La substitution effect and hyperfine-enhanced ¹⁴¹Pr nuclear spin dynamics in PrPb₃: ¹³⁹La NMR study in Pr_{0.97}La_{0.03}Pb₃

Y. Tokunaga,* H. Sakai, H. Chudo, S. Kambe, and H. Yasuoka ASRC, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

H. S. Suzuki

National Institute for Materials Science, Tsukuba 305-0047, Japan

R. E. Walstedt

Department of Physics, University of Michigan, Ann Arbor, Michigan 48105, USA

Y. Homma, D. Aoki,[†] and Y. Shiokawa

IMR, Tohoku University, 2145-2 Narita Oarai Higashiibaraki, Ibaraki 311-1313, Japan

(Received 31 March 2010; published 1 September 2010)

¹³⁹La NMR studies have been performed on PrPb₃ substituted with 3% La. The temperature dependence of the local magnetic susceptibility around La ions has been extracted from the ¹³⁹La Knight shift. These data show that the nonmagnetic Γ_3 crystalline-electric-field (CEF) ground state (GS) is preserved even at the nearest neighboring Pr ions, although their CEF level scheme is slightly modified due to the La substitution. On the other hand, the temperature dependence of the nuclear spin-lattice relaxation rate $1/T_1$ is found to be well reproduced by assuming the same CEF level scheme over a wide temperature range. However, $1/T_1$ shows a strong upturn below 10 K, which is not expected from the nonmagnetic CEF GS. We show that the lowtemperature anomaly can be quantitatively understood in terms of a cross-relaxation process between ¹⁴¹Pr and ¹³⁹La nuclear spins. Analysis of the cross-relaxation process reveals strong nuclear spin-spin coupling among the ¹⁴¹Pr nuclei, which we suggest is enhanced by a hyperfine mechanism of Pr ions and then mediated by relatively large indirect magnetic coupling between them.

DOI: 10.1103/PhysRevB.82.104401

PACS number(s): 75.25.Dk, 76.60.-k, 71.27.+a

I. INTRODUCTION

In some Pr-based intermetallic compounds, a non-Kramers Γ_3 crystalline-electric-field (CEF) ground state (GS) is realized with a $4f^2$ configuration in a CEF potential with O_h symmetry. The Γ_3 GS characteristically has electric quadrupolar and magnetic octupolar moments but has no magnetic dipolar moment. Hence, in the Γ_3 GS compounds, a spontaneous quadrupolar or octupolar ordering is supposed to emerge at low temperatures, if there are available interatomic multipolar interactions. In the absence of multipolar ordering, on the other hand, one might expect the formation of an unconventional heavy-fermion state associated with the two-channel quadrupole Kondo effect.¹

Another interesting subject of study in the Γ_3 GS Pr compounds is hyperfine-enhanced ¹⁴¹Pr nuclear magnetism. The Van Vleck-type admixture of magnetic excited states into the nonmagnetic GS enhances the ¹⁴¹Pr nuclear spin moment effectively to be more than 10–100 times larger than bare nuclear values.^{2,3} The hyperfine enhancement mechanism enlarges spin-spin interactions between the ¹⁴¹Pr nuclei, which are 100% abundant, and induces nuclear magnetic ordering at a temperature on the order of millikelvin.

A typical example of such a Γ_3 GS system is PrPb₃ with the AuCu₃-type cubic structure. This compound possesses the Γ_3 GS with a magnetic Γ_4 triplet lying Δ =15–19 K above the GS (Refs. 4–6) and exhibits an antiferroquadrupolar (AFQ) ordering at T_Q =0.4 K.⁷ Below T_Q , a unique modulated AFQ structure of the O_2^0 -type quadrupole moment has been detected with neutron-diffraction measurements.^{8,9} The long-range nature of the order parameter strongly suggests that the AFQ ordering is driven by indirect quadrupolar interactions mediated by conduction electrons. On the other hand, the compound also undergoes nuclear ordering of the ¹⁴¹Pr with an ordering temperature $T_{\rm NO}$ =5 mK.¹⁰ The relatively high $T_{\rm NO}$ is considered to be related to hyperfine enhancement effects. The hyperfine-enhanced ¹⁴¹Pr nuclear magnetism has also been detected by recent muon spin-rotation and spin-relaxation measurements.¹¹

To our knowledge, no NMR data have been reported on PrPb₃ up to now. This is probably due to the difficulty of observing ¹⁴¹Pr and ²⁰⁷Pb NMR signals. In a previous study, we sought these signals using a powder sample in several temperatures between 1.5 and 100 K and external fields between 4 and 10 T with the shortest possible τ of 15 μ s, where τ is the time between the excitation pulse and the refocusing pulse; however, we could not detect any signal from such a sample. The difficulty may arise from extremely short nuclear relaxation times T_1 and/or T_2 . For T_1 and T_2 values less than a few tens of microseconds, signal detection by standard pulsed NMR techniques becomes quite difficult.

In this study, instead of NMR in PrPb₃, we have observed ¹³⁹La NMR in a PrPb₃ sample doped with 3% La. Two topics will be discussed regarding the ¹³⁹La NMR results. First, we will discuss La substitution effects in PrPb₃ on a microscopic scale. Since PrPb₃ and LaPb₃ have the same AuCu₃ cubic structure with similar lattice parameters (a=4.867 Å and 4.903 Å, respectively), it has been supposed that the La sub-

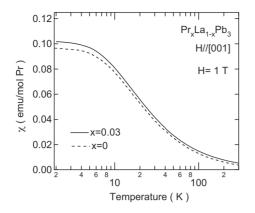


FIG. 1. The temperature dependence of the bulk susceptibility $\chi(T)$ in PrPb₃ (Ref. 6) and Pr_{0.97}La_{0.03}Pb₃, plotted against a logarithmic temperature scale.

stitutions do not seriously modify the CEF level scheme of neighboring Pr ions.^{12,13} This point has been directly examined in the present ¹³⁹La NMR studies. Second, we discuss the low-energy spin dynamics based on $1/T_1$ results. The $1/T_1$ of ¹³⁹La is shown to be determined by the fluctuations of Pr 4*f* and conduction-electron spins in a wide temperature range while it is dominated by an indirect cross-relaxation process between the ¹³⁹La and the hyperfine-enhanced ¹⁴¹Pr nuclear spins at low temperatures. The magnitude of the cross-relaxation rate is evaluated by using formulas developed for NpO₂,^{14,15} and the calculation is found to account for the data satisfactorily. Analysis of the cross-relaxation process involves strong like-spin coupling among ¹⁴¹Pr nuclei, which is suggested to be enhanced by a hyperfine mechanism of Pr ions and then mediated by relatively large indirect magnetic interactions among them.

II. EXPERIMENTAL RESULTS

Single crystals of $Pr_{0.97}La_{0.03}Pb_3$ were grown by the Bridgeman method. A powder sample was prepared by cleaving carefully the single crystals to prevent the formation of a contaminated surface layer. ¹³⁹La NMR measurements were performed using a superconducting magnet and a phase coherent, pulsed spectrometer. We used the standard pulsed NMR techniques with the pulse separation τ of ~50 μ s. Field-sweep NMR spectra were measured by recording the integrated spin-echo intensity as a function of the applied magnetic field. The spin-lattice relaxation rate $1/T_1$ was measured using the saturation-recovery method. The recovery of the nuclear magnetization from a saturation pulse was found to follow a single-exponential functional form, providing a single value of $1/T_1$ at each temperature.

Figure 1 shows the temperature dependence of the bulk susceptibility $\chi(T)$, plotted against a logarithmic temperature scale. For comparison, we also plot data for $\chi(T)$ of PrPb₃ reported by Tayama *et al.*⁶ The temperature dependences are almost identical between the two compounds. From $\chi(T)$ for PrPb₃, Tayama *et al.* have deduced the CEF level scheme: $\Gamma_3(0 \text{ K})$, $\Gamma_4(14.7 \text{ K})$, $\Gamma_5(28.3 \text{ K})$, and $\Gamma_1(35.3 \text{ K})$. For Pr_{0.97}La_{0.03}Pb₃, the saturation behavior of $\chi(T)$ at low tem-

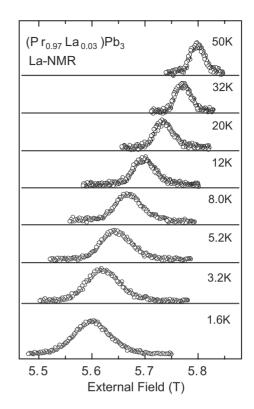


FIG. 2. The temperature dependence of the field-sweep 139 La NMR spectra at ω_{La} =35.3 MHz.

peratures reveals that the bulk of Pr ions preserve the nonmagnetic Γ_3 CEF GS.¹² In Sec. III A, we will discuss the local effect of the La substitution on a microscopic scale.

Figure 2 shows the temperature dependence of the ¹³⁹La NMR spectra. With decreasing temperature, the spectra shift to lower field and broaden markedly while they keep a symmetric line shape for the whole temperature range. There is no appreciable quadrupole splitting and no appreciable anisotropic NMR shift, even though the ¹³⁹La nucleus (I=7/2) possesses a nuclear quadrupole moment. We have estimated the upper limit of the quadrupole splitting to be ~ 25 kHz from the NMR linewidth obtained in the lowest field of 1.35 T. This confirms that the cubic symmetry of the AuCu₃-type cubic structure is preserved at the La sites.

Figure 3 shows the temperature dependence of K(T) derived from the centers of gravity of the NMR lines. K(T) shows a similar temperature dependence to the bulk $\chi(T)$, namely, it obeys a Curie-Weiss law at high temperatures and shows saturation behavior at low temperatures. In the inset, we plot the temperature dependence of the NMR linewidth [full width at half maximum (FWHM)], $\Delta H(T)$, which also shows a similar temperature dependence to $\chi(T)$ and thus to K(T). This suggests that $\Delta H(T)$ is attributed mostly to a distribution of K(T).

Figure 4 shows the temperature dependence of $1/T_1$, taken at the peak of the La NMR spectra at $H \sim 5.6$ T. With decreasing temperature, $1/T_1$ decreases first gradually and then rapidly below $T \sim 50$ K. With further decrease in temperature, $1/T_1$ shows a minimum and then a strong upturn below 10 K. At the lowest temperature of T=1.5 K, $1/T_1$ reaches to 110 s⁻¹. Throughout the temperature range there

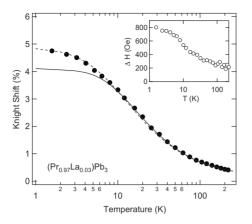


FIG. 3. The temperature dependence of the Knight shift K(T). The solid line shows the calculated temperature variation in K(T) with the CEF level scheme of PrPb₃. The dotted line also shows a calculated result obtained by assuming the CEF level scheme of $\Gamma_3(0 \text{ K})$, $\Gamma_4(8.4 \text{ K})$, $\Gamma_1(20.2 \text{ K})$, and $\Gamma_5(23.5 \text{ K})$ (see text). The inset shows the temperature dependence of the NMR linewidth (FWHM), $\Delta H(T)$

was no evidence of field dependence for $1/T_1$ between H=1.5 and 5.6 T within experimental error (e.g., $\sim 10\%$ at 1.5 K).

III. ANALYSIS AND DISCUSSION

A. Local effect of the La substitution

We first discuss the local effect of the La substitution on the electronic state of the Pr ions. The Knight shift values in Fig. 3 are greatly enhanced relative to those in LaPb₃. Values of K(T) reach ~5% at low temperatures in our sample while those in LaPb₃ were reported to be 0.15% at 300 K and 0.01% at 4.2 K, respectively.¹⁶ The large values of K are attributed to transferred hyperfine fields from the Pr 4*f* elec-

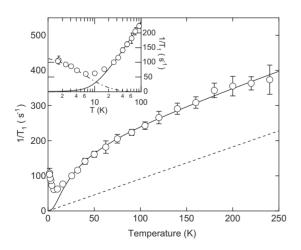


FIG. 4. The temperature dependence of $1/T_1$, taken at the peaks of the La NMR spectra with $\omega_{\text{La}}=35.3$ MHz. The solid line shows the fit with the CEF model of Eq. (2). The dotted line represents the contribution from the Korringa term. In the inset, the low-temperature part of $1/T_1$ is plotted against a logarithmic temperature scale, where the dashed line is a guide for the eyes.

trons. There are six nearest-neighbor (nn) Pr ions surrounding a La ion, and hence K(T) may be expressed using the local-spin susceptibility of a nn Pr ion $\chi_{Pr}^{nn}(T)$ as¹⁷

$$^{139}K(T) = \frac{z^{139}A_{\rm hf}}{N_A\mu_B}\chi_{\rm Pr}^{\rm nn}(T),$$
 (1)

where z=6 is the number of nn Pr ions, ${}^{139}A_{\rm hf}$ is the transferred hyperfine coupling constant between a ${}^{139}La$ nuclear spin and a nn Pr 4*f* spin moment, N_A is Avogadro's number, and μ_B is the Bohr magneton.

We found that K(T) maintains a linear dependence on the bulk $\chi(T)$ with ${}^{139}A_{\rm hf}=375$ Oe/ μ_B over a wide temperature range while it shows a clear deviation at low temperatures below $T \sim 10$ K.¹⁷ The solid line in Fig. 3 shows a calculated temperature variation in K(T) based on the CEF level scheme by Tayama et al.⁶ for PrPb₃. The CEF calculation reproduces the experimental behavior at high temperatures; however, a deviation below $T \sim 10$ K suggests that the CEF level scheme of the nn Pr ions is slightly modified owing to the La substitutions, although the nonmagnetic GS is still preserved. Indeed, a better fit to the data is obtained by assuming a CEF level scheme with a slightly reduced energy separation between the Γ_3 GS and the Γ_4 first excited state of $\Delta_1 = 6-9$ K. The dotted line in Fig. 3 is an example of the calculations, obtained with a CEF level scheme with $\Gamma_3(0 \text{ K}), \Gamma_4(8.4 \text{ K}), \Gamma_1(20.2 \text{ K}), \text{ and } \Gamma_5(23.5 \text{ K}).$

A more realistic model for the CEF level scheme might be obtained by including a possible symmetry change at the nn Pr ions: the La substitution changes their local symmetry from cubic O_h to tetragonal C_{4v} .^{11,18} In tetragonal symmetry, the Γ_3 doublet splits into two nonmagnetic singlets while the Γ_4 triplet splits into a magnetic doublet and a nonmagnetic singlet. This splitting of the Γ_4 triplet might cause a reduction in the energy separation Δ_1 . Still, the low-temperature behavior of K(T) ensures a nonmagnetic GS in a new C_{4v} level scheme.

B. Analysis of $1/T_1$ with the CEF model

Next we analyze $1/T_1$ using a CEF model. $1/T_1$ is driven by the low-energy spin-fluctuation densities while the highenergy Van Vleck susceptibilities do not contribute to $1/T_1$.¹⁹ With a nonmagnetic GS, only the low-energy magnetic fluctuations of magnetic CEF excited states (Curie terms) contribute to $1/T_1$, leading to the temperature dependence $1/T_1 \propto \exp(-E_{\Gamma}/k_BT)$, where E_{Γ} is the CEF level splitting between a magnetic excited state and the GS.²⁰ It should be noted that the Γ_3 GS also carries a magnetic octupole moment of the T_{xyz} type. However, as pointed by Tanida *et al.* for PrInAg₂,¹⁹ this T_{xyz} octupole does not couple with a ligand nucleus located on the fourfold-axis directions in the cubic structure. In Pr_{1-x}La_xPb₃, the ¹³⁹La nuclei are located on these fourfold-axis directions and hence do not couple with the T_{xyz} octupole of a nn Pr ions.²¹

The temperature dependence of $1/T_1$ hence might be expressed by a simple formula¹⁹

where the first term represents the Curie terms from the Γ_4 and Γ_5 excited states while the second term gives the contribution from conduction electrons, i.e., the Korringa term. $|\Gamma_{\gamma}\rangle$ is the CEF eigenstate, and $|\langle \Gamma_4 | J_z | \Gamma_4 \rangle| = 1/2$ and $|\langle \Gamma_5 | J_z | \Gamma_5 \rangle| = 5/2$, respectively. The solid line in Fig. 4 shows the fitting result, where *A* and *B* are fitting parameters while $E_{\Gamma_4} = 8.4$ K and $E_{\Gamma_5} = 23.5$ K from the Knight shift result. The dotted line in the figure shows the contribution of the Korringa term, which corresponds to $T_1 T (=B^{-1}) \approx 1.1$ s K. The latter value is comparable with $T_1 T = 0.64$ s K reported for LaPb₃.

As seen in the figure, the $1/T_1$ behavior is well reproduced by the simple CEF model given by Eq. (2) over a wide temperature range. However, there is a clear deviation below 10 K, where the experimental data show a strong upturn. In Eq. (2), both the Curie and the Korringa terms decrease monotonically with decreasing temperature and are reduced to zero as $T \rightarrow 0$. Hence, no values of E_{Γ_4} and E_{Γ_5} would suffice to explain the low-temperature upturn with the non-magnetic GS CEF model.

C. Cross relaxation between ¹⁴¹Pr and ¹³⁹La

In this section we show that the low-temperature $1/T_1$ anomaly can be quantitatively understood in terms of a cross-relaxation process between ¹⁴¹Pr and ¹³⁹La nuclear spins. A similar effect has already been reported in other Pr-based compounds, where the ¹⁴¹Pr spin fluctuations have been "sensed" by a ligand nucleus²² or by muon spins. ^{11,23,24} Furthermore, this effect is also essentially the same as the cross-relaxation process which was observed in NpO₂, ¹⁴ where the fluctuations of the ²³⁷Np nuclear spins were detected through $1/T_1$ for the ¹⁷O via an indirect nuclear spin coupling process.

The cross-relaxation process originates from the unlikespin coupling term in the spin Hamiltonian given by^{14,25}

$$\mathcal{H}_{Pr-La}^{SS} = \sum_{j,k(nn)} \alpha_{jk} (I_{+j}^{Pr} I_{-k}^{La} + I_{-j}^{Pr} I_{+k}^{La}) + \sum_{j,k(nn)} \beta_{jk} I_{zj}^{Pr} (I_{-k}^{La} + I_{+k}^{La}).$$
(3)

The form of this unlike-spin coupling term indicates that there will be ¹⁴¹Pr fluctuation spectra centered on both zero frequency and on the ¹⁴¹Pr nuclear Larmor frequency. The strength of these fluctuation peaks is proportional to either $\langle \alpha_{jk}^2 \rangle_{av}$ (at $\omega_{\rm Pr}$) or $\langle \beta_{jk}^2 \rangle_{av}$ (at zero frequency). Referring to Eq. (3), if this unlike-spin term is treated as a perturbation, the result is the cross-relaxation rate²⁵

$$\frac{1}{T_{1\text{La}}^{\text{CR}}} = \frac{\langle \Delta \omega^2 \rangle_{\alpha} T_{12\text{Pr}}}{\left[1 + (\omega_{\text{La}} - \omega_{\text{Pr}})^2 T_{12\text{Pr}}^2\right]} + \frac{\langle \Delta \omega^2 \rangle_{\beta} T_{12\text{Pr}}}{(1 + \omega_{\text{La}}^2 T_{12\text{Pr}}^2)}, \qquad (4)$$

where the T_{12Pr} is the ¹⁴¹Pr spin-reorientation correlation time and the $\langle \Delta \omega^2 \rangle_{\alpha,\beta}$ are the respective contributions to the ¹³⁹La second moment from the two terms in Eq. (3) in an obvious notation. T_{12Pr} will be determined, in general, by a combination of T_1 - and T_2 -type spin-fluctuation processes. The α and β terms are seen to correspond to fluctuation peaks which are centered at frequencies $\omega_{\rm Pr}$ and zero, respectively. For the α term, the ¹³⁹La resonance frequency is located at a distance $\omega_{\rm La} - \omega_{\rm Pr}$ from peak of the fluctuation spectrum while for the β term centered at zero, the frequency interval is simply $\omega_{\rm La}$.

The frequency of the α -term fluctuation peak is given by $\omega_{\rm Pr} = \gamma_{\rm Pr}(1+K_{\rm Pr})$ H, where $K_{\rm Pr}$ is the Knight shift of the ¹⁴¹Pr NMR line and $\gamma_{\rm Pr}/2\pi \approx 13$ MHz/T, which is more than twice that of ¹³⁹La(=6.0146 MHz/T). In addition, the value of $K_{\rm Pr}$ is greatly enlarged by the hyperfine enhancement mechanism, which has been estimated to be $(1+K_{\rm Pr})\approx 30$ from magnetization data at temperatures below 1 K.¹⁰ From these facts, one can safely assume that $\omega_{\rm La} \ll \omega_{\rm Pr}$ and hence that the β term in Eq. (4) is dominant.

The β term is independent of $K_{\rm Pr}$, giving by itself the simple expression

$$\frac{1}{T_{1La}^{CR}} \simeq \frac{\langle \Delta \omega^2 \rangle_{\beta} T_{12Pr}}{(1 + \omega_{La}^2 T_{12Pr}^2)}.$$
(5)

The magnitude of $1/T_{1\text{La}}^{\text{CR}}$ thus depends on the magnitudes of $\langle \Delta \omega^2 \rangle_{\beta}$ and $1/T_{12\text{Pr}}$. In PrPb₃ we can expect indirect nuclear spin-spin coupling via polarization of the Pr 4*f* and the conduction electrons. This indirect mechanism is known to enhance the unlike-spin coupling coefficient β_{ik} in Eq. (3) by more than an order of magnitude relative to the classical dipolar mechanism.¹⁴ Here, we estimate the indirect second moment $\langle \Delta \omega^2 \rangle_{\beta}$ as

$$\langle \Delta \omega^2 \rangle_\beta \simeq \frac{1}{3} z \gamma_{La}^2 \gamma_{Pr}^2 \hbar^2 I (I+1) J_{ind}^2 = 2.7 \times 10^{10} \text{ s}^{-2}, \quad (6)$$

where J_{ind} is the indirect coupling constant between ¹⁴¹Pr and ¹³⁹La, which has been evaluated using the formula: $J_{\text{ind}} \approx {}^{139}A_{\text{hf}} {}^{141}A_{\text{hf}} \chi_{\text{Pr}} = {}^{139}A_{\text{hf}} (1+K_{\text{Pr}}) = 1.1 \times 10^4 \text{ Oe}/\mu_B.$

On the other hand, $1/T_{12Pr}$ at low temperatures would be dominated by a T_2 process driven by the like-spin coupling between ¹⁴¹Pr nuclear spins J_{nuc} , since the electronic (T_1) contributions are strongly suppressed due to the nonmagnetic CEF GS, as discussed above. The J_{nuc} is related to the nuclear ordering temperature $T_{NO} = |J_{nuc}|I(I+1)/3k_B$, where $T_{NO}=5$ mK yields $|J_{nuc}|=2.4 \times 10^{-26}$ J for PrPb₃. This value provides the relaxation rate

$$\frac{1}{T_{12\rm Pr}} \simeq \frac{|J_{\rm nuc}|}{\hbar} = 2.3 \times 10^8 \ \rm s^{-1}.$$
(7)

The large like-spin coupling J_{nuc} would be induced by the hyperfine enhancement mechanism of Pr ions in cooperation with indirect exchange coupling between them. This process might be expressed by using the hyperfine enhancement factor K_{Pr} and electronic (dipolar) exchange constant between Pr ions J_{el} as^{22,23}

$$J_{\rm nuc} = \left(\frac{g_N \mu_N}{g_J \mu_B}\right)^2 K_{\rm Pr}^2 J_{\rm el},\tag{8}$$

where $g_N = 1.71$ for ¹⁴¹Pr, $g_J = 0.8$ for Pr³⁺. Equation (8) gives $|J_{\rm el}|/k_B \simeq 1.4$ K in temperature units. This estimated value is large compared with that in other nonmagnetic GS Pr com-

pounds: $|J_{el}|/k_B \approx 0.013$ K in PrFe₄P₁₂,²² 0.19 K in PrInAg₂,²³ and 0.61 K in PrP.²⁶ Furthermore, it is even larger than the quadrupolar ordering temperature of 0.4 K.

Finally, from the estimated values of $\langle \Delta \omega^2 \rangle_{\beta}$ and $1/T_{12Pr}$ above, we obtain the cross-relaxation rate $1/T_{1La}^{CR} \approx 1.2 \times 10^2 \text{ s}^{-1}$ at $\omega_{La} = 35$ MHz. This value is in excellent agreement with the low-temperature $1/T_1$ values in the inset of Fig. 4, and hence confirms our choice of the β term for this analysis. The second moment $\langle \Delta \omega^2 \rangle_{\beta}$ should be decreased with increasing temperature, since it is proportional to $\chi(T)^{2.14}$ Therefore we can expect that the $1/T_{1La}^{CR}$ is also suppressed with increasing temperature, as seen in the inset of Fig. 4. It should also be noted that the foregoing argument predicts that the field dependence of $1/T_{1La}^{CR}$ is negligibly small under the present experimental conditions. The expected $1/T_{1La}^{CR}$ suppression from Eq. (5) is only $\sim 1\%$ with an increment of the field from $0.1(\omega_{La} \sim 0.6)$ to 6 T (35 MHz), which is also in agreement with the experimental observations. The field-robust $1/T_{1La}^{CR}$ behavior is certainly due to the extremely large $1/T_{12Pr}$.

IV. SUMMARY

¹³⁹La NMR has been performed on a specimen of 3% La-doped PrPb₃. The ¹³⁹La Knight shift demonstrates that the nonmagnetic Γ_3 CEF GS is preserved even at the nn Pr ions, although their CEF level scheme is modified slightly as a result of the La substitution. This outcome seems to provide a contrast to the result that the AFQ order in PrPb₃ is extremely sensitive to the La substitution: only 2.5% substitution suppresses T_Q to ~0 at $H_0=0.^{12}$ Recently, however, specific heat and neutron-diffraction experiments in Ladoped PrPb₃ samples have revealed that the AFQ ordering revives under magnetic fields, e.g., $T_Q \sim 0.4$ K at $H_0 \sim 4$ T

for $Pr_{0.97}La_{0.03}Pb_3$,^{27,28} One should remember that nuclear spin is local probe and therefore the present La NMR is basically blind to the actual extend of the perturbation. For example, La substitution might cause the modification of the CEF symmetry in the second and third neighboring Pr ions through small displacements of Pb ions. La substitution does not cause a drastic change at the nn ions, but the perturbation might be extended in wide range by removing the orbital degeneracy of Pr ions. The disorder effect on AFQ order mediated by long-range interactions would be an interesting subject for future investigation.

On the other hand, $1/T_1$ data for ¹³⁹La is also well reproduced on the basis of a nonmagnetic Γ_3 CEF GS in a wide temperature range. However, $1/T_1$ is found to exhibit a strong upturn below 10 K, which is not expected from the CEF model. We show that this anomaly can be quantitatively understood in terms of a cross-relaxation process between ¹⁴¹Pr and ¹³⁹La nuclear spins. Analysis of the crossrelaxation process involves strong ¹⁴¹Pr nuclear spin-spin couplings, which would be mediated by indirect processes.

In conclusion, $PrPb_3$ is suggested to be a unique system, where long-range magnetic dipolar and electric quadrupolar interactions coexist at the same order of magnitude: The latter induce the modulated AFQ ordering while the former cause the strong ¹⁴¹Pr nuclear spin dynamics in cooperation with the hyperfine enhancement mechanism of the nonmagnetic CEF GS.

ACKNOWLEDGMENTS

We thank T. U. Ito for valuable discussions. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Heavy Electrons" of the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

*tokunaga.yo@jaea.go.jp

- [†]Present address: DRFMC/SPSMS, CEA-Grenoble, Grenoble 38054, France.
- ¹D. L. Cox, Phys. Rev. Lett. **59**, 1240 (1987).
- ²B. Bleaney, Physica (Amsterdam) **69**, 317 (1973).
- ³T. Murao, J. Phys. Soc. Jpn. **39**, 50 (1975).
- ⁴M. Niksch, W. Assmus, B. Lüthi, H. R. Ott, and J. K. Kjems, Helv. Phys. Acta **55**, 688 (1982).
- ⁵W. Gross, K. Knorr, A. P. Murani, and H. J. Buschow, Z. Phys. B **37**, 123 (1980).
- ⁶T. Tayama, T. Sakakibara, K. Kitami, M. Yokoyama, K. Tenya, H. Amituka, D. Aoki, Y. Ōnuki, and Z. Kletowski, J. Phys. Soc. Jpn. **70**, 248 (2001).
- ⁷E. Bucher, K. Andres, A. C. Gossard, and J. P. Maita, *Proceedings of the 13th International Conference on Low Temperature Physics* (Plenum, New York, 1974), Vol. 2, p. 322.
- ⁸T. Onimaru, T. Sakakibara, N. Aso, H. Yoshizawa, H. S. Suzuki, and T. Takeuchi, Phys. Rev. Lett. **94**, 197201 (2005).
- ⁹T. Onimaru, N. Aso, K. Prokes, H. S. Suzuki, J. T. Sato, and T. Sakakibara, J. Phys. Chem. Solids **68**, 2091 (2007).
- ¹⁰S. Abe, D. Takahashi, H. Mizuno, A. Ryu, S. Asada, S. Nahaer,

K. Matsumoto, H. Suzuki, and T. Kitai, Physica B **329-333**, 637 (2003).

- ¹¹T. U. Ito, W. Higemoto, K. Ohishi, N. Nishida, R. H. Heffner, Y. Aoki, A. Amato, T. Onimaru, and H. S. Suzuki, Phys. Rev. Lett. **102**, 096403 (2009).
- ¹²T. Kawae, M. Shimogai, M. Mito, K. Takeda, H. Ishii, and T. Kitai, Phys. Rev. B **65**, 012409 (2001).
- ¹³T. Kawae, K. Kinoshita, Y. Nakaie, N. Tateiwa, K. Takeda, H. S. Suzuki, and T. Kitai, Phys. Rev. Lett. **96**, 027210 (2006).
- ¹⁴Y. Tokunaga, R. E. Walstedt, Y. Homma, D. Aoki, S. Kambe, H. Sakai, T. Fujimoto, S. Ikeda, E. Yamamoto, A. Nakamura, Y. Shiokawa, and H. Yasuoka, Phys. Rev. B **74**, 064421 (2006).
- ¹⁵R. E. Walstedt, S. Kambe, Y. Tokunaga, and H. Sakai, J. Phys. Soc. Jpn. **76**, 072001 (2007).
- ¹⁶L. B. Welsh, A. M. Toxen, and R. J. Gambino, Phys. Rev. B 6, 1677 (1972).
- ¹⁷ Y. Tokunaga, H. S. Suzuki, H. Sakai, H. Chudo, S. Kambe, H. Yasuoka, Y. Homma, D. Aoki, and Y. Shiokawa, J. Phys.: Conf. Ser. **150**, 042211 (2009).
- ¹⁸T. Tashma, A. Amato, A. Grayevsky, F. N. Gygax, M. Pinkpank, A. Schenck, and N. Kaplan, Phys. Rev. B 56, 9397 (1997).

- ¹⁹H. Tanida, S. Takagi, H. S. Suzuki, I. Satoh, and T. Komatsubara, J. Phys. Soc. Jpn. **75**, 074721 (2006).
- ²⁰Here, we neglect the temperature variation on the width of autocorrelation functions for the Curie term (Ref. 19).
- ²¹ From symmetry, it is possible that the T_{xyz} carried by Pr in second and third neighbors couple with La nuclear spins through the hybridization with Pb orbitals (Ref. 19). Evaluating such transferred hyperfine effects, however, would require a complete solution to the quantum chemistry of the hybridization process, which is not available at the present stage.
- ²²K. Ishida, H. Murakawa, K. Kitagawa, Y. Ihara, H. Kotegawa, M. Yogi, Y. Kitaoka, B.-L. Young, M. S. Rose, D. E. MacLaughlin, H. Sugawara, T. D. Matsuda, Y. Aoki, H. Sato, and H. Harima, Phys. Rev. B **71**, 024424 (2005).
- ²³D. E. MacLaughlin, R. H. Heffner, G. J. Nieuwenhuys, P. C. Canfield, A. Amato, C. Baines, A. Schenck, G. M. Luke, Y. Fudamoto, and Y. J. Uemura, Phys. Rev. B 61, 555 (2000).

- ²⁴L. Shu, D. E. MacLaughlin, Y. Aoki, Y. Tunashima, Y. Yonezawa, S. Sanada, D. Kikuchi, H. Sato, R. H. Heffner, W. Higemoto, K. Ohishi, T. U. Ito, O. O. Bernal, A. D. Hillier, R. Kadono, A. Koda, K. Ishida, H. Sugawara, N. A. Frederick, W. M. Yuhasz, T. A. Sayles, T. Yanagisawa, and M. B. Maple, Phys. Rev. B **76**, 014527 (2007).
- ²⁵ A. Abragam, *The Principles of Nuclear Magnetism* (Oxford University Press, Oxford, 1961), Chap. VIII.
- ²⁶S. M. Myers and A. Narath, Phys. Rev. B 9, 227 (1974).
- ²⁷ Y. Nakaie, J. Akashi, M. Hidaka, T. Kawae, T. Kitai, T. Onimaru, and H. S. Suzuki, *Meeting abstract of the Physical Society of Japan* (Physical Society of Japan, Tokyo, 2006), Vol. 61, Issue 1, Pt. 3, p. 592 (in Japanese).
- ²⁸T. Onimaru, T. Sakakibara, N. Aso, T. J. Sato, H. Yoshizawa, and H. S. Suzuki, *Meeting abstract of the Physical Society of Japan* (Physical Society of Japan, Tokyo, 2006), Vol. 61, Issue 2, Pt. 3, p. 517 (in Japanese).