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The coherent dynamics of a coupled photonic cavity and a nanomagnet is explored as a function of nano-
magnet size. For sufficiently strong coupling eigenstates involving highly entangled photon and spin states are
found, which can be combined to create coherent states. As the size of the nanomagnet increases its coupling
to the photonic mode also monotonically increases, as well as the number of photon and spin states involved
in the system’s eigenstates. For small nanomagnets the crystalline anisotropy of the magnet strongly localizes
the eigenstates in photon and spin number, quenching the potential for coherent states. For a sufficiently large
nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple
separately to the photonic mode. Thus the optimal nanomagnet size is just below the threshold for failure of the
macrospin approximation.
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I. INTRODUCTION

Coupling between an electromagnetic field and an elec-
tronic transition in matter with coupling stronger than envi-
ronmental dissipation has permitted delicate electromagnetic
control of electronic states. This control allows sensitive
measurement of unknown environments, such as the exten-
sive use of nuclear magnetic resonance1 �NMR� as a diag-
nostic probe, as well as the manipulation of quantum infor-
mation, such as in the demonstration of atomic
teleportation.2 Successful efforts in this area have tended to
progress from the systems most weakly coupled to the envi-
ronment �such as nuclei in NMR� to more dissipative sys-
tems �such as electron spin resonance in solids, first in insu-
lators, later in metals and semiconductors�. However, even
though the dissipation is stronger in solids, the coupling is
also stronger, suggesting the potential for very rapid ex-
change of quantum information between light and matter.
Recently several examples of strong coupling between a
single exciton and a single photon mode in a semiconductor
have been demonstrated, through the mixing of the exciton
and photon in photoluminescence,3,4 through Rabi oscilla-
tions between exciton and photon,5 and through optically in-
duced spin rotation6–9 �spin ac Stark effect�.

Multiply excited atomic systems coherently interacting
with a photon mode exhibit additional unusual phenomena,
such as superradiance.10 Multiply excited excitonic systems
in solids suffer from decoherence due to homogeneous and
inhomogeneous linewidths and long-range Förster coupling
between different excitonic transitions. Mitigation of both
homogeneous and inhomogeneous linewidths is possible by
coupling the excitons to each other through the coulomb in-
teraction �excitonic condensate11�, or indirectly through the
cavity mode, in order to form a polariton condensate.12,13

Excitonic condensates associated with finite-energy excitons,
however, are challenging to generate, and are not found at
room temperature. Strong coupling in multiply excited sys-
tems would therefore benefit from a robust, room tempera-
ture, coherent electronic state whose coupling to the photonic
mode can be made larger than its decoherence rate.

Ferromagnets are robust room-temperature many-body
states that couple directly to light, although the magnetic

dipole transitions associated with individual spins couple
more weakly to photons than electric dipole transitions �by a
factor of the fine structure constant14�. Recently it has been
pointed out15 that the coherent excitation of the ground-state
spin of a small ferromagnet �a nanomagnet� can be described
by a coupling strength orders of magnitude stronger than that
of a single excitonic transition. The locking of the large num-
ber of constituent spins by the exchange interaction into a
macrospin causes an increase in coupling strength propor-
tional to the square root of the number of exchange-locked
spins.

Here we expand on the description in Ref. 15, treating
with particular care the dependence on nanomagnet size of
the coupling strength between the nanomagnet and the pho-
tonic cavity. We find that, for a specific magnetic material,
the coupling strength increases according to the square root
of the volume of the nanomagnet �corresponding to the
square root of the total nanomagnet spin� in the absence of
any photons inside the cavity. However, when the system is
driven in the superradiance regime, this coupling strength
becomes proportional to the volume �or total spin� to the 3/2
power. We provide estimates of the coupling strength for
nanomagnets in a spherical cavity and compare with the ef-
fect of crystalline magnetic anisotropy. The coupling
strengths found are large enough to establish eigenstates in-
volving large numbers of entangled photons and spin orien-
tation states. These states can be combined to generate co-
herent oscillations of the spin orientation and photon number.
However, for small nanomagnets the crystalline magnetic an-
isotropy �CMA� greatly exceeds the nanomagnet-cavity cou-
pling, quenching these coherent oscillations. For large nano-
magnets the macrospin approximation, assumed here, fails
and the multiple domains of the nanomagnet separately
couple to the cavity. The effect of using plasmonic tech-
niques to enhance the magnetic field associated with the pho-
tonic mode near the nanomagnet is described, which may
lead to submicrosecond oscillation times for coherent multi-
photon oscillations in the cavity.

We begin by describing the nanomagnet-cavity system,
quantizing the photons of the spherical cavity, and deriving
the Hamiltonian of the system. We solve for the eigenstates
of the coupled system by mapping the discrete system onto a
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continuum representation similar to a one-dimensional tight-
binding model with a spatially varying effective mass. Per-
turbations to the magnetic system such as magnetic aniso-
tropy can be described as spatially varying potentials for this
one-dimensional tight-binding model. The time evolution of
coherent states is evaluated and the source of dephasing dis-
cussed.

II. COUPLED NANOMAGNET-CAVITY FORMALISM

A. Nanomagnet properties

As shown schematically in Fig. 1, the oscillator is a
spherical nanomagnet with a radius r0 possessing a very
large exchange-locked spin S placed a distance d from the
center of the cavity for more efficient coupling to the cavity
mode. Precession of the nanomagnet macrospin at a fre-
quency � resonant with the cavity is achieved by applying a
uniform magnetic field B0 along the z axis of the cavity.

A nanomagnet acting as a macrospin, as seen experimen-
tally in nanomagnet oscillators of roughly this size,16 has a
magnetization

M = �/V = −
gs�B

�V
S��r0 − �r − d�� �1�

in terms of the collective spin operator S and the Heaviside
step function ��x�. The magnetization in Eq. �1� depends on

the spin density of the nanomagnet. The modal coupling �the
coupling of the nanomagnet to the photonic mode� is the
overlap of this magnetization with the cavity mode ampli-
tude. For a nanomagnet that is small in size compared to the
length scale of variations in the cavity mode strength, the
coupling will be independent of the spin density and will
only depend on the total spin. It is possible, however, to
enhance the modal coupling through mode design, such as is
common to enhance the interaction between gain media and
an optical cavity in semiconductor lasers.17 For example, an
optical field is strongly enhanced near a sharp metal object
�used in tip-enhanced spectroscopy18�; a similar approach
here could be used to strongly enhance the strength of the
nanomagnet-cavity coupling.

B. Quantized electromagnetic field in a spherical cavity with a
nanomagnet

The presence of the nanomagnet in the cavity, and its
magnetization field, modifies the properties of the dynamic
electromagnetic field in the cavity. The nanomagnet pre-
cesses in the static external magnetic field, yielding a tempo-
rally oscillating magnetization characterized by the preces-
sion frequency �. Thus the nanomagnet behaves as an
oscillating source in the Maxwell equations

� · H = 0, � � E − ik��0/�0H = 0,

� · E = 0, � � H + ikE/��0/�0 = � � M . �2�

We introduce the time dependence of the fields �ei�t� into H,
E, and M. This produces the following Helmholtz wave
equations:

��2 + k2��r · H� = − iL · �� � M� ,

��2 + k2��r · E� = Z0kL · M . �3�

From these the solutions of the transverse magnetic �TM�
and electric modes �TE� can be obtained

H = �
l,m
��lm

�TM�f l�kr�Yl,l,m�	,
�

−
i

k
�lm

�TE� � � gl�kr�Yl,l,m�	,
�� ,

E = Z0�
l,m
� i

k
�lm

�TM� � � f l�kr�Yl,l,m�	,
�

+ �lm
�TE�gl�kr�Yl,l,m�	,
�� , �4�

where the vector spherical harmonics Yl,l,m are defined as
LYlm�	 ,
� /�l�l+1�, in terms of angular momentum operator
of the field L and spherical harmonics Ylm.19 In the most
general form, they are defined as

Y j,l,mj
= C�l,1;ml,m�j,mj	Ylml

êm �5�

in terms of Glebsch-Gordan coefficients and helicity basis
vectors êm. The helicity basis vectors form a spherical tensor
of rank 1, i.e.,
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FIG. 1. �Color online� Schematic of the nanomagnet-cavity sys-
tem with a spherical nanomagnet of radius r0 placed at a distance of
d from the center of a spherical photonic cavity of radius R. The
orientations of the electric E and magnetic field H at the nanomag-
net site are shown for TM and TE modes of the photonic cavity. A
uniform magnetic field B0 applied along the z axis causes preces-
sion of the nanomagnet macrospin S, with frequency �, in reso-
nance with the TM mode of the cavity.
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ê� = � �x̂ � iŷ�/�2, �6�

where ê0= ẑ.
The f l�kr� and gl�kr� appearing in Eq. �4� are the corre-

sponding solutions for the radial part of each mode,
Al

�1��kr�hl
�1��kr�+Al

�2��kr�hl
�2��kr�, in terms of the spherical

Hankel functions. The coefficients �lm
�TM� and �lm

�TE�, which
specify the amounts of transverse magnetic and transverse
electric multipole �l ,m� field strengths, are

�lm
�TM� =

ik3

�l�l + 1�

 jl�kr��Ylm

� �	�,
��L · Md3r�,

�lm
�TE� =

− k2

�l�l + 1�

 jl�kr��Ylm

� �	�,
��L · �� � M�d3r�,

�7�

where the volume integration is carried over the local
sources.

The radiation of the cavity field is due to the harmonically
oscillating components of the nanomagnet magnetization in
the x-y plane orthogonal to the radial direction, namely, Mx,y.
Because of this specific symmetry of the cavity-nanomagnet
system, the multipole field strength coefficients �lm

�TE� for TE
mode will simply vanish due to the relation

L · �� � M� = i�2�r · M� −
i

r

�

�r
�r2 � · M� �8�

which holds for any well-behaved vector field. Therefore, the
TM mode will be the only nonvanishing mode to be consid-
ered in our interaction Hamiltonian. The condition H�=0 is
trivially satisfied by r ·ulm=0 at the cavity walls whereas the
condition E� =0 gives

�r � � � f l�kr�Yl,l,m���r=R = − �rrf l�kr��Yl,l,m = 0. �9�

For waves that are finite at the origin, the suitable choice of
f l�kr� is the spherical Bessel function of first kind, jl�kr�.
Hence, the normalization integral of the basis functions ulm
= jl�kr�Yl,l,m, modified for xl �corresponding to the zeros of
�rjl�kr����,


 ulm
� ul�m�d

3r =
 jl�kr�jl��kr�Yl,l,m
� Yl�,l�,m�r

2drd�

=
R3

2 �1 −
l�l + 1�

xl
2 ��jl�xl��2�ll��mm�, �10�

yields to the following mapping of the multipole strength
coefficients onto cavity photon creation and annihilation op-
erators:

�lm
�TM� �

2

�jl�xl���1 −
l�l + 1�

xl
2 �−1/2� ��l

�0R3alm
�TM�,

�lm
��TM� �

2

�jl�xl���1 −
l�l + 1�

xl
2 �−1/2� ��l

�0R3alm
†�TM�,

which satisfy the appropriate Weyl-Heisenberg commutation
relations, alm ,al�m�

† �=�ll��mm�.

Therefore, the second quantized form of the magnetic
field for the cavity TM mode becomes

H�TM� = �
l,m

1

�jl�xl���1 −
l�l + 1�

xl
2 �−1/2� ��l

�0R3 �alm
†�TM�ulm

�

+ alm
�TM�ulm� . �11�

The total Hamiltonian of the system incorporates the mag-
netic H and electric E fields of the cavity and the magneti-
zation M of the nanomagnet,20

H =
1

2

 �0�H�2 + �0�E�2 + �0�H · M��d3r . �12�

The first two integrands on the right-hand side of Eq. �12�
correspond to the free-field Hamiltonian whereas the third
integrand is the interaction Hamiltonian of the nanomagnet-
cavity system,

HI = �
l,m

�l
�TM�alm

�TM�

Vm

M · ulmd3r + H.c. �13�

with the coupling constant,

�l
�TM� =

1

2�jl�xl���1 −
l�l + 1�

xl
2 �−1/2���l�0

R3 , �14�

for a TM mode with angular momentum l. All components of
the field are identically zero if l=m=0, a result associated
with the absence of radiating monopoles. From Eq. �7� the
dipole field-strength coefficient �l=1� dominates over other
multipoles, i.e., �1m

�TM���2m
�TM���3m

�TM�� . . .. The basis func-
tions for the dominant dipole TM mode �l=1� are

u11 =
1
�2

j1�kr�Y11�	,
�ê0 − Y10�	,
�ê+� ,

u10 =
1
�2

j1�kr�Y11�	,
�ê− − Y11̄�	,
�ê+� ,

u11̄ =
− 1
�2

j1�kr�Y11̄�	,
�ê0 − Y10�	,
�ê−� , �15�

Although the expressions presented here are for a vacuum
between the nanomagnet and the cavity walls, the same
analysis will apply for any material in that region that re-
sponds linearly to electromagnetic fields. For such materials
the dielectric permittivity and magnetic permeability of the
material will replace the vacuum values for those properties
in Eqs. �2�–�15�. If a material is desired whose values are
very close to vacuum values, then dilute silica aerogels offer
relative dielectric constants and magnetic permeabilities both
near 1 in the microwave region of the spectrum.21

C. Coupling of the nanomagnet to the photonic cavity

To describe the coupling of the nanomagnet to the cavity,
the spin operators of the nanomagnet should be written in the
same helicity basis as the photonic field,
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S =
1
�2

�S+ê− − S−ê+� + Szê0 �16�

in terms of the nanomagnet spin raising and lowering opera-
tors

S��ls,ms	 = ��ls � ms��ls � ms + 1��ls,ms � 1	 . �17�

Introduction of this total spin operator S and the basis func-
tions of the spherical wave expansion Eq. �15�� into Eq. �13�
yields a fully quantum treatment of the total Hamiltonian for
the nanomagnet-cavity system,

H = ���a
†a +

1

2
� + g

�B

�
B0Sz − g�B��aS+ + a

†S−�

�18�

in which the spin interacts only with a single photon mode .
Modes of higher � would be out of resonance because of the
cavity quantization, and energy nonconserving terms with
negative helicity have been dropped �relying on the rotating
wave approximation22�. The nanomagnet-photon coupling
constant � becomes

� =
j1�kd�

8��j1�y1���1 −
l�l + 1�

y1
2 �−1/2�3���0

�R3 , �19�

where the mode frequency � is related to the radius of the
cavity R with k1=�1 /c=x1 /R.

The interaction with the uniform magnetic field B0, intro-
duced in Eq. �18�, sets the cavity in resonance with the en-
ergy level splitting of nanomagnet spin states whenever the
relation ��=g�BB0 is satisfied. Therefore, any spin-flip up
�down� process of the nanomagnet spins results in an absorp-
tion �emission� of a cavity photon in the case of exact reso-
nance, e.g., an applied uniform magnetic field of B0=7 T,
corresponding to a precession of the macrospin with a fre-
quency of �200 GHz, will cause the nanomagnet spins to
be in exact resonance with a cavity volume of 1.25 mm3. We
assume the lowest TM mode of the cavity is in resonance
with the spin-flip transitions of the nanomagnet, so as higher-
energy modes will not be in resonance the subscript  will be
omitted from Eq. �18�.

The eigenstates of the nanomagnet, treated as a mac-
rospin, are simultaneous eigenstates of the total-spin opera-
tors S2, and Sz given by �ls ,ms	, where �ms�� ls�N /2. Part of
the macrospin approximation is the assumption that ls is
fixed, and most likely it will be the maximal spin state ls
=N /2 due to the additional energy requirement of any other
ls�N /2 subspace. The Hilbert space of N independent spins
should include the states of a macrospin corresponding to
ls=N /2. Therefore, the structure of these basis states is simi-
lar to those of the Dicke model10 for N-independent atomic
spins, wherein ls is the cooperation number of the paramag-
netic collection of spins. However, for a realistic nanomag-
net, elements of the Hilbert space with ls�N /2 are split off
in energy due to the exchange interaction, giving rise to extra
mechanisms, i.e., elementary excitation of spin waves �mag-
nons�.

Since each magnon excitation reduces the total magnetic
moment ��� ls� of the nanomagnet in the amount of 2.21�B

for Fe, it is possible for the nanomagnet total spin angular
momentum to start in a different ls subspace rather than the
maximal ls=N /2. This reduction in ls is less than 1% at room
temperature for iron, suggesting that nanomagnet oscillators
of approximately these sizes can be well described as having
maximal spin at room temperature. The validity of the mac-
rospin approximation relies on the effectiveness of the ex-
change locking of the spins at room temperature. For the
nanomagnets we consider here, spherical nanomagnets of ra-
dius r0�2.3, 11, and 50 nm consisting of iron �magnetic
moment 2.21�B per atom�, and possessing N�104, 106, and
108 electron spins, respectively, the macrospin approxima-
tion is reasonable23 �although perhaps questionable for the
largest nanomagnet considered�.

III. PROPERTIES OF THE COUPLED
NANOMAGNET-CAVITY HAMILTONIAN

The total-excitation number 2�, corresponding to the
maximum number of photons n in the cavity �when the na-
nomagnet is parallel to the static magnetic field�, needs to be
conserved by the Hamiltonian in Eq. �7�. For an initial con-
figuration of the macrospin pointing antiparallel to the static
field B0 and no photons in the cavity, �=N /2, the basis states
of the spin-photon mode system �n ,ms	 can be written as
�n ,�−n	 or ��−ms ,ms	, so that the basis states are indexed
either solely by photon number of the cavity �n�, or by ei-
genvalue of Sz �ms�.

To proceed, we adopt the notation �n ,�−n	 and drop the
redundant reference to the ms, so the total Hamiltonian takes
the form of

H = �
n=0

2�

E0�n	�n� − ��n��n + 1	�n� + �n	�n + 1�� , �20�

in the Fock space, where the constant energy coefficient E0
term and the coupling strength ��n� are defined as

E0 = ���� + 1/2� ,

��n� = ��g�B�n + 1��2� − n . �21�

In matrix form, the same Hamiltonian can be written as

H =�
E0 − ��0� 0 ¯ 0

− ��0� E0 − ��1� ¯ 0

0 − ��1� E0 ¯ 0

] ] ] ]

0 0 ¯ − ��2� − 1� E0

� �22�

similar to the Hamiltonian matrix expected for a nearest-
neighbor tight-binding model with a spatially dependent
mass �see Fig. 2�. For 2�=N, the magnet-microwave mode
coupling, ��n�, changes over a range of 0.10 Mhz–4.1 THz
through all possible photon �spin� numbers. ���n� /�n
=���n� acts like a driving force for a fictitious particle mov-
ing between sites labeled by photon number n, so �0	
→ . . . . . . → �n−1	→ �n	→ �n+1	→ . . . . . . → �2�	. The solu-
tions no of ���n� �n0

=0 are equilibrium points in cavity photon
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number and for this system there is one at n0= �4�−1� /3.
The coupling can also be expressed in terms of the collective
spin number ms as ��ms�=��g�B��−ms+1���+ms, with an
equilibrium point of m0= �1−�� /3. For a system consisting
of a very large number of spins ���1�, the eigenfunctions of
the Hamiltonian in Eq. �10� are expected to be centered
about n0=4� /3 as well as m0=−� /3.

For an initial state �n ,ms	, if we are only interested in
transitions which conserve energy and in which a photon is
emitted, the rate of photon emission Rn is proportional to
�∀�����a†S−�n ,ms	�2, where ��	 represents the possible final
states of the system. Therefore, Rn=A�n+1�2�2�−n�, or
equivalently Rn=A��−ms+1�2��+ms�. The factor A can be
identified as the Einstein A-coefficient by applying Rn to a
single spin pointing upward ��=ms=1 /2� when the cavity
has no photons �n=0�. Since Rn reaches its maximum value
of 4A�N /3�3 for the equilibrium point m0 �or n0� in the large
spin limit, the equilibrium points n0 and m0 are the photon
number and spin number, respectively, where the
nanomagnet-cavity system exhibits superradiance.10

Solutions in the continuum limit

For N=104, 106, and 108 the solutions of the nanomagnet-
cavity Hamiltonian corresponds to the diagonalization of
large matrices in the form of Eq. �22� with increasing ranks
of 104, 106, and 108 for nanomagnets of radius r0�2.3 nm,
11 nm, and 50 nm, respectively. The magnet-photon coupling
strengths at the superradiance regime ��n0� are estimated to
be roughly 5.3 neV, 5.3 �eV, and 5.3 meV for these three
different nanomagnet sizes with radii of r0�2.3 nm, 11 nm,
and 50 nm, respectively.

The eigenfunctions of the nanomagnet-cavity Hamil-
tonian given in Eq. �20� can be expanded

� j = �
n�

2sz

� j
n��n�	 , �23�

in terms of Fock number states and the respective phase con-

stants defined by � j
n�. Applying the Hamiltonian in Eq. �20�

onto these states with the aid of Schrödinger equation H� j
=Ej� j, where Ej are the eigenvalues of the nanomagnet-

cavity system, yields the following recursion relation:

�Ej − E0�� j
n + ��n − 1�� j

n−1 + ��n�� j
n+1 = 0 �24�

for the phase constants. Since the nanomagnet posseses a
very large number of spins, the continuum limit consists in
making the replacement � j

n→� j�n�� for the discrete phase
constants in Eq. �24�. Then a continuous latticelike relation
can be obtained,

Ej� j�n�� + ��n��� j�n� + �� + ��n� − ��� j�n� − �� = 0,

�25�

which can also be transformed into the ordinary differential
equation

��x�
d2� j�x�

dx2 +
d��x�

dx

d� j�x�
dx

+ �2��x� −
d��x�

dx
+

1

2

d2��x�
dx2 + Ej�� j�x� = 0 �26�

with boundary conditions � j�0�=� j�2sz�=0, by Taylor ex-
panding the phase constants � j in Eq. �25� up to O��3� and
defining n�=x. Some of the lowest-lying energy eigenvalues
Ej and eigenfunctions � j�x� of this differential equation,
shown in Fig. 4, can be obtained in the WKB approximation
from

S�Ej� =
1

2�
��Ej − Ve�x�

��x�
dx = j +

1

2
, �27�

where the effective potential is given by Ve�x�=���x�
−��2�x� /4��x�−2��x� �see Fig. 3�. Shown in Fig. 4 are eigen-
states of the coupled nanomagnet-cavity system for three dif-
ferent sizes of nanomagnet.

FIG. 2. �Color online� Latticelike schematic of the spin-cavity
Hamiltonian in Eq. �22� where successive lattice sites represent the
possible photon states in the cavity. Note that conservation of total
excitation number � can be seen from the addition of arrows be-
longing to the nanomagnet spin states along the z axis Sz �purple,
long arrows� and the corresponding cavity photon number n �red,
short arrows� for each site. Transitions between successive photon
states �lattice sites� are governed by the magnet-microwave mode
coupling ��n�, similar to the hopping in a tight-binding model.
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FIG. 3. �Color online� The effective potential of the magnet-
photon system in the WKB approximation is shown with respect to
cavity photon number n centered about the superradiance regime
n0.
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IV. NANOMAGNET-CAVITY COHERENT DYNAMICS

A. Form of the coherent state

A coherent state for the nanomagnet-cavity system can be
written as a displaced nanomagnet-cavity ground state �by a
photon number x0 from the equilibrium point n0�, or

�0�x� =
1

��2�
e−��x − x0� − n0�2/2�2

, �28�

where the standard deviation � can be found by matching the
values of the full width at half maximum �FWHM� of the
ground state and the Gaussian function to each other; for
instance FWHM�0�x��=2�2 ln 2��14609 Fig. 4�i�� for
N=108. The eigenfunctions of the nanomagnet-cavity system
are complete and orthonormal, hence they serve as a suitable
basis to expand any coherent state over,


�x,t� = �
j=0

j0

Aje
−iEjt/�� j�x� . �29�

Equating the Gaussian function in Eq. �28� to the coherent
state of Eq. �29� at initial time t=0, i.e.,

�
j=0

�

Aj� j�x� =
1

��2�
e−�x − x0� − n0�2/2�2

, �30�

multiplying both sides by � j� and using the orthonormality
condition of the nanomagnet-cavity wave functions reveals
the phase constants Aj of the expansion as

Aj =
1

��2�



0

2�

� j�x�e−�x − x0� − n0�2/2�2
dx . �31�

For three sizes of the nanomagnet, the coherent states shown
in Figs. 5�a�–5�c�, are characterized by large oscillations over
ranges of �2x0=� 1780, 1.76�104, and 1.76�105 photons
with periods of T=1.5 ms, T=150 �s, and T=15 �s, re-
spectively. Summation over the first 150 eigenstates �j0
=150� extracted from WKB is sufficient enough to obtain
convergence in the dynamical properties of these nanomag-
nets. The Zeeman energy of the nanomagnet and transverse
magnetic field amplitude of the cavity at the nanomagnet’s
location can also be evaluated from

��Ez	 = �
�x,t���zB0�
�x,t�	 ,

0.1

0.05

0.

�0.05

�0.1

Ψ

N�104, r0�2.3 nm
a

FWHM�146.1

0.03

0.015

0.

�0.015

�0.03

N�106, r0�11 nm
e

FWHM�1460.9

0.01

0.005

0.

�0.005

�0.01

N�108, r0�50 nm
i

FWHM�14609.4

0.1

0.05

0.

�0.05

�0.1

Ψ

b 0.03

0.015

0.

�0.015

�0.03

f 0.01

0.005

0.

�0.005

�0.01

j

0.1

0.05

0.

�0.05

�0.1

Ψ

c 0.03

0.015

0.

�0.015

�0.03

g 0.01

0.005

0.

�0.005

�0.01

k

�10 �5 0 5 10

0.1

0.05

0.

�0.05

�0.1

n�n0 �102�

Ψ

d

�10 �5 0 5 10

0.03

0.015

0.

�0.015

�0.03

n�n0 �103�

h

�10 �5 0 5 10

0.01

0.005

0.

�0.01

�0.005

n�n0 �104�

l

FIG. 4. �Color online� Wave functions of the nanomagnet-cavity system shown as a function of photon number, n, centered about n0, for
nanomagnets of radius r0=2.3,11,50 nm, consisting of N=104, N=106, and N=108 spins, respectively. First row �a�-�e�-�i� are the ground
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�BT	 = �
�x,t��HTM�d��
�x,t�	 , �32�

respectively, by using the same coherent state representation.
Large oscillations of these quantities shown in Fig. 6 indi-
cates the coherent energy exchange occurring back and forth
between photons in the cavity and the spin states of the na-
nomagnets.

B. Dephasing of the coherent state

The coherent properties of this nanomagnet-photon sys-
tem will also depend on the dephasing of the coherent state

�x , t�, due to inhomogenity of the coupling ��n� in Eq. �21�.
The dephasing time of the nanomagnet-cavity coherent state
can be extracted by a Gaussian fit to the peak values of the
autocorrelation function between a coherent state at time t
and its initial state at t=0,

P�t� = ��
�x,t��
�x,0�	�2=��
j=0

�

�Aj�2eiEjt/��2

, �33�

whereas each peak �inset of Fig. 7� is representing the revival
amount of the coherent state after every successful period T
of oscillation. Exceptionally long dephasing time of order
seconds are shown in Fig. 7. As the nanomagnet gets bigger
the change in ��n� with n becomes smoother and smoother,
leading to longer dephasing times.

Although this treatment is for zero temperature, the coher-
ent properties of the nanomagnet-photon system should per-
sist to as high a temperature �and over as long a time scale�
as the macrospin description remains reliable. We have as-
sumed an infinite Q for the cavity, so the decoherence of the
system is expected to be determined by photon leakage from
the cavity, rather than these exceptionally long calculated
times. Furthermore, the elementary spin excitations �mag-
nons� would not directly affect the dephasing of the system,
for magnons preserve the spin quantum number ms, requiring
an up spin to flip down for every down spin flipping up. In
realistic nanomagnets, spin-lattice coupling of ms to phonons
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FIG. 5. �Color online� �a� Amplitude of a coherent state for three
different nanomagnet-photon systems consisting of �a� N=104, �b�
N=106, and �c� N=108 spins are shown as a function of photon
number n. The large oscillations of these coherent states occur
about �a� n0�6666 with a period of T=1.5 ms, �b� n0�6.66
�105 with a period of T=150 �s, and �c� n0�6.66�107 with a
period of T=15 �s, respectively.
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FIG. 6. �Color online� Time evolution of the Zeeman energy of
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through spin-orbit coupling will cause a cutoff of the dephas-
ing times shown in Fig. 7. For spheres of yttrium iron garnet
�YIG� at low temperature this spin-lattice time is several
�s.24,25 Therefore, observation of a full oscillation cycle
should be possible for nanomagnets with a radius of 50 nm
or larger. On the other hand, the times at room temperature in
YIG ��200� ns �Ref. 24� and iron ��20 ns� �Ref. 26� are
too small to observe a full oscillation. However, coherent
dynamics corresponding to a portion of the oscillation in-
volving �24 photons /ns, or �470 photons for iron and
4700 photons for YIG should be still observable for the na-
nomagnet with radius r0=50 nm. If, however, the modal
coupling is increased using approaches such as tip enhance-
ment of the optical field, then the coupling could be far
stronger even for a small nanomagnet. Guided by estimates
from tip-enhanced Raman spectroscopy,18 the intensity of the
mode at the nanomagnet’s position could be increased by

102–106, leading to enhancements of the oscillation fre-
quency of order 10–103.

C. Crystalline magnetic anisotropy

We also examine other deviations from ideality for the
nanomagnet, such as the spin-dependent cubic CMA. The
CMA of iron is given by

ECMA = U1��1
2�2

2 + �2
2�3

2 + �1
2�3

2� + U2�1
2�2

2�3
2, �34�

where U1=4.2�105 erg /cm3 and U2=1.5�105 erg /cm3

are the cubic anisotropy constants for iron at room tempera-
ture and an arbitrary magnetization direction is defined by
the directional cosines �1, �2, and �3 referred to the cube
edges. Since the nanomagnet is a sphere, shape anisotropy is
not relevant. In the case of a cubic crystal whose easy axis is
aligned along the body diagonal, ECMA energy depends on
the orientation of the nanomagnet spin S, defined by �i.

The CMA of iron causes a detuning of the energy spacing
for different spin orientations from the resonant frequency of
the cavity, along with a dispersion in that spacing. The uni-
form detuning, corresponding to a uniform shift in the pre-
cession frequency of the nanomagnet, can be compensated
for with a slight adjustment in the applied magnetic field.
The dispersion, however, causes a variable detuning of
roughly 200, 13, and 1.3 neV of the E0 in Eq. �20� over the
range of oscillation shown in Figs. 5�a�–5�c�, respectively.
The decline in the variable detuning roughly scales with the
ratio of the change in photon number associated with an
oscillation to the number of spins in the nanomagnet. For the
smallest nanomagnets the effect of CMA dominates over the
coupling between the photons and the spin. For example, for
a nanomagnet radius of 2 nm consisting of 104 total spins,
the CMA is significantly larger than the magnet-photon cou-
pling strength ��n� ��5.3 neV� in Eq. �20�. Therefore the
CMA will cause the eigenstates to localize in photon and
spin number, producing rapid decoherence for a coherent
state. We note that this observation largely rules out the pos-
sibility of observing these coherent oscillations in a single
molecule magnet,27 for the spins of these molecules are con-
siderably smaller than the spin of the nanomagnet considered
above. However, this detuning is much smaller than the
magnet-photon coupling strength of other nanomagnet sizes
�10 and 50 nm in radii� and therefore will not destroy the
coherent oscillations for them, although it may still limit the
dephasing times to shorter than that shown in Figs. 7�b� and
7�c�.

V. CONCLUDING REMARKS

Calculations for three different nanomagnet sizes in a
photonic cavity indicate that strong-field coupling between
photons and spins is possible, and should substantially ex-
ceed the coupling observed in solids between orbital transi-
tions and light. The Hamiltonian for the coupled
nanomagnet-cavity system is solved in the continuum limit
to obtain a coherent state representation of the system around
the superradiance regime. This coherent state is characterized
by large oscillations in photon number of the cavity �or
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equivalently the total spin number of the nanomagnet� with
exceptionally long dephasing times and is expected to be
observable for realistic nanomagnets with radii from 10 to 50
nm. Approaches to enhance the coupling, such as using a
metal tip to enhance the microwave field, have been pro-
posed. For the smallest nanomagnet �2 nm radius� the dis-
persion caused by crystalline magnetic anisotropy would
largely quench the coherent oscillations but for nanomagnets
in the 10–50 nm radius range the coupling to the cavity is
much stronger than the dispersion caused by CMA. The
dephasing times increase with increasing nanomagnet size,
due to the greater uniformity of the coupling terms between
states that differ by one photon and one spin flip. Thus the
most coherent nanomagnet-cavity systems will be those that
are just under the size threshold where the macrospin ap-
proximation ceases to be accurate. The effects of magnons
have been considered and shown to not substantially modify
these results.

Future work shall investigate how to use the strong-
coupling features described here to transfer coherently states
of the electronic system to the photonic one and back again.
A particularly interesting direction will be to consider the
effect of active nanomagnetic systems, such as those demon-
strated to be coherently driven by electrical spin
currents,16,28–32 on the optical state of the cavity. As phase-
locking has been demonstrated between two such
oscillators,33,34 mediated perhaps by spin waves, it may be
possible to phase-lock them through interaction with a cavity
such as the one considered here.

ACKNOWLEDGMENTS

We thank A. Kent and D. C. Ralph for helpful discus-
sions. This work was supported by an ONR MURI.

1 C. P. Slichter, Principles of Magnetic Resonance �Harper and
Row, New York, 1963�.

2 M. D. Barrett et al., Nature �London� 429, 737 �2004�.
3 J. P. Reithmaier, G. Sȩk, A. Loffler, C. Hofmann, S. Kuhn, S.

Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke,
and A. Forchel, Nature �London� 432, 197 �2004�.

4 T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs,
G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature
�London� 432, 200 �2004�.

5 A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G.
Abstreiter, Nature �London� 418, 612 �2002�.

6 J. A. Gupta, R. Knobel, N. Samarth, and D. D. Awschalom,
Science 292, 2458 �2001�.

7 J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren,
and D. D. Awschalom, Science 320, 349 �2008�.

8 K.-M. Fu, S. M. Clark, C. Santori, C. R. Stanley, M. C. Holland,
and Y. Yamamoto, Nat. Phys. 4, 780 �2008�.

9 D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature �Lon-
don� 456, 218 �2008�.

10 R. H. Dicke, Phys. Rev. 93, 99 �1954�.
11 R. Zimmermann, Phys. Status Solidi B 76, 191 �1976�.
12 J. Kasprzak et al., Nature �London� 443, 409 �2006�.
13 R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Sci-

ence 316, 1007 �2007�.
14 J. D. Jackson, Classical Electrodynamics, 3rd ed. �Wiley, New

York, 1998�, p. 259–443.
15 Ö. O. Soykal and M. E. Flatté, Phys. Rev. Lett. 104, 077202

�2010�.
16 J. C. Sankey, P. M. Braganca, A. G. F. Garcia, I. N. Krivorotov,

R. A. Buhrman, and D. C. Ralph, Phys. Rev. Lett. 96, 227601
�2006�.

17 G. P. Agrawal and N. K. Dutta, Semiconductor Lasers �Springer,

New York, 1993�.
18 M. Moskovits, Rev. Mod. Phys. 57, 783 �1985�.
19 W. Heitler, The Quantum Theory of Radiation, 3rd ed. �Dover,

New York, 1998�, p. 402.
20 J. D. Jackson, Classical Electrodynamics, 3rd ed. �Wiley, New

York, 1998�.
21 L. W. Hrubesh, L. E. Keene, and V. R. Latorre, J. Mater. Res. 8,

1736 �1993�.
22 M. O. Scully and M. S. Zubairy, Quantum Optics �Cambridge,

Cambridge, 1997�.
23 D. V. Berkov and J. Miltat, J. Magn. Magn. Mater. 320, 1238

�2008�.
24 R. C. LeCraw and E. G. Spencer, J. Phys. Soc. Jpn. 17, Suppl.

B1, 401 �1962�.
25 M. Sparks and C. Kittel, Phys. Rev. Lett. 4, 232 �1960�.
26 Z. Frait and D. Fraitova, J. Magn. Magn. Mater. 15-18, 1081

�1980�.
27 L. Bogani and W. Wernsdorfer, Nature Mater. 7, 179 �2008�.
28 L. Berger, Phys. Rev. B 54, 9353 �1996�.
29 J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 �1996�.
30 E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and R. A.

Buhrman, Science 285, 867 �1999�.
31 S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J.

Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature �London�
425, 380 �2003�.

32 S. Urazhdin, H. Kurt, M. AlHajDarwish, N. O. Birge, W. P. Pratt,
Jr., and J. Bass, J. Appl. Phys. 97, 10C701 �2005�.

33 S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek,
and J. A. Katine, Nature �London� 437, 389 �2005�.

34 F. B. Mancoff, N. D. Rizzo, B. N. Engel, and S. Tehrani, Nature
�London� 437, 393 �2005�.

SIZE DEPENDENCE OF STRONG COUPLING BETWEEN… PHYSICAL REVIEW B 82, 104413 �2010�

104413-9

http://dx.doi.org/10.1038/nature02608
http://dx.doi.org/10.1038/nature02969
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature00912
http://dx.doi.org/10.1126/science.1061169
http://dx.doi.org/10.1126/science.1154798
http://dx.doi.org/10.1038/nphys1052
http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1002/pssb.2220760120
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1103/PhysRevLett.104.077202
http://dx.doi.org/10.1103/PhysRevLett.104.077202
http://dx.doi.org/10.1103/PhysRevLett.96.227601
http://dx.doi.org/10.1103/PhysRevLett.96.227601
http://dx.doi.org/10.1103/RevModPhys.57.783
http://dx.doi.org/10.1557/JMR.1993.1736
http://dx.doi.org/10.1557/JMR.1993.1736
http://dx.doi.org/10.1016/j.jmmm.2007.12.023
http://dx.doi.org/10.1016/j.jmmm.2007.12.023
http://dx.doi.org/10.1103/PhysRevLett.4.232
http://dx.doi.org/10.1016/0304-8853(80)90895-1
http://dx.doi.org/10.1016/0304-8853(80)90895-1
http://dx.doi.org/10.1038/nmat2133
http://dx.doi.org/10.1103/PhysRevB.54.9353
http://dx.doi.org/10.1016/0304-8853(96)00062-5
http://dx.doi.org/10.1126/science.285.5429.867
http://dx.doi.org/10.1038/nature01967
http://dx.doi.org/10.1038/nature01967
http://dx.doi.org/10.1063/1.1844813
http://dx.doi.org/10.1038/nature04035
http://dx.doi.org/10.1038/nature04036
http://dx.doi.org/10.1038/nature04036

