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In a recent paper �P. Wochner et al., Proc. Natl. Acad. Sci. U.S.A. 106, 11511 �2009�� x-ray scattering
intensity correlations around a ring, in the speckle diffraction pattern of a colloidal glass, were shown to
display a remarkable �cos�n�� dependence on the angular coordinate � around the ring, with integer index n
depending on the magnitude of the scattering wave vector. With an analytical derivation that preserves full
generality in the Fraunhofer diffraction limit, we clarify the relationship between this result and previous x-ray
studies of bond-orientation order, and provide a sound basis to the statement that the angular intensity corre-
lations deliver information on local bond arrangements in a disordered �or partially ordered� system. We
present a detailed analysis of the angular cross-correlation function and show its applicability for studies of a
wide range of structural properties of disordered systems, from local structure to spatial correlations between
distant structural elements.
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I. INTRODUCTION

In a recent experiment1 by Wochner et al., partially coher-
ent x rays with a wavelength of 0.154 nm were used to
investigate a colloidal glass composed of polymethyl meth-
acrylate �PMMA� spheres of 117 nm radius, with particle
suspensions of concentration exceeding the glass formation
value. The scattering pattern on a two-dimensional �2D� de-
tector has the concentric ring structure characteristic of dis-
ordered systems, and the speckled appearance results from
the partial coherence of the undulator x rays at the European
Synchrotron Radiation Facility. The authors of Ref. 1 have
introduced the four-point angular cross-correlation function
�CCF� Cq��� defined as

Cq��� =
�I�q,��I�q,� + ���� − �I�q,����

2

�I�q,����
2 , �1�

where I�q ,�� is the scattered intensity, q is the magnitude of
the scattering vector q, � is an angular coordinate around a
diffraction ring of radius q, and

�F����� =
1

2�
�

0

2�

F���d� �2�

denotes an angular average around the ring.2

The remarkable observation by Wochner et al.1 is that, at
least for some q values, Cq��� is well approximated by a
cosine function of an integer multiple of the angle �, i.e.,
Cq����cos�n��; different values of n are observed for dif-
ferent q. In particular, the experiment on PMMA spheres, for
q	0.04 nm−1, showed a very pronounced cosine behavior
with n=5. The authors recovered similar behavior from a
numerical simulation, assuming that icosahedral clusters are
preferentially formed locally, and computing the scattering
intensity and its correlations for a cubic lattice of 8000 such
clusters, with random rotational orientation.

In the following, we derive analytical expressions for the
Fourier series expansion of the correlation function in the
0���2� interval, from which the cosinelike behavior of

the angular correlation function is related to the arrangement
and orientation of bond angles and interatomic distances in
the system in a completely general way. We limit ourselves
to the Fraunhofer diffraction case here and leave the discus-
sion of the Fresnel diffraction to a forthcoming publication.
One interesting aspect of this phenomenon is that it is essen-
tially two-dimensional in character; in a disordered three-
dimensional �3D� system, it appears that among randomly
oriented local bond arrangements, the largest effects are ex-
pected from local bond arrangements where n-fold symmetry
axes are �at least approximately� lined up with the direction
of the incident x rays. This leads us to investigate the rela-
tionship to pure 2D systems. In fact, extremely marked ef-
fects, unveiled by previous x-ray studies, performed with
x-ray beams with a limited degree of coherence, of bond-
orientational order in liquid crystals3–5 �especially hexatic
ones� and dynamical light scattering experiments6 performed
with coherent laser beams on ordered 2D colloid systems, are
strongly related to the recent results of Wochner et al. Our
aim is to provide a sound basis to the statement that the
angular intensity correlations deliver information on local
bond arrangements in a disordered �or partially ordered� sys-
tem. In the dilute limit �where local entities containing spe-
cific bond angles are separated by distances much larger than
the bond lengths� the angular correlation function can be
explicitly related to a bond-orientational order parameter,
which generalizes the order parameter proposed for hexatic
liquid crystals7 by Bruinsma and Nelson.8

In this paper, we give a general theoretical treatment of
the problem of the x-ray cross-correlation analysis in a par-
tially disordered system. In the forthcoming paper, we will
present the results of various simulations that demonstrate
the general findings presented here. This paper is organized
in the following way. In the next section a Fourier series
analysis of the intensity angular correlations is presented. In
the third section a general theoretical treatment of the CCF is
given and the expressions for the Fourier coefficients of the
CCFs are derived for the case of a kinematical x-ray scatter-
ing. In the fourth section the contribution of different terms
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to the CCF is analyzed. Special treatment is given to dilute
and close-packed systems. In the fifth section we consider
correlations in 3D systems, when the effect of the Ewald
sphere curvature becomes important. Conditions, at which
the angular CCF shows cos�n�� behavior with odd n num-
bers will be analyzed. The paper is completed by the conclu-
sions and outlook section.

II. FOURIER SERIES ANALYSIS OF THE INTENSITY
ANGULAR CORRELATIONS

We generalize the CCF defined in Eq. �1� by introducing
the intensity correlations at two different magnitudes of the
momentum transfer vectors9 q1 and q2,

Cq1,q2
��� =

�I�q1,��I�q2,� + ���� − �I�q1,���� · �I�q2,����

�I�q1,���� · �I�q2,����

,

�3�

where the averaging over the angle � is defined in Eq. �2�. In
the next section we will show, that the magnitudes of the
scattering vectors q1 and q2 are, in fact, the values of the
perpendicular components of the 3D scattering vectors q1
and q2. One can readily see that the CCF �Eq. �3�� can be
rewritten in a slightly different form

Cq1,q2
���

=
��I�q1,�� − �I�q1,����� · �I�q2,� + �� − �I�q2,�������

�I�q1,���� · �I�q2,����

,

�4�

which shows that we are dealing with the angular correlation
function of a normalized deviation of the intensity on the
diffraction ring. Let us define this quantity for each value of
the momentum transfer vector qj as

DI�qj,�� =
I�qj,�� − �I�qj,����

�I�qj,����

, j = 1,2 �5�

and notice that this function has obviously a vanishing angu-
lar average. The measured correlation function �Eq. �3�� can
therefore be written as

Cq1,q2
��� = �DI�q1,��DI�q2,� + ����. �6�

In order to understand what periodicity or symmetry this
function of � may display, let us now proceed to its expan-
sion into a Fourier series in the �0,2�� interval

Cq1,q2
��� = 


n=−�

�

Cq1,q2

n ein�, �7a�

Cq1,q2

n =
1

2�
�

0

2�

Cq1,q2
���e−in�d� . �7b�

Here Cq1,q2

n is the nth coefficient in the Fourier series expan-
sion of Cq1,q2

���. Substituting now expression �6� into Eq.
�7b� and following the usual arguments for the Fourier trans-
forms of convolutions we get10

Cq1,q2

n = DI
n��q1�DI

n�q2� , �8�

where DI
n�qj� are the Fourier coefficients of a normalized

deviation of the intensity. One can see that in order to calcu-
late the Fourier coefficients of Cq1,q2

���, one may first cal-
culate those of DI�qj ,��, i.e., DI

n�qj� and then take a product
according to Eq. �8�. Note that the definition �Eq. �5�� of the
normalized deviation DI�qj ,�� implies that DI

0�qj�=0. Since
scattered intensities are always real quantities, it is also easy
to show that DI

−n�qj�=DI
n��qj� and, therefore, Cq1,q2

−n =Cq1,q2

n� .
According to these symmetry conditions Eq. �7a� can be rep-
resented in the following form:

Cq1,q2
��� = 2


n=1

�

Re�Cq1,q2

n ein�� = 2

n=1

�

�Cq1,q2

n � · cos�n� + �n� ,

�9�

where �n=arg�Cq1,q2

n � and the summation is performed over
the positive integer numbers n.

In the particular case, when q1=q2=q, Eqs. �8� and �9�
reduce to

Cq��� = 2

n=1

�

Cq
n cos�n�� , �10a�

Cq
n = �DI

n�q��2, Cq
n � 0. �10b�

The general analysis of CCFs presented in this section
and particularly Eqs. �10a� and �10b� explain a single cosine
behavior of CCF calculated from experimental data in Ref. 1.
Clearly, a strong single cosine dependence of Cq��� can be
observed only for those values of q, at which one of the
Fourier coefficients Cq

n significantly dominates over all oth-
ers. In the following sections we will show how such coef-
ficients can be related to the structure and symmetry of the
system.

It is to be noted that Eqs. �10a� and �10b� also imply that
the analysis of the CCF �Eq. �1�� investigated by Wochner et
al.1 does not really contain additional information with re-
spect to the Fourier analysis of the � dependence of the
intensity. Examples3–5 of analysis of the periodicity in the
angular dependence of the intensity can be found in studies
of hexatic liquid crystal phases,7 performed with x-ray beams
with the limited degree of coherence. In the next section, we
present detailed derivations of the CCF, based on the kine-
matical x-ray scattering theory.

III. GENERAL THEORETICAL TREATMENT OF THE
CROSS-CORRELATION FUNCTION

We start our discussion with a simple scattering geometry
depicted in Fig. 1. A coherent x-ray beam scatters from a
disordered sample and creates a speckle pattern on the detec-
tor in the far-field regime. As a general model system we
assume a 3D sample consisting of identical 3D local struc-
tures �LSs� of arbitrary shape, random orientation, and posi-
tion in 3D space �Fig. 2�. Such a model includes a variety of
systems, i.e., clusters or molecules in the gas phase, LSs
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formed in colloidal systems �similar to Ref. 1�, protein mol-
ecules, viruses, or complex biological systems in solution.

The coherent x-ray scattering amplitude A�q� from such a
sample can be described in the first Born approximation �or
kinematical scattering� as

A�q� =� 	�r�eiq·rdr , �11�

where 	�r� is a total electron density of the system.11 For the
disordered systems under consideration here this electron
density can be written in the following form:

	�r� = 

k=1

N

	k�r − Rk� , �12�

where 	k�r� is an electron density of the kth LS at the posi-
tion Rk �see Fig. 2� and the summation is performed over all
N LSs. Substituting Eq. �12� into Eq. �11� we obtain for the
total scattered amplitude

A�q� = 

k=1

N

eiq·RkAk�q� , �13�

where Ak�q� is the amplitude scattered by one LS,

Ak�q� =� 	k�r�eiq·rdr , �14�

and the integration is performed over the volume of each LS.
Equations �13� and �14� express a simple fact that under
conditions of coherent illumination the total scattering am-
plitude for each value of the wave vector q is a coherent sum
of the individual amplitudes from each LS modulated with
the corresponding phase term exp�iqRk�, depending on the
position Rk of each LS.

Using Eq. �13�, we can write the intensity scattered at the
momentum transfer value q as

I�q� = 

k1,k2=1

N

eiq·�Rk2
−Rk1

�Ak1

� �q�Ak2
�q�

= 

k1,k2=1

N

eiq·�Rk2
−Rk1

�� � 	k1

� �r1�	k2
�r2�


eiq·�r2−r1�dr1dr2

= 

k1,k2=1

N � � 	k1

� �r1�	k2
�r2�eiq·Rk2,k1

21
dr1dr2.

�15�

Here, the following notation for the radius vectors connect-
ing two particles 1 and 2 in two different clusters k1 and k2
was used

Rk2,k1

21 = Rk2,k1
+ r21, �16�

where Rk2,k1
=Rk2

−Rk1
is the radius vector connecting differ-

ent local structures, and r21=r2−r1 is the radius vector con-
necting subunits inside LSs �see Fig. 2�.

We decompose now the scattering vector q= �q� ,qz� into
two components: q� that is perpendicular and qz that is par-
allel to the direction of the incident beam �see Fig. 3�. We
define the perpendicular component of the scattering vector
q� in polar coordinates as q�= �q� ,��. We also define the
perpendicular Rk2,k1

�21 =Rk2,k1

� +r21
� , and the z components

Zk2,k1

21 =Zk2,k1
+z21 of the radius vectors introduced in Eq. �16�

�see Figs. 1 and 2�. Using these notations for the vectors we
can rewrite Eq. �15� as

I�q� = 

k1,k2=1

N

e−iqz·Zk2,k1� � 	̃k1

� �r1
�,qz�	̃k2

�r2
�,qz�eiq�·Rk2,k1

�21
dr1

�dr2
�.

�17�

Here we introduced a modified complex valued electron den-
sity function, defined as

	̃ki
�ri

�,qz� =� 	ki
�ri

�,z�e−iqzzdz . �18�

y

x
z

Rk2

Rk1

Rk2,k1

r2

r1

FIG. 2. �Color online� Disordered sample consisting of clusters
randomly oriented and distributed in 3D space. The radius vector
Rk2,k1

=Rk2
−Rk1

connects the centers Rk1
and Rk2

of two different
clusters k1 and k2, the vectors r1 and r2 define the positions of
particles inside each cluster with the origin of a local coordinate
system in each cluster ki positioned at its center.

L

Disordered
sample

Incident
x-ray beam

Detector

D

x

z

y

FIG. 1. �Color online� Geometry of the diffraction experiment.
A coherent x-ray beam illuminates a disordered sample and pro-
duces a speckle diffraction pattern on a detector. The speckle fea-
tures are defined by the finite size of the beam or the finite size of
the sample and its microscopic configuration. The direction of the
incident beam is defined along the z axis of the coordinate system.
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We want to note here that our treatment is quite general
and is valid for both cases of wide and small angle scatter-
ing. In the first case, the effect of the Ewald sphere curvature
�see Fig. 3�b��, which manifests itself by the presence of the
exponential factors e−iqz·Zk2,k1 and e−iqzz in Eqs. �17� and �18�,
may become important. This effect could break the scattering
symmetry of a diffraction pattern, characteristic for the scat-
tering on a positive valued electron density �Friedel’s law�
and may reveal additional symmetries that can be still hidden
in the small angle scattering case. This wide angle scattering
geometry may become important for scattering on atomic
systems with local interatomic distances on the order of a
few angstroms. In the small angle scattering geometry, with
scattering angles 2��1, we have for the values of the scat-
tering vectors: q	2k��1−�2 /6+¯�, q�	2k��1−2�2 /3
+¯�, and qz	2k�2�1−�2 /3+¯�. It is well seen from these
expressions that the qz component of the momentum transfer
vector is proportional to the square of the small scattering
angle �. It means that, in this situation, the z components of
the momentum transfer vectors are much smaller than their
perpendicular components, i.e., qz�q� and can be ne-
glected. In this limit we have a simplified expression for the

intensity �Eq. �17�� that does not depend on the z component
of the scattering vector qz. For a real valued electron density
	ki

�ri� the modified electron density function �Eq. �18�� re-
duces to a real valued projected electron density of a LS

	̃ki
�ri

�� =� 	ki
�ri

�,z�dz . �19�

This case of a small angle scattering is typical for scattering
on colloidal samples with a typical distance between colloi-
dal particles of few hundred nanometers as in Ref. 1.

According to Eq. �8�, the Fourier coefficients of the CCF
are determined by the Fourier coefficients of the normalized
deviation DI

n�qj�. Direct calculations �see Appendix A for
details� give for DI

n�qj�,

DI
n�qj� = In�qj

�,qj
z�/I0�qj

�,qj
z�, n � 0, �20�

where the Fourier coefficients of the intensity In�qj
� ,qj

z� are

In�qj
�,qj

z� = �i�n 

k1,k2=1

N

e−iqj
z·Zk2,k1Lk1,k2

n �qj
�,qj

z� , �21a�

Lk1,k2

n �qj
�,qj

z� =� � dr1
�dr2

�	̃k1

� �r1
�,qj

z�	̃k2
�r2

�,qj
z�Jn�qj

��Rk2,k1

�21 ��e−in
Rk2,k1
�21 . �21b�

Here Jn�	� is the Bessel function of the first kind of integer
order n, and 
Rk2,k1

�21 is the azimuthal angle of the perpendicu-

lar component of the radius vector Rk2,k1

21 defined in Eq. �16�
�see Fig. 2�.

From the derived expressions we can draw the following
important conclusions. According to Eqs. �7a�, �7b�, �8�,

�20�, �21a�, and �21b�, the initial four-point correlation func-
tion Cq1,q2

��� can be represented by its Fourier series expan-
sion, where each Fourier coefficient is defined by a product
of two two-point correlation functions of the form �Eqs.
�21a� and �21b��, corresponding to two different momentum
transfer vectors q1 and q2. The magnitude of the nth coeffi-

k2

out

k1

out

k
in

q1

z
q2

z

q1

q2

q1

�

q2

�

2�1

2�2

kx

kz

ky

q2

�
q2

�

��

��

q1

�
q1

�

ky

kx
��

(a) ( )b

FIG. 3. �Color online� �a� In the general case, the cross-correlation function can be defined as an angular average over two intensity rings
with different magnitudes of the scattering vectors q1

��q2
�. The perpendicular components of the scattering vectors q1

� and q2
� are defined

in the plane �kx ,ky� in the polar coordinate system as q1
�= �q1

� ,�� and q2
�= �q2

� ,�+��. �b� Scattering geometry in reciprocal space. Here kin

is the wave vector of the incident beam directed along the z axis, k1
out and k2

out are the wave vectors of two scattered waves with the scattering
angles 2�1 and 2�2. The scattering vectors q1= �q1

� ,q1
z� and q2= �q2

� ,q2
z� are decomposed into two components: q j

� that is perpendicular and
qj

z that is parallel to the direction of the incident beam.
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cient is defined by the Fourier coefficients In�qj
� ,qj

z� in Eq.
�21a�, which depend through Lk1,k2

n �qj
� ,qj

z� on the internal
symmetry of the LSs as well as on the medium range order
of these LSs in the disordered system. We will discuss the
structure of these Fourier coefficients for certain scattering
geometries in more detail in the next sections.

IV. CCF DECOMPOSITION: LOCAL STRUCTURE AND
INTERPARTICLE SPATIAL CORRELATIONS

In this section we consider more closely the contribution
of different terms in the expansion �Eq. �21a�� to the Fourier
coefficients Cq1,q2

n . We consider here a particular case of a 2D
system in a small angle scattering geometry �2��1�, when
we can neglect the z components of the scattering vectors q1

z

and q2
z . In this case, the modified electron density12 	̃ki

�ri� is
defined by Eq. �19�. The sum in expression �21a� for the
Fourier coefficients of intensity In�qj� can be split into two
parts,

In�qj� = �i�n 

k1,k2=1

N

Lk1,k2

n �qj�

= �i�n� 

k1=k2=k

N

Lk
n�qj� + 


k1�k2

N

Lk1,k2

n �qj�
 , �22�

where the first sum corresponds to the terms with k1=k2=k
and the last one to the terms with k1�k2.

A. Dilute systems

It can be shown �see Appendix B� that for dilute systems,
when the average distance D between the clusters is much
larger than the size d of a single cluster, the contribution of
the second sum in Eq. �22� can become much smaller than
that of the first one. In this situation the main contribution to
the Fourier coefficients of CCFs will be determined by the
first sum in Eq. �22�, which we consider in detail below. For
the first term in Eq. �22� k1=k2=k and, therefore, Rk2,k1

=0
and Rk2,k1

21 =r21. We then have an especially simple expres-
sion for the integral Lk

n�qj� in Eq. �22�

Lk
n�qj� =� � dr1dr2	̃k�r1�	̃k�r2�Jn�qj�r21��e−in
r21. �23�

Here 
r21
is the azimutal angle of the radius vector r21 con-

necting two particles in the same LS. If all LSs have the
same internal structure but are oriented and located in space
randomly, the phase 
r21

in the exponent of Eq. �23� can be
defined as


r21
= 
k + 
r21

0 , �24�

where 
k is the rotation angle of the kth LS with respect to
the fixed angular orientation 
r21

0 of the LS in the origin of
the coordinate system. In this case, for each LS the integral
�Eq. �23�� can be expressed in the following form:

Lk
n�qj� = e−in
kLn�qj� . �25�

Here the contribution of each LS k is determined by its ro-
tation angle 
k in the phase and the integral Ln�qj� is the
same for all LSs

Ln�qj� =� � dr1dr2	̃�r1�	̃�r2�Jn�qj�r21��e−in
r21

0
. �26�

According to the structure of the integral Ln�qj� its value
strongly depends on the symmetry of a LS and determines
selection rules for the values n of nonzero Fourier coeffi-
cients Cq1,q2

n . These selection rules can be used for the iden-
tification of the symmetry of clusters in diluted systems. To
demonstrate this, we calculate in Appendix C the integral
Ln�qj� for 2D clusters with a different rotational symmetry
�see Fig. 4�. For example, for a cluster with fivefold symme-
try �Fig. 4�d�� only n=10i, �i=1,2 , . . .� will give a nonzero
contribution to the Fourier coefficients of CCFs. Note that
the Fourier coefficient with n=5 is forbidden in this scatter-
ing geometry.

The same arguments follow for the zero Fourier compo-
nent of intensity I0�qj� that leads us to the following result
for dilute systems:

I0�qj� � 

k1=k2=k

N

Lk
0�qj� = NL0�qj� , �27�

where the integral L0�qj� does not depend on the index k and
is defined by the expression

L0�qj� =� � dr1dr2	̃�r1�	̃�r2�J0�qj�r21�� . �28�

Taking all of this into account, we have in the limit of
dilute systems �neglecting the second term in Eq. �22�� for
the Fourier coefficients Cq1,q2

n of the CCF the following ex-
pression:

( )a ( )b ( )с

(d) (e)

FIG. 4. �Color online� 2D particles with simple geometrical
shapes exhibiting different rotational symmetries �rotational axes
are perpendicular to the plane of the figure�: �a� twofold, �b� three-
fold, �c� fourfold, �d� fivefold, and �e� sixfold.
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Cq1,q2

n = DI
n��q1�DI

n�q2� =
Ln�q1,q2�

N2 

k=1

N



k�=1

N

ein�
k−
k��

=
Ln�q1,q2�

N2 �

k=1

N

ein
k�2

, �29�

where

Ln�q1,q2� = Ln��q1�Ln�q2�/�L0�q1�L0�q2�� . �30�

The sum in Eq. �29� is well known in statistical optics as a
random phasor sum13,14 and can be written in the following
form:15

1

N


k=1

N

ein
k = Aei� = �ein
�
 �31�

that leads to the final result for Cq1,q2

n ,

Cq1,q2

n = Ln�q1,q2�A2 = Ln�q1,q2���ein
�
�2. �32�

In Eq. �31� A and � are the amplitude and phase of the
random phasor sum and the average �¯ �
 is performed over
all local structure orientations 
 and can be defined as

�ein
�
 =� p�
�ein
d
 , �33�

where

p�
� = 1/N

k=1

N

��
 − 
k� �34�

is the probability distribution of angular orientations. The
average �ein
�
 is, in fact, a generalization, for n�6, of the
bond-orientational order parameter, introduced for hexatic
liquid crystals7 by Bruinsma and Nelson.8

We want to emphasize here that in the case of dilute sys-
tems we obtained an extremely transparent result. Fourier
coefficients of the CCF Cq1,q2

n �Eq. �32�� are determined by
the product of two factors. The first one, Ln�q1 ,q2� �Eq. �30��
depends on the structure and internal symmetry of the LSs
and the second one is given by the square amplitude value of
the random phasor sum �Eq. �31�� A2= ��ein
�
�2 and depends
on the concrete realization of the system, i.e., the set of ori-
entations 
k. Its value fluctuates from one set of orientations
to another, fluctuations being greater for a smaller number of
different orientations 
k. In an experiment performed on a
dynamic system the values of the CCF Cq1,q2

��� �or Fourier
components of it, Cq1,q2

n � will also fluctuate in time giving a
different result for the same system in measurements per-
formed over a certain time interval. The statistics of these
fluctuations is determined by the statistics of the phase dis-
tribution 
. Below we will consider a few possible scenarios
for this phase distribution for a large number of particles in
the illuminated volume.

First, we will discuss two different limits for the possible
orientations of LSs in a 2D plane. If all LSs have the same
angular orientation, i.e., all 
k=
0, then the probability dis-
tribution function p�
� reduces to a single delta function

p�
�=��
−
0�. In this case of a completely oriented system
�ein
�
=ein
0 and ��ein
��2=1. This means that nonzero val-
ues of the Fourier coefficients Cq1,q2

n �Eq. �32�� will be deter-
mined only by the values of the factor Ln�q1 ,q2� �Eq. �30��
evaluated for one LS in the system. Clearly, no fluctuations
of Cq1,q2

n will be observed in such a system.
In another limiting case, a uniform distribution of orien-

tations 
k, the statistics of the amplitude A of the random
phasor sum �Eq. �31�� is well known,14 and can be described
by the Rayleigh density function for a large number of dif-
ferent orientations, or phases 
k. We found that the statistics
of A2, which determines the values of the Fourier coefficients
of the CCF �Eq. �32�� for the same uniform distribution of
phases 
k, is different and can be described for a large num-
ber of different phases by the exponential probability density
function p�A2�=�e−�A2

, where the rate parameter �=N in our
case. This distribution has a mean value �A2�=1 /�=1 /N and
a variance �A2

2 =1 /�2=1 /N2. It means that the values of A2

and, consequently, of the Fourier coefficients of the CCF
Cq1,q2

n �Eq. �32�� in the case of a dynamic system will fluc-
tuate around the average value 1 /N with the standard devia-
tion of these fluctuations given by �A2 =1 /N. It is clear that
in the limit of N→�, the Fourier coefficients of the CCF
have vanishing values,16 Cq1,q2

n →0. According to these re-
sults, for dilute systems with a large number N and a uniform
distribution of orientations 
k, it becomes practically impos-
sible to determine the symmetry of the LSs from the analysis
of the angular CCF. This is similar to the situation in small
angle x-ray scattering, when there is no preferential orienta-
tion in the disordered system. If a nonzero Fourier coefficient
is observed, it implies either a preferential alignment along a
given direction, by a specific physical reason, or, alterna-
tively, that the ensemble of probed LSs is small enough to
display pronounced fluctuations from the average uniform
distribution of orientations.

In the case of partial ordering, the angular orientations of
LSs can be described, for example, by a Gaussian distribu-
tion. Such a situation may be realized when a disordered
system is in an external field �magnetic, electric, etc.�, which
drives it toward a more ordered state. In this case the orien-
tational probability distribution is given by

p�
� = 1/��2��
�exp�− 
2/�2�

2 �� , �35�

where �
 is the standard deviation and we assume a zero
mean �
�=0. Unfortunately, in this case of a nonuniform
distribution of phases, there is no closed form solution for a
probability density function of A2 describing its statistics.
However, the average value �A2� can be found following the
procedure described in Ref. 14 for a large number of phases

k:

�A2� = exp�− n2�

2 ��1 − 1/N� + 1/N . �36�

Following our previous discussion this means that the values
of the Fourier components of the CCF for a dynamic system
will fluctuate around this average value. For a broad distri-
bution of phases ��
�1� we obtain for �A2� the same result
as in the case of a uniform distribution of orientations dis-
cussed above. For a number of particles N→� we obtain
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from Eq. �36� for the Fourier components of the angular CCF
�Eq. �32�� �Ref. 17�

Cq1,q2

n = Ln�q1,q2�exp�− n2�2� . �37�

We see that in the case of partial ordering in a system with
a Gaussian distribution of orientations of LSs, and in the
limit of N→�, the number of Fourier coefficients of the
CCF is limited. The strongest contribution to the Fourier
coefficients Cq1,q2

n is given by the lowest values of n and is
stronger for more ordered systems �that correspond to lower
values of ��.

Here we want also to note the following. In our general
treatment of CCFs we assumed a fully coherent incoming
beam �see Eq. �11��. However, it is clear from our discussion
of CCFs in dilute systems that the requirements on coherence
can be significantly relaxed. In the case of a reduced trans-
verse coherence length, all our results presented here are still
valid. The coherence length can even go below the average
distance between LSs but, importantly, it should be larger
than the size of a LS. The only difference in the observed
diffraction pattern will be that instead of a speckle diffraction
pattern with high fluctuations of intensity, typical for coher-
ent scattering from disordered systems depicted in Fig. 1, the
intensity distribution will be smoother. This is similar to the
situation analyzed in Ref. 18, where it was demonstrated by
simulations on completely oriented system of particles that
when the transverse coherence length of the incoming beam
is on the order of the size of a single particle, the resulting
diffraction pattern from the ensemble of particles will be
similar to the one produced by a single particle. Though a
large transverse coherence length is less important for the
analysis of dilute systems, it can be still important for close-
packed systems that are discussed in the next section.

We briefly discuss the area of application of our results.
Analysis of the CCFs presented here can be applied, for ex-
ample, to the results of snapshot experiments performed at
free-electron laser �FEL� pulsed sources �or synchrotron
sources�, when the duration of the pulse �or measurement
time� is much shorter than any relaxation times characteristic
of the system under investigation. Most of the limiting cases
discussed here will be valid for systems containing a large
number of LSs. This is different from the analysis of CCFs
performed in recent publications.19,20 The authors of these
publications proposed to average the angular CCF �Eq. �3��
for a set of diffraction patterns measured on a large number
of disordered systems, each containing a limited number of
LSs in different positions and orientations. Our general for-
malism, developed in this paper, gives a natural explanation
to the results obtained in Refs. 19 and 20. For example, in
the case of a dilute system, averaging CCFs for many real-
izations of the system, characterized by the uniform distribu-
tion of orientations of LSs, will give a finite result that scales
with the number of LSs as �A2�=1 /N. We will discuss the
consequences of this analysis in more detail in a forthcoming
publication.

B. Close-packed systems

In the case of a dense system, when the average distance
D between clusters is on the order of the size d of a single

cluster, the second sum in Eq. �22� cannot be neglected. It
can significantly affect the Fourier spectrum of the angular
CCF. Taking both terms of Eq. �22� into account, the Fourier
coefficients of the angular CCF can be written as the follow-
ing sum of four terms:

Cq1,q2

n � S1
n + S2

n + S3
n + S4

n

= �
k1=k2

N

�
k3=k4

N

¯ + �
k1=k2

N

�
k3�k4

N

¯
Term 1 Term 2 Term 3 Term 4

+ �
k1�k2

N

�
k3=k4

N

¯ + �
k1�k2

N

�
k3�k4

N

¯ .

�38�

A schematic illustration of correlations corresponding to
these four terms is shown in Fig. 5. The first term is a prod-
uct of two two-point correlation functions, each of which
correlates a separate LS with itself and, therefore, contains
the information only on the internal structure of LSs. This
term does not depend on the density of a disordered system
and was considered in detail in the previous section. The
second and the third terms are the products of two two-point
correlation functions, one of which depends only on the in-
ternal structure of a LS and another one correlates different
LSs, separated in space. The fourth term is a product of two
two-point correlation functions each of which defines corre-
lations of spatially separated LSs. Clearly, the terms S2

n, S3
n,

and S4
n depend on the density of a disordered system. In the

following, we consider in detail each term of Eq. �38�.
Taking into consideration the results obtained in the pre-

vious section, the contribution of S2
n and S3

n in Eq. �38� can be
written as

S2
n + S3

n = N��ein
�
Ln��q1� 

k1�k2

N

Lk1,k2

n �q2�

+ �e−in
�
 

k3�k4

N

Lk3,k4

n� �q1�Ln�q2�� , �39�

where Ln�qj� and Lk1,k2

n �qj� are defined in Eqs. �26� and �B1�,
and the angular average �ein
�
 is defined in Eq. �31�. Ac-
cording to its structure the nonzero contributions of these
terms are defined by the same selection rules �Ln�qj��0� as
for the term S1

n. In addition, the value of nonzero contribu-

Term 1 Term 2 Term 3 Term 4

FIG. 5. �Color online� Schematic illustration of different types
of correlations contributing to the Fourier components Cq1,q2

n of the
angular CCF corresponding to four different terms in Eq. �38� �see
text�.
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tions will be modulated by the orientational order parameter
�ein
� and the spatial correlations between different LSs de-
fined by Lk1,k2

n �qj�.
Finally, for the fourth term in Eq. �38� we have

S4
n = 


k1�k2

N



k3�k4

N

Lk1,k2

n� �q1�Lk3,k4

n �q2� , �40�

where Lk1,k2

n �qj� are defined in Eq. �B1�. This term is deter-
mined only by the spatial correlations between different LSs
and can play a significant role in the close-packed systems.

We support our discussion by the calculations of the nor-
malized contributions of all four terms in Eq. �38� to the
Fourier coefficients Cq

n �for the case q1=q2=q�. In our simu-
lations we consider a 2D disordered system consisting of
pentagonal clusters �see Appendix C and Fig. 4�d��. A high-
density system with D /d=1.5 and a low-density system with
D /d=150 were considered in these calculations, where D is
an average distance between the clusters and d is the size
of a pentagonal cluster, being d=440 nm in our case. Both
systems contain 121 pentagonal clusters and were character-
ized by the same set of in-plane angular cluster orientations
�
k�. These angles were defined by a Gaussian distribution
�Eq. �35��, with a standard deviation �=0.2
2� /5 �see Fig.
6�a��. This distribution of angles covers all possible orienta-
tions for a fivefold pentagonal cluster.

The results of the calculations for q=0.037 nm−1 are
shown in Figs. 6�b� and 6�c� �here, for clarity, only the first
25 Fourier coefficients are shown�. In the case of a dilute
system �Fig. 6�b��, the contribution of the Term 1 strongly
dominates the contributions of all other terms. It reveals five-
fold symmetry by the presence of the Fourier coefficient with
n=10. Higher orders �n=20,30, . . .� are not present due to
the choice of the q value. For this system the contribution
from spatial correlations between different structures is neg-
ligible. In the opposite case of the close-packed system �Fig.
6�c��, the contribution from spatial correlations �Term 4�
dominates the contribution from the local symmetry of indi-
vidual clusters �Term 1�. The fourth term significantly modi-
fies the frequency spectra, in particular, by adding the coef-
ficients which are not related to the internal structure of
clusters. In this case, the Fourier coefficients with n=10 and
n=12 are dominant in the shown range of the Cq

n spectrum
but only one of them, with n=10, is related to the internal
structure of clusters.

Our results show that for dilute disordered systems the
main contribution to the cross-correlation function Cq1,q2

���
is defined by the local symmetry of clusters. For a partially
ordered system, one can extract this information by analyz-
ing Fourier coefficients of the CCF. For a dense system, the
spatial correlations between clusters can become dominant,
and their contribution to the CCF cannot be easily separated
from the contribution defined by the internal structure of
clusters forming the system. Here it is important to note that
in the case of partially coherent beams with the transverse
coherence length smaller than the typical correlation length
of the medium range order, the information on these impor-
tant spatial correlations between clusters in close-packed sys-
tems can be lost. However, experiments with incoming
beams that have a coherence length on the order of the size
of the cluster can give access to the local symmetry of the
clusters, similar to the case of dilute systems.

(b)

( )с

(a)

5

�

5

�

�

FIG. 6. �Color online� Normalized contributions of different
terms to the Fourier coefficients Cq

n at q=0.037 nm−1. A 2D disor-
dered system consisting of pentagonal clusters was considered. �a�
Gaussian distribution of the in-plane angular orientations of the
pentagonal clusters �with a standard deviation �=0.2
2� /5�. Two
bold lines bound a central angle 
=2� /5. �b� The case of a dilute
system �D /d=150�. �c� The case of a close-packed system �D /d
=1.5�.
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V. CORRELATIONS IN 3D SYSTEMS. EWALD SPHERE
CURVATURE EFFECTS

In our previous discussion of scattering on 2D systems,
we have seen that only even Fourier coefficients of the CCF
have nonzero values. Here we will show that nonzero odd
Fourier coefficients can be present when scattering to high
angles from 3D systems due to Ewald sphere curvature ef-
fects. In this case full expressions �Eqs. �21a� and �21b��
containing the z components of the scattering vector qj

z need
to be analyzed.

To simplify our discussion, we will consider here a 3D
system consisting of identical 3D clusters composed of iden-
tical point scatterers. The modified electron density �Eq.
�18�� of a cluster can be defined in the following form:

	̃k�r�,qj
z� = f�qj�


i=1

Ns

��r� − ri
��e−iqj

zzi, �41�

where f�qj� is a form factor of a scatterer and Ns is a number
of scatterers in the cluster. The coordinates �ri

� ,zi� define the
position of the ith scatterer inside the cluster k. Performing
the integration in Eq. �21b� gives

Lk1,k2

n �qj
�,qj

z� = �f�qj��2 

l,m=1

Ns

e−iqj
zzmlJn�qj

��Rk2,k1

�ml ��e−in
Rk2,k1
�ml ,

�42�

where the summation over index l is performed over the
positions of scatterers in the cluster k1, and the summation
over index m is performed over the positions of scatterers in
the cluster k2. Substituting this expression into Eq. �21a� we
obtain

In�qj
�,qj

z�

= �i�n�f�qj��2 

k1,k2=1

N



l,m=1

Ns

e−iqj
zZk2,k1

ml
Jn�qj

��Rk2,k1

�ml ��e−in
Rk2,k1
�ml .

�43�

We note here that for n�0 the terms with k1=k2 and l=m are
equal to zero. Taking into account that the terms with inter-
changed indices, i.e., k1 ,k2 and k2 ,k1, as well as l ,m and m , l,
differ from each other by a change in the sign of Zk2,k1

ml and by
an additional factor �−1�n, which arises due to the change in
the phase 
Rk2,k1

�ml =
Rk1,k2

�lm +�, we have for even values of n in

Eq. �43�,

In�qj
�,qj

z� = 2�i�n�f�qj��2 

1�k1�N

k1�k2�N



1�l�Ns

l�m�Ns

cos�qj
zZk2,k1

ml �Jn�qj
��Rk2,k1

�ml ��e−in
Rk2,k1
�ml �44�

and for odd values of n,

In�qj
�,qj

z� = 2�i�n+1�f�qj��2 

1�k1�N

k1�k2�N



1�l�Ns

l�m�Ns

sin�qj
zZk2,k1

ml �Jn�qj
��Rk2,k1

�ml ��e−in
Rk2,k1
�ml . �45�

From the performed analysis we can see that, due to the
curvature of the Ewald sphere �nonzero qj

z component�, we
obtain nonzero odd Fourier components of the CCF when
scattering from a 3D system. These components become
negligibly small for experimental conditions corresponding
to a flat Ewald sphere, considered in the previous section. A
detailed discussion of the differences between the correlation
analysis of 2D and 3D systems, based on simulations, will be
given in a forthcoming paper.

VI. CONCLUSIONS AND OUTLOOK

The basic results of this paper, Eqs. �21a� and �21b�, are
characterized by the following structure. �1� They break up
as a sum over LS pairs. Two points belonging to two LSs of
a pair define a phase factor through the angle of the projec-
tion of their connecting vector on the �x ,y� plane.

�2� Additional oscillating factors come from the Bessel
functions of integer order depending on the projections on
the �x ,y� plane of the connecting vector and of the scattering

vector q j
�; and also from the effective density 	̃k�r� ,qj

z�.
Note that, in the far-field diffraction limit adopted here, for
scattering at small angles �small qz�, odd m values are
strongly suppressed in comparison to even ones by the trigo-
nometric prefactors. This is in disagreement with the strong
m=5 components observed experimentally1 and will need an
additional analysis, for example, in the near-field scattering
geometry.

�3� Classes of LS pairs for which the oscillating factors
systematically have the same sign give the largest contribu-
tion to the sum for a given n. This is the case for the k1
=k2 pairs, and the �purely two-dimensional� examples de-
scribed in Appendix C show how the nonvanishing values of
n are related to the rotational symmetry of the LSs around a
common axis aligned with the direction of incidence. How-
ever, each LS contributes a value multiplied by a phase fac-
tor related to its orientation with respect to a reference direc-
tion in the plane; it is then easy to see that if the ensemble of
illuminated LSs has a completely random orientation around
the n-fold axis that the sum vanishes. In this case, indeed,
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LSs rotated by � /n with respect to a given direction are as
probable as those lined up in that direction and their respec-
tive contributions cancel in the total result. This is in agree-
ment with the concept of bond-orientational order.8 If a non-
zero Fourier coefficient is observed, it implies either a
preferential alignment along a given direction, either by a
specific physical reason or, alternatively, because the en-
semble of probed LSs is small enough to display pronounced
fluctuations from the average uniform distribution of orien-
tations. Another interesting possibility, in view of the immi-
nent availability of free-electron laser sources, could occur if
the acquisition time is short enough to provide an “instanta-
neous” view, without effectively performing a time average
that necessarily restores the equal probability of all orienta-
tions. This may indeed be already the case in experiments
involving very slow dynamics, as may be the case in Ref. 1.

�4� In a three-dimensional fluid, the order parameter de-
fined above is contributed to only by those molecules for
which the n-fold axis is, at least to some degree of approxi-
mation, aligned to the direction of incidence. This probably
explains why the observed Fourier components, especially in
the intensity, but also in the CCF, are weak when compared
to the extremely marked ones observed in hexatic liquid
crystals, which are stacks of two-dimensional manifolds.3–5

The same difference in the performance of high-order CCFs
was observed in the scattering of the coherent laser light on
2D and 3D colloid systems.6,21 It is tempting to speculate
that the subset of LSs with an approximate lineup of a sym-
metry axis, in a three-dimensional system, is always “dilute,”
in the sense that it is constituted by a small fraction of the
total number of molecules or clusters. This would allow the
application of results obtained in this paper for the dilute
limit also to systems which are, in the three-dimensional
sense, close packed. In the companion paper, simulations are
performed also with the purpose of establishing the extent of
the deviation from perfect alignment of the symmetry axis
which is compatible with an observable contribution to the
CCF signal. It is important to bridge the gap between a two-
dimensional theoretical interpretation that seems to arise
naturally from the experimental geometry and the three-
dimensional isotropy of ordinary samples.

There are various directions that future experiments may
explore. It would certainly be very interesting to monitor the
CCF signal in a system in which a controllable experimental
parameter �e.g., temperature, an electric, or magnetic field�
may provide a way to vary the degree of alignment of a
symmetry axis; or in which the bond-orientational order is
well characterized.
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APPENDIX A

Here we calculate the Fourier coefficients

In�q�,qz� =
1

2�
�

0

2�

I�q�e−in�d� �A1�

of the intensity scattered at certain momentum transfer vec-
tor q, defined in Eq. �17�. The scalar product q� ·Rk2,k1

�21 in the
exponent of Eq. �17� can be written as

q� · Rk2,k1

�21 = q� · �Rk2,k1

�21 �cos�� − 
Rk2,k1

�21 � , �A2�

where q� and � are the polar coordinates of the perpendicu-
lar component of the vector q� �see Fig. 3�a��, and �Rk2,k1

�21 �
and 
Rk2,k1

�21 are the polar coordinates of the perpendicular

components of the vector Rk2,k1

�21 �see Fig. 2�. Substituting this
expression in Eq. �17� and using the Jacobi-Anger
expansion22 of the exponential functions in series of Bessel
functions Jn�	� of the first kind of integer order m,

ei	 cos � = 

m=−�

�

�i�mJm�	�eim�,

we can write

In�q�,qz� = 

k1,k2=1

N

e−iqz·Zk2,k1� � 	̃k1

� �r1
�,qz�	̃k2

�r2
�,qz�dr1

�dr2
� 
 �

0

2� d�

2�



m=−�

�

�i�mJm�q��Rk2,k1

�21 ��e−im
Rk2,k1
�21 ei�m−n��. �A3�

Integration over � in Eq. �A3� gives

�
0

2�

�d�/2��exp�i�m − n��� = �m,n,

where �m,n is the Kroneker symbol. Substitution of the result of this integration into Eq. �A3� finally gives

In�q�,qz� = �i�n 

k1,k2=1

N

e−iqz·Zk2,k1� � 	̃k1

� �r1
�,qz�	̃k2

�r2
�,qz�dr1

�dr2
� 
 Jn�q��Rk2,k1

�21 ��e−in
Rk2,k1
�21 . �A4�

It is clear from the definition Eq. �A1� that
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�I�q,���� = I0�q�,qz� = 

k1,k2=1

N

e−iqz·Zk2,k1� � dr1
�dr2

�	̃k1

� �r1
�,qz�	̃k2

�r2
�,qz�J0�q��Rk2,k1

�21 �� . �A5�

These results imply that the Fourier coefficients DI
n�q� of the

normalized deviation, defined in Eq. �5�, can be written as
follows:

DI
n�q� = ��In�q�,qz��/�I0�q�,qz�� if n � 0

0 if n = 0.
� �A6�

APPENDIX B

Here we prove that for dilute systems the main contribu-
tion to the Fourier coefficients of intensity In�qj� is given by
the first term in the expansion �Eq. �22��. In the case of a
dilute disordered system, when typical distances between
LSs are much larger than the size of a LS itself, i.e.,
�Rkl,km

ij �� �rij�, we can use the following approximation for the
values of the Bessel functions in the integrals Lk1,k2

n �qj ,qj
z� in

Eq. �21b�: Jn�qj�Rk2,k1

21 ��=Jn�qj�Rk2,k1
+r21��	Jn�qj�Rk2,k1

��.
Furthermore, for large values of the argument of the Bessel
function Jn�	�, 	� �n2 /2−1 /8�, one can use the asymptotic
expansion23 Jn�	�	� 2

�	cos�	− n�
2 − �

4 �. Taking all of this into
account we finally get, for the integral Lk1�k2

n in Eq. �21b� in
the case of a 2D system,

Lk1�k2

n �qj� =� � dr1dr2	̃k1

� �r1�	̃k2
�r2�Jn�qj�Rk2,k1

21 ��e−in
Rk2,k1
21 ,

�B1�

	� 2

�qj�Rk2,k1
�
cos�qj�Rk2,k1

� −
n�

2
−

�

4
�ein
Rk2,k1Pk1

� Pk2
,

�B2�

where

Pk =� dr	̃k�r� .

In deriving Eq. �B2� we also used an approximation 
Rk2,k1

�21

�
Rk2,k1
that is valid for dilute systems and means that this

phase does not depend on individual orientations of LSs but
is determined by their positions in the system.

We analyze now this asymptotic behavior of the second
sum in Eq. �22�. According to Eq. �B2�, for the given qj

value the function Lk1�k2

n �qj� decays as 1 /�qj�Rk2,k1
� with the

increase in the distance Rk2,k1
between the LSs. At the same

time, it can be noted that the sum 
k1�k2

N
¯ in Eq. �22� con-

tains N�N−1� terms comparing to N terms in the sum

k1=k2=k

N
¯. However, the presence in Eq. �B2� of the expo-

nential factor ein
Rk2,k1 with random phases 
Rk2,k1
, corre-

sponding to a large number of LSs present in dilute system,
will additionally reduce the contribution of the second sum
in Eq. �22�. Therefore, for dilute systems, the dominant con-
tribution to the Fourier coefficients Cq1,q2

n will be defined by
the first sum in Eq. �22� with k1=k2.

APPENDIX C

We consider here simple 2D structures �clusters� with dis-
tinct rotational m-fold symmetries shown in Fig. 4. We de-
fine the electron density of a cluster as a real-valued quantity
in the following form:

	�rl� = 

i=1

Ns

f i�qj���r − ri� = 

i=1

Ns

f i�qj���rl − ri���
l − 
i� ,

�C1�

where Ns is a number of scatterers in the cluster, f i�qj� is a
scattering factor of the ith scatterer in the cluster, r= �r ,
�,
and r and 
 are the polar coordinates of a scatterer in the
cluster. Using the definition �Eq. �C1�� and performing the
integration in Eq. �26� we get

Ln�qj� = 

s,t=1

Ns

fs
��qj�f t�qj�Jn�qj�rts��e−in
rts. �C2�

For an arbitrary cluster with m-fold rotational symmetry
shown in Fig. 4 the following assumptions are valid: ri=a,
i.e., all scatterers in the cluster are located on equal distances
from its center, 
i=2� /m · �i−1� , i=1, . . . ,Ns, where m
=Ns is a highest order of rotational symmetry in the cluster,
and we also assume f i�qj�= f�qj�. Using these assumptions in
Eq. �C2�, we derive the expressions of Ln�qj� for each of the
clusters shown in Fig. 4.

�1�m=2, Fig. 4�a�,

Ln�qj� = �2�f�qj��2�Jn�0� + Jn�2aqj�� if n = 0 and n mod 2 = 0

0 if n mod 2 � 0.
� �C3�

�2� m=3, Fig. 4�b�,
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Ln�qj� = �3�f�qj��2�Jn�0� + 2Jn��3aqj�� if n = 0 and n mod 12 = 0

− 6�f�qj��2Jn��3aqj� if n mod 6 = 0, n mod 12 � 0

0 other n .
� �C4�

�3� m=4, Fig. 4�c�,

Ln�qj� = �4�f�qj��2�Jn�0� + Jn�2aqj� + 2Jn��2aqj�� if n = 0 and n mod 8 = 0

4�f�qj��2�Jn�2aqj� − 2Jn��2aqj�� if n mod 4 = 0, n mod 8 � 0

0 other n .
� �C5�

�4� m=5, Fig. 4�d�,

Ln�qj� = �5�f�qj��2�Jn�0� + 2�Jn�A1aqj� + Jn�A2aqj��� if n = 0 and n mod 20 = 0

− 10�f�qj��2�Jn�A1aqj� + Jn�A2aqj�� if n mod 10 = 0, n mod 20 � 0

0 other n .
� �C6�

where A1=�1
2 �5−�5� and A2=�1

2 �5+�5�.
�5� m=6, Fig. 4�e�,

Ln�qj� = �6�f�qj��2�Jn�0� + 2Jn�aqj� + Jn�2aqj� + 2Jn��3aqj�� if n = 0 and n mod 12 = 0

6�f�qj��2�2Jn�aqj� + Jn�2aqj� − 2Jn��3aqj�� if n mod 6 = 0, n mod 12 � 0

0 other n .
� �C7�

Equations �C3�–�C7� define the selection rules which
determine the contributions to the nth coefficient Cq1,q2

n

related only to the internal structure of clusters. For
instance, Eq. �C4� means that the contribution from
the internal structure of the cluster shown in Fig.
4�b� to the Fourier coefficients with n=6,18,30, . . . is

defined by the function Ln�qj�=−6�f�qj��2Jn��3aqj�;
for the coefficients with n=12,24,48, . . ., Ln�qj�
=6�f�qj��2Jn��3aqj�; for n=0 coefficient Ln�qj�=3�f�qj��2�1
+2J0��3aqj�� while other Fourier coefficients do not contain
any information on the internal structure of this particular
cluster.
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