analyze the importance of

memory effects. Therefore, in the calculations reported in
this section we do not include the free-space part of the
Green’s tensor, which involves a much slower dynamics than

the one associated to the reflection contribution ĜR, as given
in Eq. �2�.

Figure 3 shows n1�t� for different positive detunings, i.e.,
when the SSQ is resonant with the continuum stripe of SP
modes �0����sp�. In order to have a highly structured
reservoir, we have taken a small qubit-surface separation, z̄
=0.055 �very close to the blue line spectral density in Fig. 2�.
For large detuning �=0.5, �2�t� oscillates around a constant
�Markovian� value. At some time intervals, �2�t� takes on
negative values, a fact that tends to slow down the decay of
the excited state population. Physically, this behavior can be
understood as due to the backaction of the reservoir on the
SSQ re-exciting it. When the SSQ splitting energy gets

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

FIG. 2. �Color online� Spectral density J��� /�0 for a detuning
�= �̄sp− �̄0=0.1 plotted for different qubit-surface separations: z̄
=�pz /c=0.01 �blue�, 0.32 �purple�, 0.64 �yellow�, and 1.42 �green�.
Notice that as far as the SSQ approaches the surface, the spectral
density increases in roughly 6 orders of magnitude.
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closer in resonance with the top SP energy, e.g., �=0.1, the
oscillations slow down, the envelope of the oscillatory decay
rate becomes smaller and the negative parts of the decay rate
�2�t� tend to vanish producing only few oscillations before
the spontaneous decay becomes almost exponential. For fur-
ther smaller detunings, e.g., �=0.01, the SSQ frequency be-
comes close to a singularity in the SP density of states. The
decay rate modifies completely its behavior, increasing con-
siderably its value and just oscillating slightly around a large
positive value. The SSQ-SP coupling strength, for the small-
est detuning, is becoming so large that a perturbative ap-
proach like the second-order TCL method should fail to ren-
der reliable results, as reflected in the monotonous decay of
the SSQ excited state population with no oscillatory structure
	see Fig. 3�b�
. Physically, the transfer of the SSQ energy to
the SP field is very fast in this small detuning case, bringing
the SSQ to its ground state with coherence effects in a very
short-time scale. More elaborated methods are required to
explore this ultra-strong-coupling �SC� regime but this is cer-
tainly beyond the scope of the present work.

On the other hand, a physically different situation occurs
for negative detunings, i.e., when the SSQ energy falls
within the gap where no SP states exist. Figure 4 is similar to
Fig. 3 with the same z̄ and detunings with just a change in
sign with respect to the ones in Fig. 3. When �0 is far above
the edge of the SP dispersion, the SSQ basically remains in
its excited state as the spectral density for these energies is
practically zero, so there are no accessible SP modes to
which decay into. Nevertheless, as shown in the inset of Fig.
3, one may observe some non-Markovian oscillations for
very short times. When the SSQ energy is tuned closer in

resonance with �̄sp, e.g., �=0.1, a very interesting phenom-
enon occurs: the emitter undergoes the so-called fractional
decay in which the population tends to a finite, nonzero,
value at long times. Including the effect of free-space emis-

sion �Ĝ0� produces a decay of n1 in a time scale ��0
−1� much

larger than that of the figure. As the emission frequency is
further scanned closer to the band edge, the behavior changes
again dramatically: the decay rate, instead of oscillating
around zero, oscillates slightly around a positive value,
which results into an irreversible exponential decay.

A very important result must be drawn from all these
results: the time scale of these non-Markovian effects is a
few hundred times �p

−1. For normal metals, this means times
below 1 ps. Beyond that short-time scale, �2 becomes con-
stant just at the value it takes in a Markovian description as
discussed in the following Sec. IV.

C. Coherently driven SSQ

After having studied the effect of the structured reservoir
on the SSQ spontaneous emission, now we turn our attention
to the case where the system is coherently driven by a laser
field. The SSQ emits and absorbs photons simultaneously.
The system can achieve a stationary state in which light ab-
sorbed from the laser ends being transferred to plasmons.
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FIG. 3. �Color online� �a� Decay rate and �b� population of the
excited state of a SSQ located at z̄=0.055 from the planar surface.
Different lines correspond to different detunings from the SP fre-
quency: �= �̄sp− �̄0=0.5 �solid blue�, 0.1 �dashed purple�, and 0.01
�dotted yellow�.
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FIG. 4. �Color online� Decay rate and population of the excited
state for a SSQ placed at z̄=0.055 from the planar surface. The
different lines correspond to different detunings: �= �̄sp− �̄0

=−0.5 �solid blue�, −0.1 �dashed purple�, and −0.01 �dotted yellow�.
Inset in �a� corresponds to a zoom of the decay rate for the first two
values of � while inset in �b� corresponds to a zoom to population
of the excited state at short times for �=−0.5. Including the effect
of free-space emission ��0� produces a decay of n1 in a time scale
much larger than that of the figure.

GONZALEZ-TUDELA et al. PHYSICAL REVIEW B 82, 115334 �2010�

115334-4



The laser can be treated as a classical field included in the,
local in time, coherent part of the master Eq. �4� through the
Hamiltonian Hlas=
��+ei�last+e−i�last�−� /2. The Rabi fre-
quency 
 measures the strength of the coupling of the SSQ
dipole with the laser field. The time evolution of the SSQ
excited state population is obtained from the solution of Eq.
�4� represented in a rotating frame at the laser frequency �las.
n1�t� is plotted in Fig. 5, for the case of perfect resonance
between the laser and the SSQ. We assume that �2�t� remains
unaffected by the laser field so that the main effect of the
laser is to bring the system to a stationary state in a time
scale which is similar to that of the spontaneous decay dis-
cussed in the previous section.

IV. OPTICAL PROPERTIES IN THE MARKOV
APPROXIMATION

The results of the previous section show that a SSQ pre-
sents significant non-Markovian effects in a time scale a
couple of orders of magnitude larger than �p

−1. Hereafter, we
concentrate in the usual case of having a resolution in time
larger than a picosecond. Then, the system can be described
by a Markovian dynamics given by a master equation such
as Eq. �4� but now with a Lamb shift S=S2�t→�� and a
constant decay rate �=�2�t→�� including both the free
space and the reflection contributions to the dissipative dy-
namics. Since the only effect of the Lamb shift is a constant
energy shift, from now on we do not pay attention to it.

A. Decay rate

The decay rate in the Markovian regime coincides with
the long-time limit of �2�t�, �=�2�t→��, allowing to iden-

tify � as simply the spectral function at the SSQ frequency,

� = 2�J��0� =
2�0

2

�0c2p · Im	Ĝ�rQ,rQ,�0�
 · p , �9�

where the two terms corresponding to the free space �Ĝ0�
and the reflection part �ĜR� of the dissipative dynamics are

included in Ĝ.
The SSQ decay rate to the SP reservoir of the metallic

surface, �, is shown in Fig. 6, in a parameter space 
z̄ , �̄0�,
where lighter blues correspond to high decay rates with a
variation in four orders of magnitude between the highest
and the lowest values. In order to discuss these results, it is
better to plot � vs the SSQ-interface distance z̄ �in logarith-
mic scales� for different SSQ energies as depicted in Fig. 7.
It is worth noticing two important features: first, at a large �0
value the assisted decay rate is smaller than the vacuum one
for a certain range of distances, due to the fact that the re-
flected part of the Green’s tensor is interfering destructively
with the direct one. This effect is evident when the SSQ
frequency approaches �sp while it moves to larger separa-
tions z̄, and it weakens, when �0 is far from the SP band
edge.

Second feature is even more important. When the SSQ-
surface distance varies, the decay rate suffers a transition

FIG. 5. �Color online� Decay rate and excited population of a
SSQ placed at z̄=0.2 with energy detuning �= �̄sp− �̄0=0.1 and
coherently driven by a laser in resonance with the SSQ. The differ-
ent lines correspond to different laser intensities: 
 /�0=100 �blue�,
200 �purple�, and 500 �yellow�.

FIG. 6. �Color online� Surface-assisted decay rate log10�� /�0�
given by Eq. �9� for a region of the z̄ , �̄0 parameter space. The red
dotted gridline marks the �̄sp frequency. Lighter blues correspond
to high values. Between the highest and the lowest values there are
four orders of magnitude.

FIG. 7. �Color online� Logarithmic relative decay rate
log10�� /�0� calculated with Eq. �9� as a function of log10�z̄�. The
three curves correspond to different SSQ energies �̄0=0.24 �solid
blue�, 0.4 �dashed purple�, and 0.76 �yellow dotted�.
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from a 1 /z3 behavior to a much slower decrease. In order to
understand the physics behind this behavior, we analyze the
much simpler case �1=��=1 and �p=�p /500, i.e., a rate for
losses one order of magnitude smaller than the one we have
used in previous cases. Large dots in Fig. 8 depict the decay
rate as calculated with the full Green’s tensor for two differ-
ent SSQ frequencies. At very short distances the decay rate is
highly enhanced with respect to �0 and shows a 1 /z3 depen-
dence, which can be obtained �dotted lines in the figure� by
means of a model which only contains nonradiative pro-
cesses as the creation of electron-hole pairs in the metallic
medium. A crossover to a different behavior occurs at a criti-
cal distance, which depends on the SSQ-SP detuning �. Be-
yond this critical distance, a single plasmon pole approxima-
tion �dashed lines in the figure� in the Green’s tensor in Eq.
�9� is able to reproduce the numerical result with the com-
plete Green’s tensor. In other words, for separations beyond
the crossover, the SSQ decay just produces the emission of
surface plasmons while other metallic losses become negli-
gible. In the case of the SSQ embedded in a dielectric or a
metal with very large losses this crossover can be hindered
by other physical effects such as those coming from local
dissipative circulating currents.28 As the SP channel contri-
bution increases when the SSQ energy gets closer to the
plasmon band edge, this crossover effect can be exploited in
designing coherent plasmonic devices.12

B. Spectrum and correlation functions

Hereafter, we consider the case in which the system is
coherently driven by a laser so that the system reaches a
stationary state with partial occupation of the two levels of
the SSQ. The master equation in the rotating frame at the
laser frequency, �las, is

d
�t�
dt

= i���	
�t�,�+�−
 +



2
	
�t�,�+ + �−
�

+
�

2
	2�−
�t��+ − �+�−
�t� − 
�t��+�−
 �10�

with ��=�0−�las. The problem reduces to the study of the

SSQ resonance fluorescence47 near the planar surface of a
dissipative metal. The vacuum resonance fluorescence has
been widely studied in the literature in the case of resonant
excitation for which an analytical solution for the population,
spectrum, and second-order coherence function exists. Here,
we extend such analysis to the nonresonant case and pay
special attention to the effect of the SP reservoir. We present
our analysis in the way the experiments can be performed
either by tuning the laser resonantly with the SSQ energy and
varying the laser intensity or by fixing the laser intensity and
scanning the laser frequency. Figure 9 explores the former
alternative whereas in Fig. 10 we consider the later one.

From the master Eq. �10� one may derive the equations of
motion for the expectation values ��+�t��, ��−�t��, and ��z�t��
arriving to the well-known optical Bloch equations �OBEs�.
The steady-state solution for the excited state population is

�n1�ss =

2

��2 + 4��2 + 2
2�
. �11�

In general, the OBE must be solved numerically in order to
get the population dynamics �n1�t��, except for the resonant
case ���=0� for which an analytical solution exists,

�n1�t�� =

2

� + 2
2 	 �1 − e−3�t/4�cos�Rt� +
3�

4R
sin�Rt��� ,

�12�

where R=�
2−�2 /16, labeled as Rabi splitting at
resonance,48 is the parameter characterizing the strength of
the effective coupling. There is a threshold for the laser in-
tensity at 
=� /4. For 
 below this threshold, the solutions
are monotonically decaying functions of time so that the sys-
tem is said to be in the weak-coupling �WC� regime. Above
that threshold, the populations exhibit oscillations, and the
system is said to be in the SC regime. In Fig. 9�a� we plot the

real part of R in the parameter space 
z̄ ,
̄0�. The bluest
region corresponds to R�R�=0, which means that the Rabi
splitting at resonance is purely imaginary and consequently
the system is in the WC regime. For the regions in which
blue becomes lighter, the values correspond to positive and
higher values of R�R�.

In order to clarify these results, we show the population
dynamics in Fig. 9�b� for three different points highlighted in
part �a� of the same figure: the green curve corresponds to a
configuration where the laser is weakly coupled to the sys-
tem, so no oscillations are observed in the population. The
red point corresponds to the region of transition from WC to
SC where just one clear oscillation occurs before practically
arriving to the steady state. Finally the blue point corre-
sponds to a configuration where the laser is strongly coupled
to the SSQ and several oscillations are observed before the
steady state is achieved.

Another experimental alternative is to keep 
 constant
and vary the laser frequency as it is plotted in Fig. 10. In this
case, the laser is out of resonance and the Rabi splitting must
be redefined as48

FIG. 8. �Color online� Logarithmic relative decay rate
log10�� /�0� calculated with Eq. �9� as a function of log10�z̄� with
�1=��=1 and �p=�p /500. Two different SSQ energies are consid-
ered: �̄0=0.2 �blue circles, far from the SP edge� and 0.6 �red
circles, close to the SP edge�. Dashed lines denote the decay rates as
predicted by a single pole approximation �SP contribution�. Dotted
lines correspond to metal losses as the emission of electron-hole
pairs.
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R� =�
2 − ��

4
+ i���2

. �13�

Figure 10�a� shows RR� in the parameter space 
z̄ ,��̄�. The
population dynamics is shown in panel �b� of the same fig-

ure, where one can observe the transition from strong cou-
pling �oscillations, solid blue� to weak coupling �monoto-
nous in time, green dotted� for nonresonant excitation of the
SSQ.

A clear manifestation of the transition from WC to SC
appears in the optical spectrum at the stationary regime. It
can be calculated through the Wiener-Khintchine formula,

FIG. 9. �Color online� Optical properties of the SSQ-SP system.
Panel �a� corresponds to the value of R�R� in the parameter space


z̄ ,
̄0� in order to distinguish the strong- and weak-coupling re-
gions. Panel �b� and �d� show the dynamics of the excited state
population and the two-photon correlation function 	g�2��t�
, respec-
tively, for the three points plotted in panel �a�, corresponding to
values of � /�0=327 for the red point and 7.7 for the other two.
Panel �c� shows the qubit luminescence spectra for those three par-
ticular cases.

FIG. 10. �Color online� Optical properties of the SSQ-SP sys-
tem. Panel �a� corresponds to the value of R�R�� in the parameter
space 
z̄ ,��̄� to distinguish the strong- and weak-coupling regions.
Panel �b� and �d� show the dynamics of the excited state population
and the two-photon correlation function 	g�2��t�
, respectively, for
the three points plotted in panel �a�, corresponding to values of
� /�0=72, 22, and 8 for the green, red, and blue points, respectively.
Panel �c� shows the SSQ luminescence spectra for those three par-
ticular cases.
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S��� =
1

�
R�

0

�

ei����+�t��−�t + ���d� . �14�

The calculation of the two-time correlator in Eq. �14� re-
quires the use of the quantum regression theorem47 by using
the steady-state populations as initial values for the second
time dynamics. In the resonance fluorescence problem there
are always two main contributions to the spectra: the Ray-
leigh scattering coherent part and the one coming from the
incoherent scattering. The former contribution is just a delta
function at �0 that we ignore in our results. We are mainly
interested in the contribution coming from the inelastic scat-
tering which is shown in Figs. 9�c� and 10�c� for the resonant
and nonresonant cases, respectively. As it occurred with the
population, under resonant excitation the spectrum admits an
analytical expression,

S��� � � �/4
�2

4
+ �� − �0�2

+
3�/16

9�2

16
+ �� − �0 + 
�2

+
3�/16

9�2

16
+ �� − �0 − 
�2� . �15�

In the WC regime �green point� 
�� /4, the light emitted
simply produces a Lorentzian curve peaked about �0 with
linewidth � /2. For the intermediate regime �red point�, on
top of the Lorentzian peaked at the qubit frequency, some
satellites start to appear at the laser Rabi frequency �
. For
a strong-driving field situation 
�� /4 these two sidebands
appear at frequencies �=�0�
. For the nonresonant case,
the threshold changes but the behavior remains qualitatively
unaffected: even though the dressed state structure is slightly
modified by the detuning, at the end, a triplet is obtained in
the resonant case. The existence of this Mollow’s triplet is a
manifestation of the SC of the laser to the SSQ-SP system.

Another magnitude of experimental interest is the second-
order coherence function,

g�2���� =
G�2��t,t + ��

G�1��0�G�1����
�16�

with correlation functions

G�2��t,t + �� = ���+��t���+��t + ����−��t + ����−��t�� ,

G�1��t,t + �� = ���+��t���−��t + ��� . �17�

We evaluate these magnitudes at the stationary state. In the
resonant case, the second-order coherence function can be
analytically expressed as

g�2���� = 1 − e−3��/4�cos�R�� +
3�

4R
sin�R��� . �18�

It clearly exhibits photon antibunching: g2�0�=0. Figure 9�d�
shows g�2� for zero detuning for the three different points
considered above for the other magnitudes. Apart from the
antibunching, the case of SC shows a remarkable oscillatory
behavior. Once more, qualitatively similar results are ob-

tained with laser-SSQ detuning as shown in Fig. 10�d�.
The main consequence to be drawn from Figs. 9 and 10 is

that by pumping the SSQ with a tunable laser, and measuring
spectra and second-order correlation functions, one can ex-
tract information about the SSQ coupling to the surface plas-
mon of the dissipative metal.

V. SUMMARY

In this work we have studied the properties of the cou-
pling of light with a SSQ, embedded in a dielectric, in the
presence of a SP field supported in the interface between this
dielectric matrix and a dissipative metal. Using a time-
convolutionless approach, we provide a theoretical descrip-
tion of the non-Markovian features for this kind of systems
and discuss its relevance in possible observations. In a spon-
taneous decay situation, different behaviors occur depending
on both the sign and the absolute value of the SSQ-SP de-
tuning: from a monotonous �almost exponential� decay for
very small detunings, to population oscillations due to reab-
sorptions in the case of positive detuning. Even fractional
decays can be observed, when negative detunings are present
and the SSQ energy is not too close to the SP edge band.

In experimental situations, non-Markovian features can be
hard to detect due to practical difficulties in getting the ad-
equate time resolution. Therefore, we have also considered a
Markov approximation to study the electrodynamics of the
SSQ coupled to a reservoir of SP modes. The whole infor-
mation of the planar metallic surface is embedded in the
decay rate constant, which depends on both the SSQ fre-
quency and distance to the surface. The excitation of the
system by a laser allows the existence of a steady state as
well as the analysis of different measurable properties of the
SSQ-SP system as, for instance, surface enhancements of
rate emission, optical spectra, and time-dependent photon-
photon correlation functions. Our main result is that the qubit
decay shows a crossover passing from being purely dissipa-
tive for small qubit-surface distances to plasmon emission
for larger separations. As the SP emission channel increases
when the SSQ energy gets closer to the plasmon band edge,
this crossover effect can be exploited in designing coherent
plasmonic devices. Our next task, beyond the scope of the
present work, is to treat the plasmonic part of the system not
as a reservoir but as an ingredient coherently coupled to one
or more SSQs.12
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