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Coherent control of indirect excitonic qubits in optically driven quantum dot molecules
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We propose an optoelectronic scheme to define and manipulate an indirect neutral exciton qubit within a
quantum dot molecule. We demonstrate coherent dynamics of indirect excitons resilient against decoherence
effects, including direct exciton spontaneous recombination. For molecules with large interdot separation, the
exciton dressed spectrum yields an often overlooked avoided crossing between spatially indirect exciton states.
Effective two-level system Hamiltonians are extracted by Feshbach projection over the multilevel exciton
configurations. An adiabatic manipulation of the qubit states is devised using time-dependent electric field
sweeps. The exciton dynamics yields the necessary conditions for qubit initialization and near unitary rotations
in the picosecond time scale, driven by the system internal dynamics. Despite the strong influence of laser
excitation, charge tunneling, and interdot dipole-dipole interactions, the effective relaxation time of indirect
excitons is much longer than the direct exciton spontaneous recombination time, rendering indirect excitons as
potential elemental qubits in more complex schemes.
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I. INTRODUCTION

Semiconductor quantum dot molecules (QDMs) are po-
tential building blocks for solid-state quantum computation
architectures.' These devices have remarkable electronic and
optical properties, arising from their molecular exciton
spectrum.”3 Moreover, the optical response of QDMs is
highly tunable using external electric and magnetic fields.
Quantum optics techniques have demonstrated coherent phe-
nomena in QDMSs, such as Rabi oscillations and level anti-
crossing of excitonic dressed states.*~” Strong localization of
charge and spin in these structures permits multiple ways of
harnessing charge and spins qubits, all limited by uncon-
trolled interactions within the molecule environment.® On
one hand, spin qubits in self-assembled quantum dot struc-
tures have received a great deal of attention due to the large
coherence time of spins localized in quantum dots, limited
mostly by their hyperfine interactions with the QDM nuclear
spin reservoir.’ In particular, optical spin initialization and
nondestructive measurements have already been imple-
mented in QDMs.'? On the other hand, charge qubits have
typically shorter decoherence times, limited by spontaneous
exciton recombination and electron-phonon interactions.!!
The latter limitation can be largely suppressed at very low
temperatures while the former is more subtle. For neutral
spatially direct exciton qubits, with logic states typically em-
bodied in the presence or absence of an exciton in a single
QD, spontaneous recombination is fast (~1 ns) and highly
detrimental, due to the large direct exciton oscillator
strength.

In this work, we investigate the exciton dynamics of op-
tically driven and electrically gated QDMs coupled by
charge tunneling and Forster energy transfer (FRET).'>14
We argue, theoretically and numerically, that an exciton
dressed qubit,'>-!'7 with logical states constituted by neutral
indirect excitons, can be effectively extracted from the QDM
exciton dressed spectrum. Our work indicates that a control
scheme is devisable using external electric field sweeps. By
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these means, the qubit can be initialized and rotated multiple
times with high fidelity, well beyond the spontaneous exciton
recombination time scale. Furthermore, we devise a readout
scheme, using an adiabatic population transfer of the output
indirect state into an auxiliary direct exciton state. This opens
the possibility of a realistic realization of a neutral exciton
qubit with enhanced characteristics and subsequent coherent
manipulation using optical and electrical means. For typical
QDM structures, we find that one can anticipate relaxation/
decoherence times of at least two orders of magnitude larger
than spontaneous recombination times. Further separating
the dots in the QDM could give rise to even longer coher-
ence times, making them suitable for implementing complex
multiqubit architectures.

In Sec. II, we introduce a realistic model for the QDM,
that takes into account all relevant electron-hole states, and
processes at the relevant energies. An excitonic dressed spec-
trum and population bias map is introduced in Sec. III and
used to indicate the different molecular resonances (level an-
ticrossings). In Sec. IV, we employ a Feshbach projection
formalism,'® adiabatically eliminating selected exciton tran-
sitions and extracting an effective Hamiltonian describing
locally the relevant level anticrossings. In particular, we
demonstrate that adiabatic elimination of the direct exciton
transitions leads to an effective qubit subspace consisting of
two long-lived indirect excitons. In Sec. IV A, we describe
the qubit dynamics in two regimes, strong vacuum-indirect
exciton coupling (qubit initialization) and strong coupling
among two molecular indirect excitons (qubit rotation). We
discuss the role of FRET and biexciton states in Sec. IV B
and find that the qubit subspace is resilient against their det-
rimental effects as well as to small corrections to the laser
detuning. Section V introduces an applied adiabatic bias
ramp that implements the initialization, rotation, and readout
of the qubit logical states. It is demonstrated that the qubit
can be initialized and rotated with near unity fidelity within a
picosecond scale. Finally, in Sec. VI, we develop a method to
extract effective decay rates of the molecular indirect exci-
tons during initialization and rotation regimes, which results
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FIG. 1. (Color online) (a) Bare exciton level configuration cor-
responding to Hamiltonian (1). Solid arrows indicate exciton tran-
sitions mediated by different processes of tunneling (z,,7;), optical
pumping (€2), and Forster transfer (V); dashed arrows represent
radiative channels. (b) Effective level configuration according to
Eq. (7), after adiabatic elimination of the direct transitions; the tilde
on labels represent effective couplings and decay rates.

in relaxation times many orders of magnitude larger than the
manipulation times.

II. MODEL

The QDM consists of two vertically stacked nonidentical
“top” (T) and “bottom” (B) quantum dots. The dots are sepa-
rated by a barrier of thickness d and subject to an applied
axial electric field F' that results from the application of a top
gate voltage. This is realized by placing the QDM in a n-i
Schottky junction.”> The QDM is pumped by a broad square
laser pulse of frequency w, which may excite different
nearby exciton levels. The pulse duration is long enough,
typically =1 ps, to capture several amplitude oscillations of
the excitonic populations.

We denote exciton bare states by |Z’;ZTTX>, where
ep(r)»hpr=10,1} are the electron and hole occupation num-
bers, resulting in a total of five states, as shown in Fig. 1(a).
The basis of this excitonic Hilbert space contains: the
vacuum |goX); two single direct exciton states, |}0X) (bottom
exciton) and |8%X> (top exciton); and two single spatially
indirect exciton states |))X) and |%,X). The Hamiltonian in

the rotating wave approximation'®! is given by
%0 O 0 0 Q
00
Q 501 le Iy VF
01
H=| 0 1, O+ As 0 A (1)
01
0 1 0 S~ As t,
10
Q VF Iy Lo 510

10

where the columns are associated with the states |800X) 8%X>,
00X, |96X), and |{pX). Diagonal matrix elements represent
detunings of the exciton levels from the laser energy. An
applied axial electric field F results in Stark shifts for the
indirect exciton detunings & é?E%;:E Loy o1 v—hw given by
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AS=€dF. (2)

Likewise, the excitation pulse electric field envelope gener-
ates an optical matrix element, Q=(J0X|4-E|{0(01}X), for di-
rect exciton transitions.?>> Matrix elements, t,,t,, describe
single-particle interdot tunnelings for electron and hole,
respectively.?* V. is an interdot “hopping” for an entire
electron-hole pair, arising from the dipole-dipole interaction
coupling two direct exciton states,

__Mrks
™ dmeed

A3)

where €, is the dielectric constant and wuz(5) ~6.2¢ A are the
interband transition dipole moments. These are assumed par-
allel to each other (and perpendicular to their separation),
which gives an orientation factor k~ 1.2° In the numerical
calculations, we use d=8.4 nm, which yields a value of
Vr=80 ueV. This interaction allows the Forster energy
transfer mechanism by which a donor QD transfers its exci-
ton energy to the acceptor neighboring dot, effectively re-
sulting in the nonradiative interdot “hopping” of the
exciton.!>"14

We also consider radiative decay rates, F;(l =7y=1 ns, de-
scribing the spontaneous recombination of excitons with spa-
tially direct character.?® To that effect, the exciton dynamics
is obtained from solutions to the Lindblad master equation,
which yields the time evolution for the density matrix of the
system, 2!

dp

== [H().p]+ L(p). “)

The first term on the right describes the coherent evolution of
the excitation dynamics, H(¢) being the full Hamiltonian of
the system, Eq. (1). The second term, L(p), incorporates dis-
sipation processes,

r.
L(p) =~ E _le({P_,‘,P} - 2ijPi), (5)
J

where P;=|j)(j|, and |j) is an exciton which relaxes into a
state i), with rate I';;. The dynamics requires the solution of
N? coupled differential equations for a N-dimensional Hilbert
space.

As we will explain in detail later, additional states consid-
ered in the model correspond to neutral biexcitonic states,
Sec. IV B, whereas exciton states arising from excited states
of the electron (hole) and charged excitons are not consid-
ered (assumed to be far removed from the manifold of inter-
est). We also assume that charge tunneling into the contact
reservoirs and spin-orbit interactions are negligible, render-
ing electron-hole exchange decoherence processes unimpor-
tant, see Sec. V D.

III. EXCITONIC DRESSED SPECTRUM

The interplay of charge tunneling, incident radiation field,
and Coulomb interactions, results in coherent interdot cou-
pling. This coupling yields complex molecular states that are
superpositions known as the dressed excitonic states. Only a
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FIG. 2. (Color online) Level anticrossing population map of the
QDM vacuum state |300X> As a function of applied bias and pump
laser energy, the vacuum depopulates to other excitons at each reso-
nance. Upper right dashed box indicates resonant excitation into an
indirect exciton, ?(I)X, at F;=43.4 kV/cm, for a laser energy E; .,
=1299.6 meV. The central anticrossing mixes the two indirect ex-
citons at Fp=2.3 kV/cm. See system parameters in Ref. 27.

subset of these superpositions leads to allowed transitions,
with field-dependent amplitudes and energies, which results
in anticrossings in the dressed exciton spectra of the QDM.
The time evolution of molecular states under optical pump-
ing results in Rabi oscillations, which can be time integrated
to yield the average occupation of the excitons involved in
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the molecular states. The occupation of such excitons can be
probed, in principle, by differential transmission of a weak
probe measuring the population of a particular exciton. It is
then possible to construct a level anticrossing (LACS) popu-
lation map, using the time-integrated dynamics of the Hamil-
tonian, Eq. (1). For a given map coordinate, (F,%w), the
integrated population is given by p;=(1/1;)[{pii(1)dt, where
t; ~500 ps stands for the constant-amplitude pulse duration,
long enough to capture several amplitude oscillations of the
exciton populations; only a few Rabi oscillations are neces-
sary to reliably compute p;. Then, any exciton state popu-
lated under pumping will exhibit a relative amplitude
pi(F,hw) and contribute to features on the corresponding
map. At each coordinate, (F,%w), two or more excitons share
population if they have nonvanishing components in the
dressed state; then by examination of maps corresponding to
individual excitons, one can reconstruct the entire dressed
spectrum of the system. Alternatively, one can compute the
population map of the vacuum state [J0X=|0) so that the
complete dressed LACS spectrum will correspond to all
(F,hw) coordinates where this estate is depopulated; such is
the case of Fig. 2.

In contrast, Fig. 3(a) shows the QDM eigenvalue spec-
trum as function of applied electric field F for a constant
value of the pump laser energy, hw=E,,,,=1299.6 meV and
system parameters as in Fig. 2. The top right box indicates a
level anticrossing that has a correspondent optical signature
in the population map of the vacuum state (top right box in
Fig. 2). Anticrossings at zero energy between the vacuum
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FIG. 3. (Color online) (a) Dressed exciton eigenvalue spectrum at fixed excitation energy Ziw=1299.6 meV. Boxes show anticrossings
associated to couplings to the radiation field and between indirect excitons. These features have a one to one correspondence to the optical
signatures in Fig. 2. (b) and (d) zoom into anticrossings near E=0. (c) is the central anticrossing that mixes the indirect excitons spanning

the qubit subspace.
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|00%) and exciton states |{X) and |)5X) appear at electric field
values, F=-38.6 kV/cm and 43.4 kV/cm, respectively.
These values coincide with the corresponding indirect exci-
ton population signatures in upper part of Fig. 2, indicated by
the dashed horizontal line. In a similar way the central box in
Fig. 3(a) encircles a very narrow anticrossing between indi-
rect excitons |5)X) and |90X), occurring at F=2.3 kV/cm.
Notice that each anticrossing occurs energetically far away
from each other, indicating that their eigenstates superposi-
tions are only weakly coupled to the others. This suggests
that an effective Hamiltonian, represented in the basis of the
qubit subspace, should reproduce these anticrossing signa-
tures.

IV. QUBIT EXTRACTION

In the spectroscopy of QDMs, the appearance of a level
anticrossing signature points to the onset of an important
interdot interaction. These interactions are in some cases not
straightforwardly explained by the off-diagonal matrix ele-
ments of the Hamiltonian, Hy, connecting two allowed
states. For example, two excitons |i) and |j), with a very
weak oscillator strength can couple strongly to the radiation
field via higher-order transitions mediated by nonoptical pro-
cesses, such as charge tunneling. Such is the case for indirect
excitons in our model, which couple via higher-order pro-
cesses to the radiation field, yet they are assumed to have
zero oscillator strength. These states have well-defined opti-
cal signatures in the LACS map in Fig. 2 and exhibit an
anticrossing with the vacuum in the eigenvalue spectrum in
Figs. 3(b) and 3(d).

This coupling of two indirect excitons via higher-order
transitions, and their respective coupling to the vacuum,
should be revealed by an effective Hamiltonian that de-
scribes the same physics as the original but constrained to a
sector of the Hilbert space whose wave functions correspond
just to the eigenvalue spectrum in the anticrossing region.
This projected Hamiltonian is of reduced dimensionality and
should have nonzero off-diagonal matrix elements connect-
ing the states involved. We employ the Feshbach projection
operator formalism,'® which permits the derivation of an ef-
fective Hamiltonian with exciton eigenstates of pure indirect
character. The direct exciton sector of the Hamiltonian is
adiabatically eliminated (projected out), and its dynamical
effects become embedded in the matrix elements of the ef-
fective Hamiltonian. The requirements of adiabatic elimina-
tion are satisfied by two conditions: (1) adiabatic variation in
all external fields and (2) ability to isolate spectrally, by tun-
ing the excitation energy (off-resonant condition) and applied
electric field, the confluence of two excitons from the re-
maining exciton manifolds. The Hamiltonian obtained by
projection, would describe the time evolution of qubits in the
unitary and dissipative regimes.

In the following discussion, for simplicity we consider a
closed quantum system with the Hamiltonian given by Eq.
(1). The Hamiltonian can be separated in to two parts, H
=Hy+V, where H, is the unperturbed diagonal part and V a
perturbation. Let P be the relevant subspace spanned by the
excitons that self-avoid at a chosen system resonance. In the
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same way, let P and Q=1- P be projector operators onto and
outside of P, respectively. The effective Hamiltonian is
given by!'8

H(z) = PHyP + PR(z)P (6)

with z=FE*ie, where E and € are the real and imaginary

parts of the complex energy eigenvalue z. The first term of H
is the leading unperturbed part of the Hamiltonian inside P,
with the second term containing the level shift operator,
R(z)=V+VQ[z-Q0H,Q-QVQ] 'V, projected onto P. The
latter term can be seen as a Hamiltonian that permits the
calculation of the energy-level shifts with respect to the un-
perturbed levels. Allowing the Hamiltonian to depend on its
eigenvalues z, makes the eigenvalue equation nonlinear. Ad-
ditionally, analytic continuation of the eigenvalues into the
complex plane allows the introduction of non-Hermitian
Hamiltonians that incorporate dissipation processes taking
place outside the relevant subspace, P. Self-consistent solu-
tions to the nonlinear eigenvalue equation are used to obtain
the eigenvalue spectrum in the vicinity of a level crossing
and anticrossing. Near a level anticrossing (and in the ab-
sence of accidental degeneracies) there is a unique self-
consisting solution of z(F) for each value of the applied elec-
tric field F.

A. Indirect exciton qubit Hamiltonians

In order to obtain the dynamics of molecular excitons
with spatially indirect character, we project the total Hamil-
tonian (1) onto the three-level system, |[50X),[00X),[%X),
shown in Fig. 1(b). The resulting Hamiltonian incorporates
an effective coupling among the indirect excitons, U, and
effective couplings of indirect excitons to the radiation field,

Qm and ()

10> Tespectively. We assume that the direct exciton

10 01
levels are resonantly coupled by FRET, &, =6, =A, and

or o1
that the bottom and top QDs couple with the same strength to

the radiation field, Q. This assumption yields, O o1 =ﬁ10

10 ol
=(),. Let P, be the subspace subtended by the vacuum and
the indirect exciton levels; then a projection of Hamiltonian
(1) onto P, gives

Ay,

o A2 A(2)
AV0=| g St ve o
Q(z) U(z) A% (2)=4s

The matrix elements of ﬁA(z) contain level shift detunings

A; and effective couplings U and ﬁ,. The indirect exciton
effective detunings are given by

(z)=6

A +6/(z), (8)
(o) Sy T
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(2= A& +1;) + 21,4,V
(z-A)P-V;

o(z) = )
while the shift of the zero of energy (we have set 8)=0) is
given by

20°
A B — 10
88(Z) A+Vp—z (10)

correspondingly, the indirect exciton effective coupling to
the radiation field are both given by

Q(te + th)

O(z)=- )
(@) A+Vp—z

(11)

Figures 3(b) and 3(d) show the anticrossing gaps opened by
the couplings Q; in Eq. (7). Both gaps have a width 2,
=65 weV, occurring at applied electric field values of F=
-38.6 kV/cm and 43.4 kV/cm, respectively.?’ (), is directly
proportional to the direct transition dipole matrix element ()
and tunneling amplitudes (¢,+17,). In other words, molecular
indirect excitons are provided with an effective oscillator
strength when the dots in the QDM are tunnel coupled. This
leads to the possibility of resonant excitation of the indirect
excitons, even if they have a vanishing intrinsic oscillator
strength. This explains the “lighting up” of indirect excitons
in Fig. 2 when optically driving the QDM at electric field
values |F|=20 kV/cm.

The relevant interaction between two neutral indirect ex-
citons is given by

2z =Mty + (£ + 1)V
U(Z) = 2 2
(z=A)y-Vg

; (12)

which dominates for values of electric field Fy
=2.3 kV/cm. Equation (12) shows that U is independent of
the laser intensity embodied in the direct dipole matrix ele-
ment (). This represents an important desirable feature for a
qubit defined in the indirect exciton subspace. It implies that
for a fixed laser energy, the effective qubit subspace gener-
ated by the indirect excitons |¢]X) and |}3X) is effectively
shielded against the external disturbance of the intense opti-
cal field and less susceptible to the effects of spontaneous
direct exciton recombination. On the other hand, U arises
predominantly from electron and hole tunneling, with a weak
contribution from FRET; this means that the molecular indi-
rect subspace evolves mainly by its internal dynamics. For
the system under consideration, see Ref. 27, we find 2U
=45 ueV.

A more concise qubit Hamiltonian is obtained by project-
ing Eq. (1) onto 731={|(1)?X), ?(I)X)} Then, one obtains a two-
level Hamiltonian describing the spectrum at the central an-
ticrossing when U dominates. The projection results in

HAY:) UR)
U(z) H3()

HY(z) = ( ) +&(@)(ox+1) (13)

in terms of the matrix elements of Eq. (7), and corrections
with oy and I being the X-Pauli and identity matrices, re-

. . Dz
spectively. The correction term §(z):Z_A'(()U()Z)
—Ag(

describes the
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small perturbations arising from optical excitation and re-
flects the fact that the effective subspace is not perfectly
isolated when the radiation field is on. Notice, however that
the correction terms disappear in the absence of pumping

(Q=0,=£=0). We also emphasize that HY, defined on the
subspace P;, provides a better description of the qubit rota-

tion while H® is more adequate and convenient for describ-
ing the initialization of the qubit system (via the effective
coupling of indirect excitons to the light field). However,
both subspaces and associated Hamiltonians are suitable to
describe the intrinsic qubit dynamics.

B. FRET and biexciton effects

As mentioned above, when direct exciton transitions in
the two dots are near resonant, the Forster energy-transfer
mechanism plays an important role on the direct exciton su-
perradiant dynamics.?®% Typically V»=0.08 meV, for inter-
dot separation d==8.4 nm. This is a small value in compari-
son with electron tunneling 7, (Ref. 24) but appreciable
enough to split the direct exciton spectral lines and redistrib-
ute the exciton population (spectral weight) among the mo-
lecular states in a steady-state regime.* Interestingly, the de-
nominators in the effective Hamiltonian matrix elements in
Egs. (11) and (12) exhibit a dependence on V as a correction
to the direct exciton detuning A. Therefore, any influence of
Vr can be strongly suppressed whenever A> V. In this re-
gime, possible dephasing effects due to FRET would be sup-
pressed as well. In our model, |A|=51.5 meV, assuring the
indirect exciton qubit subspace is indeed shielded against the
perturbation effects of FRET.

On the other hand, strong laser excitation can pump addi-
tional exciton levels outside the relevant subspace of consid-
eration. The closest excitations are biexciton resonances,
which cannot be, in principle, ignored in the dynamics of
single excitons, as their detuning is atmost a few millielec-
tron volt.3! The pumping of biexcitons in either QD, §8X>,
|02X), expands the bare exciton basis to 14 states [ X), with

possible double occupancy of the single-particle levels,
epry-hpr={0,1,2}, which becomes more significant with
higher excitation power and/or short laser pulses. However,
the detuning of the biexciton levels, and the need for a direct
exciton prior to its formation, result in weak perturbative
effects of the biexciton level manifolds for the values of the
matrix element ) considered here. Moreover, the biexciton
manifolds decouple once the excitation power switches off
during the dynamical control procedure, see Sec. V. Other
excitations, such as LO-phonon resonances, appear
~35 meV above the lowest exciton transition for GaAs, and
can be safely ignored.>> We notice that the chosen structure
parameters (QD confinement sizes) result in excited electron
and hole states (and associated excitons) far from the rel-
evant anticrossing gaps, 2U and 2();, so that these other ex-
citations can be safely ignored (see Sec. V D).

V. COHERENT ROTATION OF INDIRECT EXCITON
QUBIT

In what follows, we consider the system as a fully open
quantum system and consider explicitly radiative recombina-
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FIG. 4. (Color online) Exciton population dynamics subject to an applied cyclic bias pulse. (a) Applied bias pulse sweep of duration
7=35.5 ns, the cycle sweeps the interval F=[43.4,2.3] kV/cm. (b) Exciton population dynamics corresponding to the cyclic sweep above.
Notice (a) and (b) panels have the same time scale while (c)—(e) show details of different regions, as indicated. (c) Rabi oscillations between
|88X) and |01X> excitons. After a 37 rotation, at /=200 ps, the laser is turned off and qubit is initialized with near unity fidelity. (d) Rabi
oscillations inside the qubit subspace. (¢) Read out scheme of the output qubit state, via tunneling adiabatic passage into a direct exciton.

Depopulation of the output state occurs into the vacuum state.

tion of direct excitons. In this sense, we analyze our results
in terms of numerical solutions to the Lindblad master equa-
tion, Eq. (4), with all 14 excitonic states included. Our dis-
cussion of the projected subspace P, indicates that the mo-
lecular indirect exciton subspace is indeed weakly influenced
by interdot energy-transfer mechanisms, Vy, and excitation
power, (). This suggests that we can achieve control of the
indirect exciton qubits by tuning the effective coupling

strengths ﬁl, U and by application of external time-
dependent electric fields (we will discuss in detail dissipation
processes in Sec. VI below).>*> We use a cyclic adiabatic
variation in the applied field, F(z), at fixed excitation energy
hw, between a regime where the system effectively contains

two levels mixed by the coupling ﬁ,, into a regime where the
system contains two levels mixed by U. One can use short
adiabatic bias pulses for qubit initialization and rotation
operations.3* Figure 4(a) shows a cyclic sweep of applied
bias, the left arm (0=¢=0.17 ns) indicates the initialization
regime, shown in more detail in Fig. 4(c). The slow forward
bias ramp (0.17=¢=1.22 ns) drives the system into the qu-
bit rotation regime, see Fig. 4(d). The plateau in the bias
pulse (1.22=¢=2.99 ns) corresponds to the rotation regime,
and its tunable duration determines at which particular time
one decides to rotate the input state (red shaded curves) or
not. If rotated, the reverse bias adiabatic ramp (2.99=r
=4.05 ns) transfers the output state population (blue curves)
into a direct exciton (green curves), which in turn depopu-
lates subsequently into the vacuum (dashed curves) for (¢
=4.05) ns, see Fig. 4(e). The overall dynamics of the imple-
mented coherent control is shown in Fig. 4(b). In what fol-
lows, let us discuss each region in more detail.

A. Initialization

The couplings U and (); dominate in different field re-
gimes, therefore the representation subspace of Hamiltonian
(7) can be decoupled in three different regions. When (),
dominates, for large values of electric field and positive en-
ergy detuning, we can construct two projected subspaces,
spanned by the basis vectors {|g0),02X)} and {| o0y, |%X)},
respectively. For an excitation energy of w= 1299 6 meV,
coherent Rabi oscillations are induced in each of these sub-
spaces for applied electric field values of F=-38.6 and 43.4
kV/cm, which corresponds to resonant excitation at either
level anticrossing, shown in Figs. 3(b) and 3(d), respectively.
This allows the implementation of 7 rotations within a time
1nterval —=03.6 ps, enabling the possibility of initializing

the system in either of the logical states, |}3X) or |(3X), re-
spectively. On the other hand, (}; depends inversely on the
direct exciton detuning, A, which sets an upper bound such
that {);> Ty since otherwise the fidelity would be hampered
by spontaneous recombination.

Figure 4(c) shows the initialization of the indirect exciton
|(1)(1)X> by a 3 rotation. When driving the system at the anti-
crossing, corresponding to the coordinate (F;=43.4 kV/cm,
hw=1299.6 meV), the initialization takes place after switch-
ing off the pulsed resonant excitation at a time =200 ps.
The initialization occurs with near unity fidelity, F
=(o1X|p(2)]57X)=0.97, due to the almost perfect isolation of
the subspace P,.

B. Qubit rotation

In order to perform a desired rotation operation involving
input states |(1)(1)X> and |%X), the system is adiabatically driven
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into the central anticrossing occurring at Fz=2.3 kV/cm,
see central box region in Fig. 3(a). Figure 4(a) shows a
sweep that drives the system from the anticrossing at F;
=434 kV/cm to the one at F. There, the system evolves
by its internal dynamics. This is emphasized by the absence
of the coupling () in U, and the switch off of the laser once
the qubit is initialized. The coherent oscillations allow for
qubit rotations in the picosecond scale,® with a characteristic
time ﬁ,=91.8 ps, and exhibit a near unitary amplitude
within the time frame shown in Fig. 4(d). Notice that the
coherent oscillation relaxes on a longer time scale. This is
due to strong direct exciton relaxation rates, and the weak
effects of exciton virtual transitions occurring outside the
qubit subspace, on the matrix element U(z) and energy shift
of the indirect exciton, §(z), see Egs. (12) and (9), respec-
tively. The duration of this rotation determines how much
population is transferred into the output state, in other words,
how much the final indirect molecular state would follow the
eigenvalue line, ?(I,X) upon bias reversal.

C. Readout

Once the qubit rotation has taken place, and the popula-
tion is transferred into the output state after a 7 rotation, the
molecular eigenstate follows a different running eigenvalue
in reverse bias. This is observed in Fig. 4(e) after /=3 ns;
here the applied bias pulse drives the output state |(1)(1)X) along
the dressed spectral line |%X}, starting at F;=2.3 and finish-
ing at Fr=43.4 kV/cm. The fidelity of the readout depends
on a conditional adiabatic population passage*®>’ from |°X)
into the direct exciton HOOX), then with the partial population
transfer into the vacuum [J0X) [green solid and black dashed
line, Fig. 4(e)]. At the end of the sweep, far away from the
central anticrossing, the direct exciton |9X) is depopulated,
by recombination emitting luminescence, without perturbing
the indirect states or any other nearby exciton.

D. Stability of coherent control

We should emphasize that the control scheme requires the
central indirect-exciton anticrossing to be isolated from other
exciton states and resonances associated with transitions out
of the qubit subspace. For a wide range of system param-
eters, the coherent rotation regime is achieved via an anti-
crossing which appears isolated in an energetically narrow
window (easily detunable from other transitions), and occurs
even if the ground states of the QDM dots are nonresonant
(6 0* 50 . ), protecting the qubit subspace and enhancing co-

10 ol
herence. If other excited states (such as those associated with

excited electron/hole levels of the molecule) appear in the
vicinity of the qubit window, their effects can be naturally
incorporated in the description. They may result in changes
in the initialization field and pumping but they would not
intrinsically affect the main qubit rotation scheme. Certainly,
strong distortion of the relevant anticrossings, Figs. 3(c) and
3(d), by a nearby state affects the rotation and initialization
fidelity since in that case the system would not be approxi-
mated by a well-separated two-level system. Further compli-
cations could arise if charge tunneling rates into the diode
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FIG. 5. (Color online) Population relaxation dynamics for indi-
rect excitons, from the numerical solutions of Eq. (4) with up to 14
exciton states included. (a) Population decay after switching off the
laser light in the initialization regime at F;=43.4 kV/cm. Dashed
line indicates the case where biexciton states are taken into account.
Inset shows the corresponding depopulation into the vacuum. (b)
QDM internal dynamics in absence of optical perturbations, shows
decay of Rabi oscillations of |§'X) and |{;X) (red shaded line, blue
line) in the qubit rotation regime at Fr=2.3 kV/cm. Inset shows
Rabi flops in the early stage of the dynamics.

contacts compete with the control time scales; in that case,
charged excitons (negative and positive trions) would not be
negligible, affecting the charge stability of the exciton qubits,
and enabling decoherence by exciton spin dephasing medi-
ated by electron-hole exchange interaction.’® However, these
constraints can be relaxed by proper geometrical engineering
of the excitonic spectrum and excitation conditions, and by
selection of suitable molecules among the many produced in
typical processes.

VI. DISSIPATION EFFECTS

We have assumed that the neutral indirect excitons are
optically inactive for the chosen interdot distance?’ so that
their intrinsic recombination rate is I';=0. However, we have
found that even with this assumption, the effect of the direct
exciton spontaneous recombination, plus the influence of vir-
tual transitions (mediated by tunneling) occurring outside the
qubit subspace, provides the molecular indirect exciton with
a finite effective oscillator strength and lifetime, which is
ultimately a consequence of interdot quantum coupling.

Figure 5(a) shows the population time dependence of the
input state |(1)(1)X) after switching off the excitation power,
Q(7)=0, at a time 7=200 ps, as in Fig. 4(c) [from the nu-
merical solution of Eq. (4), with up to 14 exciton states in-
cluded]. We see that the population relaxes into the vacuum

(see inset) with a lifetime T';' =218 ns. Comparatively the
dashed line indicates depopulation of the state when the
biexcitonic degrees of freedom (and all 14 exciton basis
states) are taken into account (notice they have no influence
on the relaxation time when =0). Figure 5(b) shows the
population time dependence of the QDM, when the input
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state has been driven adiabatically into the rotation regime.
Here the system is driven solely by its internal dynamics,
which arises due to strong electron and hole tunneling, and
the small influence of FRET. Both indirect excitons (blue and
red solid lines) enter a coherent oscillation regime, relaxing

into the vacuum with a lifetime T' ,‘l =725.2 ns, with vanish-
ing population transfer into the direct excitons. Notice that
the relevant coherent oscillation period (=91.8 ps), is orders
of magnitude shorter than the relaxation time. On the other
hand, our results indicate that despite assuming infinite life-
time for the bare indirect excitons at very large bias,
>1 kV/cm, the interdot couplings provide a strong dissipa-
tion channel for indirect excitons to relax into the vacuum at
any finite value of F. In fact, experimental results have
shown electric field tuning of radiative lifetimes at the direct-
indirect molecular exciton resonance (near the tunneling-
induced anticrossing, F= *20 kV/cm), still in the range of
~2-10 ns, if acoustic-phonon-mediated interlevel relax-
ation processes are present.’

Calculation of the population damping of the state |(1)(1’X)
inside the effective subspace P,, as well as the damping of
coherent oscillations within the qubit subspace P,, gives the
effective lifetime of the qubit input state during initialization
and the decoherence time during qubit rotation, respectively.
Although we consider just the effects of intrinsic spontane-
ous recombination of the direct excitons, the effective decay
rates of the molecular states can be significatively different
since they depend strongly on all interdot coupling mecha-
nisms, and thus can be tuned at will as a function of laser
detuning, pump power, and applied electric field.

In what follows we are interested in the dissipative dy-
namics of the indirect excitonic subspace. Since V,<<|A|, we
can ignore the effects of FRET in the following discussion.
In order to obtain an analytical expression for the effective
decay rates, we start with the non-Hermitian
Hamiltonian, %20

01

Hy=H- —(|‘8X>< oX| (14)

and project it onto the subspaces P, and P;. Consequently,
the resultant effective Hamiltonian, fI(F’)(z), will be non-
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AP (z) =Y + HD (2) + iH(2), (15)

which must of course reduce to Eq. (13) for I'y=V;=0. The
diagonal part of the non-Hermitian projected Hamiltonian is

0 Su+As 0
H = 16
ORI (16)
with a projected real perturbation given by
- 1 a(z) uz)
WO W) a0
and its corresponding imaginary perturbation given by
1
H(z) = 2—2<'B y) (18)
I'y+4(z-A)\y B
with matrix elements given by
a() =4 +1)(z-A), B=-2(+1)ly,
U(Z) = Steth(z - A)> Y=- 4tethFX' (1 9)

The dissipative part of the Hamiltonian, H;n)ﬂ contains two
sources of decoherence, a diagonal source proportional to 3
and an off-diagonal source proportional to . $ is the intrin-
sic population relaxation rate of the dressed indirect excitons,
which is nonvanishing when either the electron or the hole
tunneling is nonzero. This term is the dominant part of the
relaxation rate, and is present along the whole electric field
sweep, inside and outside the qubit subspace. 7y arises from
the simultaneous tunneling of an electron and a hole, and can
be interpreted as an interference term between the simulta-
neous paths of these two charges. This term is much smaller
(as t,>1,,), and contributes mostly inside the qubit subspace.
Therefore, the damping of coherent oscillations during the
rotation operation, contains population decay and dephasing.

The decay rates of the dressed states inside the qubit sub-
space, P, can be obtained by diagonalization of the Hamil-
tonian (15), which gives the total imaginary component of
the indirect dressed excitons. This total rate can be written as

[p(z)= Im[Dlag(H(’))] =I'(z)+g(2), for either indirect ex-
citon |}, where

202+ )Ty

Hermitian, with matrix elements that depend on the direct fl(z) == > (20)
exciton decay, I'y. Projection onto the subspace P, results in I'y+4(z-4)
|
84— Oy Y8326 - (5, - 8, + 289 Ty —4(z - A)%)) \
T =\ 02— A o1 sin 6(z), 21
ol2) 2 S (T2 +4(z - A)?)? @ @1
1 162t 2 A-2)T
0(z) = Sarctan/  ——— < Z A ( Sj)t X 3 (22)
oo ) M- AP - [ T | (TR- 4G - A))
10 ol S
01 10
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FIG. 6. (Color online) Relaxation times for bare and dressed
indirect excitons as a function of applied electric field F. Light red
(blue) line corresponds to relaxation time for the dressed (bare)
indirect exciton eigenstates. Far from anticrossing value of electric
field F;=2.38 kV/cm, the dressed relaxation time approaches the

bare exciton relaxation time as molecular indirect eigenstates of FI(F”
become the indirect states |JpX), |o0X).

Figure 6 shows the dependence of the effective relaxation
times, f;l(z) (blue line) and 1:51 (z) (light red line), as a func-
tion of applied electric field F. For values of field away from
the central anticrossing in Fig. 3(c), the effective relaxation

time, of the eigenstates of I-NI(F’)(z), fgl(z), approaches the
relaxation time of the bare effective indirect excitons, f}l(z),

where the interference term (dephasing), T, significatively
diminishes. At the avoided crossing with Fz=2.3 kV/cm,
the eigenstate relaxation time reaches a minimum value of
~22.2 ns. Notice, it is I';'(z) which is more physically rel-
evant, as it gives the lifetime of the qubit logical states for all
values of F, between the initialization regime, at Fj
=43.4 kV/cm, and the rotation regime at Fp=2.3 kV/cm,
with corresponding values of 214 ns and 24.5 ns, in good
agreement with the numerical solutions of the Lindblad
equation shown in Fig. 4. Notice that the ratio between gate
rotation and decoherence times, U/T’;, is monotonically de-
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pendent on the interdot distance, so that an optimal ratio is
not given within the model, but is set by the QDM geometry.

VII. CONCLUDING REMARKS

In summary, we have shown that the exciton spectrum of
a QDM can be used to define an optimally defined qubit
using two spatially indirect neutral excitons. We found that
the interplay of optical excitation and charge tunneling can
produce optical signatures that identify the indirect exciton
qubit subspace. Although the QDM is treated explicitly as an
open quantum system, with exciton relaxation rates arising
from spontaneous decay, the subspace of indirect qubit states
has large decoherence times. This is explained by a large
suppression of the interaction between the qubit subspace
and the laser field. On the other hand, the qubit can be ini-
tialized with near unity fidelity via higher-order couplings to
the radiation field. In this manner, the input state can be
shelved for time intervals well beyond the direct exciton re-
laxation time. The use of an adiabatic bias pulse permits
driving the input state into different molecular resonances, in
particular, into a resonance that mixes coherently the input
state with a target state of the qubit. Interestingly, a reverse
bias pulse drives an adiabatic passage of the output logical
state through a tunneling induced anticrossing, transferring
half of its population to a spatially direct exciton. This en-
ables the possibility of directly reading the output of the
qubit rotation. The suppression and tunability of the exciton
interactions with states outside the qubit subspace contrast
drastically with qubits defined via excitons with spatially di-
rect character. This opens the possibility of using neutral
exciton states as elemental blocks within a complex QDM
quantum computation scheme that uses indirect excitons,
such as spin qubits in molecular trions.
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