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The BCS coherence length in low-dimensional superconductors is dramatically modified by quantum-size
effects. In particular, for nanowires made of conventional superconducting materials, we show that the longi-
tudinal zero-temperature coherence length exhibits width-dependent drops by 2-3 orders of magnitude each
time when the bottom of one of single-electron subbands formed due to the transverse quantization of electron
motion is situated in a close vicinity to the Fermi level. This phenomenon has strong similarities to the
well-known BCS-BEC (Bose-Einstein condensation) crossover in ultracold fermionic condensates but with an
important exception: it is driven by the transverse quantization of the electron motion rather than by the
externally controlled strength of the fermion-fermion interaction.
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I. INTRODUCTION

Superconductors of ultrasmall dimensions possess un-
usual properties not found in bulk materials. One of them is
the quantum-size oscillations, discussed in the pioneering pa-
per by Blatt and Thompson.' In quasi-one-dimensional (1D)
and -two-dimensional superconducting systems (nanowires
and nanofilms) quantization of the transverse electron motion
results in single-electron subbands, i.e., in multiple quantum
channels for the superconducting condensate. The proximity
of the lower edge of such a subband to the Fermi surface
leads to a size-dependent enhancement of the superconduct-
ing properties, i.e., a superconducting resonance. In particu-
lar, such resonances are expected to strongly influence the
critical temperature and critical magnetic field (see, e.g.,
Refs. 1-5). Furthermore, they can result in a remarkable cas-
cade structure of the superconductor-to-normal transition and
in the formation of Andreev-type states induced by quantum
confinement.’

For conventional materials, e.g., Al, Sn, or Pb, the super-
conducting gap is about 0.1-1.0 meV (Ref. 6) and so, the

intersubband energy spacing %% (with d the confining di-
mension) becomes of the same order or larger for d
=<20-40 nm, where quantum-size oscillations of the super-
conducting properties are expected to be significant. Several
recent experimental results on superconducting Pb
nanofilms’® and superconducting aluminum/tin nanowires’
have been attributed to these quantum-size effects (see Refs.
4, 7, and 8, respectively). We remark that superconducting
aluminum nanowires with width down to 8—10 nm were re-
cently fabricated.”!?

In the present paper we report an unexpected phenomenon
due to quantum-size effects, i.e., giant size-dependent varia-
tions in the BCS coherence length &, in low-dimensional
superconductors. In all previous theoretical studies of super-
conducting nanowires and nanofilms, e.g., where phase-slip
effects are investigated in nanowires (see, e.g., Ref. 9), one
assumes that & is given by the same expression as in bulk
(the nanowire diameter enters implicitly through the electron
mean free path). Contrary to this common assumption, our
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numerical investigation of the Bogoliubov-de Gennes (BdG)
equations® for superconducting quantum wires made of con-
ventional materials reveal that, depending on the wire diam-
eter, the zero-temperature longitudinal coherence length var-
ies several orders of magnitude, from values of a few
micrometers, typical for conventional bulk superconductors,
to a few nanometers, that is usually found in high-T7,
materials.!! This phenomenon has strong similarities to the
BCS-BEC crossover in superfluid Fermi gases.!”> However,
here this crossover is induced by quantum-size effects rather
than by a change in the strength of the fermion-fermion in-
teraction. We remark that the underlying physics of our re-
sults is closer to another variant of the BCS-BEC crossover
predicted in the pioneering paper by Eagles,'? i.e., the cross-
over in superconducting semimetals, where superconducting
correlations drive the chemical potential below the bottom of
the conduction band. The present consideration is based on
the mean-field approximation in the clean limit. However,
we show that our main conclusions will not be significantly
altered by superconducting fluctuations and imperfections of
real metallic nanowires.

The paper is organized as follows. The formalism is out-
lined in Sec. II. Our main results are discussed in Sec. III. As
our consideration is based on the mean-field approach in the
clean limit, in Sec. IV we consider issues related to super-
conducting fluctuations and imperfections of real metallic
wires.

II. MODEL AND FORMALISM

We consider a superconducting nanocylinder in the clean
limit. For our numerical calculations we take the material
parameters of aluminum, the same as in Refs. 4 and 5:
fhiwp=32.31 meV; gN(0)=0.18 [with g the Gor’kov cou-
pling and N(0) the bulk density of states (DOS)]; and Ep
=0.9 eV is the effective Fermi level in the parabolic band
approximation (for more details, see Ref. 4). Two values for
the nanowire diameter are investigated below: d=4.22 nm,
for which the nanowire is in the resonance conditions, i.e.,
the bottom of one of the single-electron subbands is close to
the Fermi level and d=4.35 nm, when the nanowire is not
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influenced by a superconducting resonance. We note that our
conclusions are not sensitive to a particular choice of the
parameters as long as d < 10—15 nm; in nanowires of larger
diameters quantum-size effects play a less important role.

The internal structure of Cooper pairs is described by
W(x,,X,) (the Cooper-pair wave function) which is related to
the anomalous Green’s function as

V(x;,x) == lim F(x;7,X,7,), (1)

T1—7p—+0

where F(x,7),X,7) =—(T¢(x, 7)) (x,7,)) (for the spin-
singlet pairing). In what follows we use cylindrical coordi-
nates x=(p,¢,z). The diagonal part of Eq. (1), i.e., at x
=X,=X, is directly related to the superconducting order pa-
rameter A(x)=gW(x,x), where g>0 is the Gor’kov cou-
pling constant. Rotational and translational (along the wire)
symmetries of the system are reflected in W(x,,x,) which
depends on ¢=¢,—¢, and z=z,—-2,. In turn, the order pa-
rameter is a function of p only. Here, we are interested in the
structure of a Cooper pair along the wire and, therefore, con-
sider the quantity

W(p,2) =Y(p,p,21 +2;0,0,21). (2)

The anomalous Green’s function can be expressed in terms
of the eigenstates of the BAG equations (see, e.g., Ref. 6)
which, following the system symmetry, are specified by the
radial quantum number j, azimuthal quantum number m, and
wave vector k of the quasifree particle motion along the wire.
This defines 1D subbands labeled by (j,m). For T=0 the
wave function in Eq. (2) can be written as a sum over such
subbands as

V(p.2)= X ¥)(p,2) (3)

jm

with the subband contribution given by

Vjlp.2) = f dkw (PSS, (4)

@m?

Here u;,,(p) and v,,,(p) obey the BdG equations written as

A 7. A A
T )
jmk (p) —H ) \Vimk

with £, the quasiparticle energy and
. irl1a o9 m

" Tm{ﬁa_pp%_ o

where m, is the electron band mass taken equal to the free-

electron mass. Solutions of Eq. (5) are set to zero at the wire
boundary (quantum confinement).

—H}—Ep

III. BCS COHERENCE LENGTH DRIVEN BY
QUANTUMS-SIZE EFFECTS

A. Qualitative picture

The integral over k in Eq. (4) is restricted to the Debye
window, i.e., §jmk| <hwp with j,, the subband single-
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FIG. 1. (Color online) (a) Single-electron energies £, (mea-
sured from the Fermi level Ep) versus the wave vector for the
longitudinal motion k in subbands (j,m)=(0,0), (0,=1), and
(0, £2). Horizontal dotted lines denote the Debye window. (b)
Quasiparticle energies Ej,,, as function of k for the same subbands.

particle dispersion ¢ jmk=ﬁ2k2/2me—,u,jm, where u;,=Ep
—&, is the chemical potential measured from the subband
lower edge (bottom) energy &;,. Note that w;, controls the
longitudinal momentum distribution and, so, plays the role of
the subband-dependent “longitudinal chemical potential.”
Figure 1(a) shows a sketch of the single-particle energies for
the subbands with j=0 and m=0, = 1, £2. The dotted hori-
zontal lines in Fig. 1(a) highlight the Debye window that
determines the upper k;m and lower £, limits for k in the
integral in Eq. (4).

The bottoms of all single-electron subbands shift in en-
ergy with changing diameter. A quantum-size superconduct-
ing resonance develops when the bottom of a subband comes
into the Debye window, i.e., when |u;,| <%wp. In Fig. 1(a)
subbands (0, =2) satisfy this condition. Below they are re-
ferred to as resonant subbands. Any subband generates a
quantum channel for the formation of the superconducting
condensate. In a simplified picture one can utilize Anderson’s
approximate solution of the BdG equations (see, e.g., Ref. 5),
which assumes that the spatial dependence of both u;,,(p)
and v;,,(p) is given by the radial single-electron wave func-
tion ¥;,(p) (proportional to_the Bessel function of the first
kind). This leads to E,,;=\ (ﬁnk+Afm with A, the subband
energy gap as schematically shown in Fig. 1(b).

Within Anderson’s approximation, Eq. (4) reduces to

92,(p) (Kin Ay cos(k
W p.2) = 2] [Sn g S D) ©)

2 ) _ 2 2
(217-) kjm N é’jmk + Ajm

When A;, <fiwp, the upper limit in the integral can be ex-
tended to infinity while the lower one can be set to zero (for
negative u;, we also need |uw;,|<#fwp). This yields an ex-
ponentially decaying function of z, and its decay length de-
fines the subband (channel) BCS coherence length §g’"). For
its analytical estimate, we use the contour integration in the
complex plane. The integrand in Eq. (6) has four singular
points (the square-root branch points) with the same absolute
. . . [ A2 172

value of the imaginary part, i.e., [m,(\u, +Aj, —u;) 1"/ 1.
For, say, positive z, the contour is closed in the upper half
plane and distorted to encircle the cut between the two upper
singular points. Their imaginary part controls 58"”), ie.,
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FIG. 2. (Color online) The resonant wire, d=4.22 nm: (a) the quasiparticle-energy dispersion Ej,;, the resonant subbands are (j,m)

=(0,*7) and (1,

+4); (c) the contour plot of |¥(p,z)| (arbitrary units) when accounting only for subbands (0, +7) and (1,

+4); (e) the

same but for the total Cooper-pair wave function; (g) the longitudinal profile of |¥(p,z)| at p/R=0.83 with all relevant quantum channels

included (dotted curve) and when only contributions of (0, =7) and (1,

same but for the nonresonant wire at d=4.35 nm.

m

F[VM,m+Afm K] 2 (7)

As seen from Eq. (7), §(”") decreases when w;,, goes from
positive to negative values. When u;,,/A;,>1 we have the
conventional result for the BCS coherence length, i.e., é/'")
~hv;,/A;, with v Jm—y2,u,jm/ m, the subband Fermi wave
vector. At resonance, i.e., for u;,, — 0, we find from Eq. (7) a
very different expression &™ =~#/(m,A,,)""% Finally, for
M <0 and |,u,Jm|>Ajm, we obtain §(’m ol (2m,| )%,
which decreases with increasing |,ujm| Thus, we have a drop
in the BCS coherence length of the resonant subband(s) and,
at the same time, such a subband(s) provides a major contri-
bution to Eq. (3) due to a significantly enhanced DOS in the
Debye window.

We note that for w;, <0, Eq. (7) becomes similar to the
expression for the fermion-pair size at the BEC side of the
BCS-BEC crossover in superfluid Fermi gases [see discus-
sion after Eq. (140) in Ref. 12], where the chemical potential
w and the order parameter A should be replaced by w;, and
A, respectively. Hence, following the asymptotic
o | il ™1* (for m,;,,<0), we can interpret |u;,| as the pair
binding energy in the corresponding quantum channel. One
can see that the Cooper pairs are much stronger confined
when w;,, becomes negative, in an apparent similarity with
the BCS-BEC crossover. However, uj,, becomes negative
due to quantum-size effects instead of a change in the
strength of the pair interaction. Another difference is that the
contribution of a subband to the pair condensate is strongly
reduced when |Mjm| approaches fiwj, and disappears com-
pletely for w;, <-fiwp.

B. Numerical solution

A numerical self-consistent solution of the BAG Eq. (5)
gives the results shown in Figs. 2 and 3. In Fig. 2(a) E,; is

+4) are taken (solid curve). Panels (b), (d), (f), and (h) display the

given versus k for d=4.22 nm. Here the bottoms of the two
subbands with (j,m)=(0, £7) and (1, =4) are in the Debye
window and, so, v +7 and vy +4 (recall that v, =\2u;,/m,)
are extremely small. E;,,; for the nonresonant wire with d
=4.35 nm is shown in Fig. 2(b). Here the corresponding
single-electron spectrum has no resonant subbands and v +7
and v, .4 are larger by an order of magnitude as compared to
panel (a). Numerical results for the resonant case exhibit a
significant increase in Ay +; and A, .4 and, in turn, lead to
enhanced superconducting gaps in the other quantum chan-
nels. When the resonance decays (i.e., due to a change in d),
all A;, are reduced and approach the bulk value Ay
=0.25 meV.

The contour plots in Figs. 2(c) and 2(d), for the resonant
and nonresonant wires, respectively, display the absolute
value of W(p,z), as calculated from Eq. (3) but with the
summation restricted to subbands (0, +7) and (1, =4). Pan-
els (e) (for d=4.22 nm) and (f) (for d=4.35 nm) show the
, where we summed over all relevant
subbands. For the resonant case, illustrated by panels (c) and

2+(/",m):(0,1‘7) ,.‘—-“'
10 F—r—(1,24) ,' E
E -/
NaA i
T 10 )
g
1007 L L L (a)7 L L L L
20 -10 0 10 20 40 41 42 43 44
#,, (meV) d (nm)

FIG. 3. (Color online) BCS-BEC crossover induced by
quantum-size effects: (a) the subband longitudinal BCS coherence
length §g’”) versus uj, as numerically calculated from the BdG
equations for (j,m)=(0,*=7) (triangles) and (1, *=4) (stars), the
dashed curve represents Eq. (7) with A}, replaced by Ay; (b) the
total longitudinal BCS coherence length &, versus the nanowire
diameter.
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(e), the longitudinal distribution of electrons is well localized
whereas an oscillating and weakly decaying dependence ap-
pear in panels (d) and (f). This is also clearly seen from
panels (g) and (h) representing the longitudinal profile of
|W(p,z)| at p/R=0.83 [i.e., the maximum point of ¥(p,z
=0)] for the resonant and nonresonant wires, respectively.
Here the dotted curve gives the total contribution of all sub-
bands whereas the solid line corresponds to a contribution
from only (j,m)=(0, =7) and (1, =4). Thus, the resonant
subbands control W(p,z), and the corresponding longitudinal
distribution of electrons in a Cooper pair is strongly local-
ized. At d=4.35 nm single-electron subbands (j,m)
=(0,=7) and (1, £4) are shifted down as compared to their
positions at d=4.22 nm. As a result, the resonance disap-
pears and the relative contribution of the states with (j,m)
=(0,*=7) and (1, =4) to the superconducting order param-
eter A(p)=V¥(p,z=0) drops to 40%, see panel (h). Neverthe-
less, the longitudinal decay of W(p,z) is still mainly deter-
mined by these states.

The longitudinal BCS coherence length &, is defined as
the decay length of W(p,z) in the z direction and can be
calculated through a numerical fit. For both the partial and
total wave functions, such a fitting gives similar values:
~1 um for the nonresonant wire and =5 nm for the reso-
nant case. The latter value is almost three orders of magni-
tude less than the BCS coherence length in bulk aluminum
(=1.6 um) and is comparable to the one in high-T,
superconductors.'! Further insight can be obtained from Figs.
3(a) and 3(b). Panel (a) demonstrates numerical results for

0"”) as function of w;, for (j,m)=(0,=7) (triangles) and
(1, £4) (stars). Notice that these data are in good agreement
with the analytical formula of Eq. (7). When substituting
Apyk for Aj, in Eq. (7), we obtain the dashed curve ap-
proaching our numerical results for w;,<0. In this case
&/m =1/ (2m,|w;,|)"? is not sensitive any more to A,,. Fi-
nally, Fig. 3(b) illustrates how the total longitudinal BCS
coherence length &, depends on d. Its value is minimal at d
=4.22 nm, and the difference between the maximum and
minimum is roughly 2-3 orders of magnitude. As seen from
Fig. 3(b), the next superconducting resonance comes into
play at d=4.44 nm. Our illustrative choice of nanowires
with d~4 nm is not crucial and given for simplicity: it is
easier to explain the underlying physics in the presence of a
small number of relevant single-electron subbands, i.e., for
smaller diameters. When increasing d, quantum-size-driven
drops of &, are weakened but still pronounced up to diam-
eters of about 10 nm. The effect of interest is washed out
only when d=20 nm.

IV. DISCUSSION
A. Effects of the surface roughness

Our previous consideration was limited to the clean limit
and assumed specular reflections of electron waves from the
nanowire boundaries. To what extent imperfections of real
metallic nanowires can influence our predictions? In recently
fabricated high-quality superconducting nanowires the super-
conducting state survives down to diameters of about 8—10
nm without signatures of suppression of 7, by disorder. Un-
like strongly disordered nanoscale superconductors, such

PHYSICAL REVIEW B 82, 104524 (2010)

high-quality superconducting nanowires exhibit a systematic
shift-up of the critical temperature with a reduction in their
cross section. This shift is about 50% (as compared to bulk)
in Al nanowires™!®!* with diameters of about 8—10 nm and
10-20 % in Sn specimens'>~!'7 with width down to 15-20
nm. As recently shown (see the first paper in Ref. 4), it is the
quantization of the transverse electron motion that shifts 7,
up in such nanowires through the formation of quantum-size
superconducting resonances. Thus, we can expect that disor-
der is relatively minor in high-quality superconducting nano-
wires and, so, scattering on imperfections does not shadow
the appearance of well-distinguished single-electron sub-
bands that form due to the transverse quantum confinement.

To go in more detail, surface roughness is a major disor-
der mechanism in high-quality superconducting nanowires.
Indeed, in most papers™'®!#4 the mean free path was esti-
mated to approximately follow the nanowire width € ~d,
i.e., elastic scattering on the boundary imperfections controls
the electron mean free path. It is instructive to compare the
longitudinal BCS coherence length &, calculated in Sec. III
with the electron mean free path. When approaching a
quantum-size superconducting resonance, &, drops down to
values close to the nanowire diameter, see, e.g., Fig. 3 (this is
true for nanowires with d<<10-20 nm, for larger diameters
the effect is washed out). As the mean free electron path €
follows d, we obtain &= €. This means that elastic scattering
on surface imperfections cannot significantly alter our con-
clusions about the size-dependent drops of &,.

The above reasoning assumes that the density of single-
electron states at the Fermi level does not change signifi-
cantly in the presence of surface imperfections. So, we also
need to clarify if the single-electron spectrum can be signifi-
cantly influenced by surface roughness. As discussed in Sec.
111, a pronounced size-dependent drop of &, occurs each time
when the bottom of a single-electron subband crosses the
Fermi level. The longitudinal motion of electrons in such a
subband is significantly suppressed, which results in long
longitudinal electron wavelengths. Typical longitudinal elec-
tron energies in a resonant subband are about or less than the
Debye energy fiwp and, so, the corresponding longitudinal
wavelengths of electrons are governed by the scale
2m ﬁ ~ 10 nm. This is significantly larger than the char-
acteristic size of the surface imperfections (it is about or
smaller than 1-2 nm in nanowires with diameters less than
10 nm, see the next paragraph). Hence, the longitudinal mo-
tion of electrons in a resonant subband appears to be quite
stable against surface imperfections. This is, of course, not
the case for subbands with bottoms far below the Fermi sur-
face. However, such subbands make a minor contribution at
superconducting resonances.

In addition to the influence of surface roughness on the
longitudinal electron motion, one should also take into ac-
count fluctuations of the transverse electron energy resulting
from fluctuations in the nanowire diameter. When approach-
ing the Debye-energy scale, such fluctuations of the subband
bottoms can smooth superconducting resonances. However,
a simple estimate shows that this can be expected for ultra-
narrow nanowires with diameters less than 2-3 nm. As al-
ready mentioned in the Sec. I, the energy spacing between
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o

2m, &

d=d+ &d, where &d represents the fluctuating contribution

the single-electron subbands is about When assuming

and d stands for the average diameter, the uncertainty in the
intersubband spacing due to &d is given by Z—é od. Let us set
e d”

|6d|~0.1d—0.2d (see, for instance, experimental results
from Ref. 14). Then, we obtain %géd>ﬁwl) for d

<2-3 nm. For d=4-5 nm the above uncertainty is about
few millielectron volt, which is much smaller than fiw
=32.1 meV (for aluminum). So, even for very small diam-
eters about 4 nm chosen for a simple illustration in Figs. 2
and 3 (to avoid a discussion of many single-particle sub-
bands) fluctuations of the transverse electron levels has no
significant effect on the formation of the resonances.

Another possible reason for broadening of the single-
electron levels is the hybridization with electrons of a semi-
conductor substrate, which depends strongly on the fabrica-
tion conditions. However, such a hybridization can be
expected to be of importance for specimens with width down
to a few monolayers like in ultrathin superconducting nano-
films.

Thus, based on the above discussion, we can conclude
that our results are not very sensitive to imperfections in real
superconducting nanowires, i.e., surface roughness and non-
uniform cross section. These imperfections can smooth the
quantum-size oscillations in &, (see, e.g., our remark in Ref.
18) but will not cancel the effect.

B. Fluctuations

Our investigation is based on the mean-field approxima-
tion and, so, one more point to discuss is fluctuations of the
superconducting condensate. It is well known that fluctua-
tions generally play a more important role in low-
dimensional systems. In superconducting nanowires the main
focus is usually on phase fluctuations of the pair condensate:
thermally activated and quantum phase slips, see, e.g., Ref.
9. These fluctuations lead to a residual resistance remaining
below T, in narrow nanowires and, so, corrupting the super-
conducting state.

Effect of thermal fluctuations is usually estimated with the
Ginzburg-Levanyuk parameter Gi calculated from the con-
ventional ~ Ginzburg-Landau  functional  (see, e.g.,
textbooks'®?? and original papers>'??). When assuming that
the order parameter is position independent in the direction
perpendicular to the nanowire (quasi-1D version of the
Ginzburg-Landau formalism), one can obtain

i [ 7¢(3)T }2/3 B [ Ty }2/3 )
LR d) kg ] | Tk d) iy ]

where Ty is the Fermi temperature and {(3) = 1.2 (for basic
formulas, see, e.g., textbook?? reproducing calculations dat-
ing back to Levanyuk’s paper?!). Typical resonant enhance-
ments of 7, in the vicinity of, say, d=10 nm are kg7,
~(0.3-0.5 meV (this is 1.5-2 times the bulk critical tem-
perature for our parameters, see the first paper in Ref. 4). So,
assuming that &, drops down to =d, one can find from Eq.
(8) that Gi=0.1, which means that thermal fluctuations are
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of importance for temperatures 7/7,.>1-Gi=0.9. For non-
resonant diameters situated in the same domain around d
=10 nm the Ginzburg-Levanyuk parameter is by an order of
magnitude smaller, i.e., Gi=0.01 (here T, and &, are ap-
proximately the same as in bulk). Equation (8) means that as
the nanowire diameter decreases, the Ginzburg-Levanyuk
parameter increases: impact of fluctuations is enhanced, as
expected. However, even for resonances located in the vicin-
ity of d=4-5 nm we have Gi=0.2 [here the typical reso-
nant enhancements of the critical temperature are on the
scale of kzT,=1.1-1.4 meV, as seen from the excitation
spectrum in Fig. 1(a)]. Here it is worth noting that Eq. (8)
can give us only a qualitative trend because, strictly speak-
ing, the conventional Ginzburg-Landau formalism is not well
justified for superconducting specimens with dimensions
smaller than the zero-temperature bulk coherence length (on
the order of microns for weak-coupling superconductors,
e.g., aluminum). In particular, the translational invariance in
the direction perpendicular to the nanowire is broken due to
quantum confinement. As a consequence, the order param-
eter can strongly vary with the transverse coordinates (see,
e.g., Refs. 4 and 23), and the scale of its variations (~d) is
the same as that of the integral kernels in the nonlinear inte-
gral equation for the order parameter resulting from the ex-
pansion of the self-consistency equation in powers of A(x).
This may question the use of the local approximation in or-
der to reduce the above integral equation to the conventional
Ginzburg-Landau equation having the simpler differential
structure (see details of the Gor’kov derivation in, e.g.,
textbook?4).

As is well known, temperatures far below 7, are the do-
main of quantum fluctuations. In particular, as seen from the
results reported in papers,'*!% quantum phase slips in alumi-
num superconducting nanowires with diameters about 10 nm
produce a residual resistance even at temperatures below
0.6T,. For these diameters such a residual resistance is al-
most insignificant, i.e., it is on the order of 107 in units of
the normal resistance. However, it is expected that for
smaller diameters quantum-phase slips will proliferate, re-
sulting in a superconductor-to-normal crossover at d=d,. with
d. =10 nm (see, e.g., Ref. 9). Recent results of Ref. 14 sug-
gest that this kind of dissipative phase transition occurs when
the nanowire diameter approaches 8 nm, i.e., d.~8 nm. Yet,
it is rather difficult to analyze experimental data for very
narrow nanowires because it is not possible to completely
rule out weak links as the sources of the residual resistance.?

Thus, the mean-field treatment appears to be quite justi-
fied for nanowires with diameters larger than d.~8 nm. We
remark that drops of &, driven by quantum-size effects are
expected to be pronounced for d<<10 nm and washed out
only when d>20 nm. In addition, our results can be of rel-
evance for d <d,, because the mean-field coherence length is
an important parameter controlling the rate of quantum-
phase slips and, so, the residual resistance significantly be-
low T,.°% Here it is worth noting that a simple estimate
shows that the pronounced size-dependent drops of the co-
herence length & (§é— &, when T—0) have a significant ef-
fect on the residual resistance R, of superconducting nano-
wires. In particular, when assuming that the normal-state
resistance of the nanowire Ry is close to the resistance quan-
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. 72 ..
tum given by Ryp= T (this is true for narrow enough nano-
wires), one can obtain®!420
Ries L ¢
Ry ¢

where L stands for the nanowire width. The above relation
shows that R,/ Ry significantly falls down at the quantum-
size driven drops of the coherence length. This can open
interesting prospects of observing quantum-size effects in the
residual resistance of superconducting nanowires.

V. CONCLUSION

In conclusion, we have demonstrated that the longitudinal
BCS coherence length of a superconducting metallic nano-
wire undergoes width-dependent giant drops of several or-
ders of magnitude. This occurs each time when a transverse
discrete single-electron level is positioned in the vicinity of
the Fermi surface so that the longitudinal motion in the cor-
responding single-electron subband (making a major contri-
bution to the superconducting characteristics) is significantly
suppressed. This behavior of &, provides a substantial insight
on the underlying physics of superconducting quantum-size
oscillations: the phenomenon appears to be similar to the
BCS-BEC crossover in superfluid Fermi gases. However,
there is an important exception: it is driven by the transverse
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quantization of the electron motion rather than by the exter-
nally controlled strength of the fermion-fermion interaction.
One can expect that the size-dependent drops of the zero-
temperature coherence length is a generic feature of low-
dimensional superconducting structures where the pair con-
densate is facilitated via multiple channels (subbands), e.g.,
superconducting nanofilms. However, in the presence of im-
perfections of real samples, quantum-size-driven drops of the
coherence length can be smoothed in an overall decrease in
&) with decreasing the quantum-confined dimensions. We
note that, apart from setting the system close to or far from
the superconducting resonance, a particular choice of the pa-
rameters is not important for the main conclusions. Also we
note that the sharp Debye window boundaries for the pairing
are not necessary for the validity of the conclusions, and our
results are not sensitive to the cut-off regularization of the
BCS approach.
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