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Multiphase equation of state and elastic moduli of solid beryllium from first principles
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Based on ab initio calculations, we provide a consistent modeling in pressure and temperature of the solid
phases of beryllium, including theoretical phase diagram, multiphase equation of state (EOS), and elastic
moduli. The quasiharmonic approximation (QHA) allows us to determine the whole theoretical phase diagram:
at room temperature, QHA predicts the hexagonal compact (a-hcp) phase as the most stable structure up to 400
GPa, where a transition toward the body-centered-cubic (B-bcc) phase occurs. However, the QHA does not
account for the low-pressure-high-temperature bce phase found experimentally. Combining frozen phonon and
density-functional perturbation theory methods, we show that soft phonon modes as reservoirs of entropy may
stabilize the low-pressure bcc phase. However the thermodynamic stability of this phase has still to be estab-
lished. We provide the QHA multiphase EOS in analytic form and an evaluation of the uncertainties on the
QHA solid-solid and solid-liquid phase boundaries. Then, we calculate the density and temperature dependence
of elastic constants by determining the free energies of strained structures. Consistency between the polycrys-
talline (i.e., averaged over the elastic constants) and the EOS isothermal bulk moduli is achieved for both
phases. Our results are in fair agreement with the most recent experimental data and permit us to raise

questions on some experimental moduli.
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I. INTRODUCTION

Beryllium, although a “simple” metal with “only” four
electrons remains a challenge for both theory and experi-
ment, even if considerable work has been recently published
on the subject. Indeed, it is an important element for nuclear
power industry, for aeronautics, and it has been considered as
a possible ablator material for fuel capsules in inertial con-
finement fusion experiments. For those various applications,
where beryllium structures experience various kinds of static
and dynamic loading,' one needs a consistent and hopefully
predictive model of the material, including equation of state
(EOS) and strength.

Beryllium is a tough candidate for first-principles calcu-
lations, mainly due to the fact that there are several compet-
ing phases in the solid part of the phase diagram that are very
close in energy, so the transition lines are extremely sensitive
to the numerical quality of the calculations. The aim of this
paper is thus to present a unified picture of the multiphase
EOS and elastic moduli of solid Be obtained through a fully
ab initio approach. We will, in particular, try to shed some
light on a controversial issue concerning the phase diagram
at low pressure and high temperature and on the thermoelas-
tic properties along the 1 bar isobar.

According to handbooks,” the room-temperature-room
pressure (RT-RP) stable phase of beryllium is hexagonal
compact (hcp: a-Be); at room pressure and 1530+ 10 K, it
transforms into a body-centered-cubic (bcc: B-Be) phase
which melts at 1560 K. However, the very existence of this
phase, its stability domain, and of course the behavior of the
a-f3 transition under pressure, are not clearly established and
some experimental results are hardly compatible. For ex-
ample, according to,> the -3 phase line has been observed
(up to 6GPa) to decrease with increasing pressure with a
slope of =528 K/GPa and a density increase at the tran-
sition on the order of 3.5-4.5 %. On the contrary, Abey’
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found a slope of 43+7 K/GPa up to 0.6 GPa with a density
decrease of 4.8%. In this last case, the a-f phase line should
not cross the 300 K isotherm whereas, in the first case, by
linear extrapolation it should cross it around 21 GPa. There
has been a serious experimental effort to locate this transition
at room temperature using diamond anvil cells (DAC). Ming
and Manghnani® observed a slightly distorted hcp phase at
pressures between 8.6 and 14.5 GPa (reinterpreted by Vijaya-
kumar et al.” as an orthorhombic cell with four atoms). How-
ever, most experimentalists do not detect any kind of phase
transition up to 180 GPa.'®!3 In temperature, Evans et al. as
quoted in Ref. 14, failed to find any evidence for a phase
transition between 15 and 50 GPa up to 2000 K in DAC.
Moreover, shock data up to 35 GPa do not exhibit any evi-
dence of an hcp-bec transition along the Hugoniot.

As regards elastic properties, the elastic constants at RP
have been measured at room temperature,'®!” from 0 K to
RT (Refs. 18 and 19) and from RT up to ~1000 K.20-2!
However, the temperature dependence of the bulk and shear
moduli deduced from low-temperature (below RT) and high-
temperature (from RT to 1000 K) measurements shows large
discrepancies.

First-principles calculations are widely used to elucidate
that kind of experimental dilemma and to explore the domain
where data are necessary but difficult to obtain through
experiment. In the past few years, the equation of state and
elastic constants of beryllium have been subject to several
first-principles studies within density-functional
theory.'#22-24 Part of our own contribution to this theme has
already been published elsewhere.?>~%’

In this paper, we present a comprehensive view of our
calculations and concentrate on phonon calculations and on
their contributions to the comprehension of the physics of
beryllium. It is well known?® that to determine a transition
pressure at 0 K, one has to take into account the difference of
zero-point energies between the competing phases which
may be crucial. As for the thermal part of the EOS, all the
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quasiharmonic thermodynamic information is contained in
just a few of the moments of the phonon density of states
(PDOS). The QHA is frequently reduced to the quasihar-
monic conventional Debye model (QHCDM), in which all
the moments of the PDOS are supposed to be equal, and this
unique moment is then extracted from elastic-constant calcu-
lations. The QHCDM is not valid for beryllium, so the PDOS
has to be calculated for each phase.

As for the presence of a low-pressure B-bcc phase below
the melt curve, calculations based on QHCDM (Refs. 22 and
23) predict it whereas those based on more reliable QHA do
not.'* Of course, both, by construction, do not take into ac-
count anharmonicity. Theoretically, the bee structure is found
to be dynamically unstable at 0 K and low densities due to
imaginary frequencies of the 7, mode in I'-N direction. Soft
phonon modes as reservoirs of entropy may stabilize this
phase in temperature, but the evolution of this mode with
temperature has not been studied.'* We address this point by
combining density-functional perturbation theory (DFPT)
and frozen phonons methods.

Phonon calculations are also useful to obtain the behavior
of elastic constants as a function of temperature along
isochors,? and thus provide, after appropriate polycrystalline
averages, the evolution of macroscopic elastic moduli with
density p and temperature 7.

This paper is arranged as follows: part II is devoted to a
discussion of our first-principles calculations, with a particu-
lar focus on the full ab initio phonon densities of state of the
hep and bee phases and their connection to the hep to bee
transition line, zero-point energy and multiphase EOS in a
quasiharmonic framework. The stability at low pressure and
high temperature of the bcc phase, which does not exist
within QHA due to an imaginary phonon mode, is addressed
by calculating the temperature dependence of this mode.

Part IIT presents the QHA validity domain for the solid
phases, bounded by our QMD melt curve calculations and by
the possible low-pressure-high-temperature bcc phase. Part
IV provides the QHA multiphase EOS in analytic form and
an evaluation of the uncertainties on the phase boundaries.

Part V deals with elastic-constants calculation as a func-
tion of pressure and temperature within DFPT. From these,
after averaging, we propose coefficients for an analytic form
of polycrystalline bulk and shear moduli, suitable for consti-
tutive models for hydrocodes and assess critically experi-
mental values. The computational details can be found in
Appendix.

II. LATTICE DYNAMICS

First of all, we have to determine which phases should
appear in the phase diagram. Apart from the usual hcp, bcec,
and face-centered-cubic (fcc) structures, we have also
checked structures which may appear in a hcp to bec mar-
tensitic transformation (or one of its variants):>° the ortho-
rhombic a-U-type structure (proposed in Ref. 9 and already
rejected in Ref. 31) or the rhombohedral @-Sm type. The
corresponding ground-state energies relative to the hep phase
without zero-point contribution are presented in Fig. 1.

Depending on density, the a-U structure relaxes either
into hcp or bec structure. In the ground state, the @-Sm type
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FIG. 1. (Color online) Energies differences (in kelvin) of fcc,
bee, and @-Sm structures versus hcp Be in the ground state as
function of density. The zero-point contribution is not taken into
account. The full red line reproduces the energy differences be-
tween bee and hep after fit (see Table II). Grey zone indicates the
regime where the bce phase is dynamically unstable in the ground
state according to DFPT (p<<2.1 g/cc, see below).

and fcc structures are never energetically stable, even if we
take into account zero-point correction and ionic contribution
to the free energy (not shown here).

Subsequently, we will concentrate here on the hcp and the
bce phases and only the phonon curves and densities of
states for these two phases are detailed.

A. Hexagonal compact structure phonons

Figure 2 shows the calculated phonon-dispersion rela-
tions, compared to the experimental neutron-scattering data
at 80 K and ambient pressure (p=1.854 g/cc which corre-
sponds to our ground-state equilibrium density).3> The dis-
crepancy is less than 3% for all high-symmetry points. The
hcp dispersion curves from 1.4 g/cc to 6 g/cc do not show
any anomaly or instability.

Such phonon-dispersion relations permit us to determine
the ion-vibrational term of the harmonic free energy Fy

Frequency o(q)/2n (THz)

K M " A H L A K H M L

FIG. 2. (Color online) Phonon-dispersion relations of hcp Be
from our calculations at 1.87 g/cc (full lines) compared with 80 K
neutron-scattering data at 1.854 g/cc (squares) (Ref. 32).
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)

1
Fy(p,T) = 3Nf [Eﬁw +kpT In(1 — &7 | g (p, w)dw,

0
(1)

where w are the phonon frequencies and g(p,w) is the nor-
malized PDOS at density p. The quasiharmonic phonon fre-
quencies depend on density but not on temperature.

It is sometimes meaningful to discuss not all the PDOS
but only a few phonon characteristic temperatures 6, which
correspond to different moments of the PDOS (Ref. 33)

4
In(k6y) =In(hw))py; kb= §<ﬁw>b’z;

5 12
k6, = {5<(ﬁw)2>32] s (2)

where (), indicates a Brillouin zone average (6, is the
logarithmic moment, 6, is related to the root-mean-square
average of phonon frequencies).

Another useful data is the well-known Debye tempera-
ture, which depends on the acoustic phonon velocities and is
defined by the n=-3 moment of the PDOS

n—-3

1/n
kO=k6_y= lim ["Hi«ﬁwm} . 3)

Throughout this paper, the n=—3 moment is obtained by cal-
culating the average sound velocity ¢, from elastic
constants®? as explained in detail in Ref. 34 in order to avoid
the limit problem in Eq. (3)

6772 1/3
k30_3:hC5<7p) 5 (4)

where M is the mass, % and kp are Planck and Boltzmann
constants.

Each moment can be related to distinct thermal properties
(Table VI.1 in Ref. 33). For example, the n=-3 corresponds
to low-temperature properties, n=1 zero-point correction,
and n=0 entropy at high temperature.

Debye characteristic temperatures for n=-3, 0, 1, and 2
are plotted in Fig. 3. We find that, at each density, all mo-
ments are nearly equal but the n=-3 (diamonds in Fig. 3)
moment, for which the departure from the other moments is
large. Our results are consistent with other theoretical
works,'4?* and, as already said, rule out the use of QHCDM
for beryllium.

Some characteristic Debye temperatures have experimen-
tal counterparts.>®> We find thus a good agreement between
experimental Debye temperature deduced from low-
temperature specific-heat and elastic-constants measurements
up to 300 K: 146525 K (Refs. 16, 18, and 35-37) and
0_3=1475 K (upper red circle with error bar in Fig. 3). The
calculated characteristic Debye temperature for n=2 which
corresponds to high-temperature behavior is 935 K (stars in
Fig. 3) and also compares favorably with experimental val-
ues of 949+51 K (Refs. 35, 36, and 38-40) (lower red
circle with error bar in Fig. 3).
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FIG. 3. (Color online) Calculated 6, for hcp structure at differ-
ent densities. Dashed lines reproduce the fit in Table III. For n
=-3, full line is a spline interpolation between raw calculated
points. Full circles show the experimental values from elastic and
heat-capacity measurements (see text for references).

B. Body-centered-cubic structure phonons

Contrarily to the hcp phase, the bcc dispersion curves
show anomalous features at low density. For example, the
phonon-dispersion relations corresponding to two densities
are plotted in Fig. 4.

As density decreases, the phonon frequency of the T
mode along the I'-N direction decreases and becomes imagi-
nary below 2.1 g/cc, and thus, below this density, the bcc
structure becomes dynamically unstable. This is apparently
in contradiction with the stability of the bcc phase at nearly
RP and high temperatures evidenced experimentally where
the equilibrium density of bcc phase is around 1.8 g/cc. We
will address this issue in the next section.

Figure 5 shows the characteristic Debye temperatures ob-
tained from these calculations. The n=-3 Debye temperature
(diamonds in Fig. 5) is 1066 K at p=1.918 g/cc (which
corresponds to our ground-state equilibrium density) close
to previously published results (6_;=1045 K2 64
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FIG. 4. (Color online) Phonon-dispersion relations of bcc Be
from our calculations for two different densities. Circle points out
imaginary frequencies. Upper curves reproduce frequencies for p
=2.14 g/cc.
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FIG. 5. (Color online) Calculated 6, for bee structure at differ-
ent densities. Dashed lines reproduce in parameter reported in Table
IV. For n=-3, full line is a spline between raw calculated points.
The gray zone indicates the domain of dynamical instability of bcc
phase in the ground state obtained within DFPT (p<<2.1 g/cc).

=1086 K;?® only in Ref. 22 is a somewhat higher value to be
found 6_;=1217 K). Like for the hcp phase, for each den-
sity, the characteristic Debye temperatures difference for all
moments (squares, triangles, and stars in Fig. 5) is within 50
K except for n=-3 where it reaches 300 K.

Due to the dynamic instability, a QHA model for the bcc
phase is only valid for densities greater than 2.1 g/cc. There-
fore, the low-pressure-high-temperature 8 phase seen experi-
mentally cannot be addressed in this framework.

As we already noted the QHCDM cannot be used for Be.
Thus, if both phase diagrams predicted using this model*>??
match the experimental phase diagram, it should only be
fortuitous. One more precision: Kddas et al.?? claim that the
B phase should be destabilized below p=1.8 g/cc due to an
electronic topological transition, which would lead to a soft-
ening of the elastic constants (thus 6_;) and thus to the vio-
lation of Born criterion. This picture is inconsistent with both
our work? and Benedict et al.'* study based on full disper-
sion curves. If Born criterion is violated only below 1.8 g/cc,
the dynamical instability of 7} mode at N point persists up to
2.1 g/cc. To try to address the conditions of existence of the
bee phase (below 2.1 g/ec) from a qualitative point of view
but on the same theoretical footing as the rest of this paper,
we have studied the evolution of the 7} mode at N point with
temperature to check the possibility that the bcc phase be
stabilized by temperature at low pressure.

C. Evolution of the 7, phonon mode at N point with density
and temperature: possible existence of a -bcc phase
at low pressure below the melt curve

To quantify accurately anharmonic effects within first-
principles calculations remains a real challenge. However,
we may address the evolution of the frequency of the T}
mode at N point with temperature. According to the frozen
phonon method, using a supercell and applying an appropri-
ate atomic displacement #(\), we access the corresponding
frequency mode. At fixed density and temperature, the
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FIG. 6. (Color online) (a) Evolution in temperature of frequency
at the N-point of the T} phonon mode for three isochors. (b) Pos-
sible existence domain of the bcc phase in low pressure due to
anharmonic effects. Squares reproduce the estimated pressure-
temperature stability of the bcc phase determine by our procedure:
the color code is the same in the two figures.

square of the frequency at the corresponding high-symmetry
point (in our case the N point) is proportional to the second
derivative of the free energy with respect to displacement A\

o (p.T) o PF o (p. N TN, (5)

So, for each displacement, we perform DFPT on the
supercell.*! The phonon dispersion curves are calculated and
the PDOS is extracted in order to obtain Helmholtz free en-
ergy within the full quasiharmonic approximation for the su-
percell (see Appendix for more details).

We then have

Ftot(p’ )\’ T)

1
:E(Ps)\,O) +3Nf |:5ﬁ(x)+kBT ln(l _e_hw/kBT)

0

Xg(p,\,w)dw, 6)

where o are the corresponding phonon frequencies and
g(p,\,w) is the normalized PDOS for displacement \.

Obviously, expression in Eq. (6) only holds for real fre-
quencies. Here, we have to deal with imaginary frequencies
which can remain in the low-frequency part of the phonon-
dispersion spectrum of the supercell. Usually, to get rid of
imaginary frequencies in the full phonon spectrum and pro-
vide a suitable expression for the free energy, one sets them
to zero and renormalizes the PDOS. We have chosen here to
define a less arbitrary renormalization procedure. We impose,
by acting on the low-frequency part of the PDOS (
<3 THz), that the pressure calculated as the volume deriva-
tive of Eq. (6) matches the QMD pressure obtained for the
same densities and temperatures.?

Both renormalizations affect in a slightly different way
the entropy which is responsible of the rising up of the fre-
quency in temperature. However, only the last one allows us
to switch consistently with respect to QMD pressure between
w-T and p-T representations along an isochor.

Results obtained by this procedure are reproduced in Fig.
6(a) for three isochors. For the 2.14 g/cc isochor, the fre-
quency of the 7, mode at N point is roughly unaffected by
temperature. So we can consider that for densities above 2.1
g/cc and for temperature slightly above the Debye tempera-
ture the QHA is valid.
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TABLE 1. Parameters of the melt curve as defined by Eq. (7).

Po T,.(po) & &
(g/ce) (K) [(g/cc)'?] [(g/cc)?] q
1.72 1560 0.12 3.13 2.053

On the contrary, for p=2 g/cc and 1.87 g/cc, there is a
strong evolution: the imaginary frequencies disappear above
500 K and 1100 K, respectively [Fig. 6(a)]. According to our
procedure, these frequency-temperature points correspond to
pressures of 12 GPa and 8 GPa, respectively [Fig. 6(b)]. This
suggests that in this regime, anharmonic effects are impor-
tant.

We can define two distinct regimes roughly delimited by
the line going through theses points. Below this line, the
frequency of the 7} mode at N point remains imaginary and
it becomes real above.

So, by estimating the evolution of the frequency of the T}
mode at N point with temperature, we have shown that the
bee structure could be dynamically and mechanically stable
at low pressure and high temperature.

However to prove that it has the lowest Gibbs free energy
compared to hcp is beyond the scope of these calculations
below 2.1 g/cc. Should it be the case, to be consistent with
recent heated DAC experiments by Evans et al. cited in Refs.
14 and 42 which report no experimental evidence of a bcc
phase between 15 and 50 GPa up to 2000 K, its maximum
pressure stability should be lower than 15 GPa.

III. QUASTHARMONIC SOLID PHASES BOUNDARIES

In order to bound the solid phases domain, we consider
the melt curve that we previously calculated by a quantum
molecular dynamics “heat until melts” (HUM) technique,
which is generally considered as an upper bound of the real
melt curve (already discussed in Ref. 26).

In the case of Be, HUM seems to give reasonable agree-
ment with the more predictive two phase’s coexistence
approach.'* As our QMD calculations give the same slope
(within numerical uncertainties) for the melt curve, whatever
the solid phase considered, we define a single melt curve for
the two solids.

We fit the QMD melt curve through the following

expression:*3

p\13
T,(p) = Tm(Po)(p—> exp[— 6£,(p7" = pg'?)
0

_Zo paq>] . )
q

This formulation matches very well the corresponding raw
QMD points. We used as reference value the experimental
value for T,(p,) and the corresponding density obtained
through our hcp quasiharmonic EOS (see part IV). All the
parameters are given in Table I.

We would like to stress here that most of the analytic
formulas that we use are from Ref. 43 where they are part of
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FIG. 7. (Color online) Theoretical solid-liquid domain. Solid
domain is divided into two parts: one where quasiharmonic ap-
proximation is sufficient to treat correctly the solid, i.e., hcp and bee
above 2.1 g/cc isochor (dashed line); a low pressure B-bce pocket
stabilized by anharmonic effects (see text). The empty diamonds,
full diamonds, and empty squares are the ab initio melting curve
obtained by HUM technique from fcc, hep, and bee phases, respec-
tively, and full triangles by two phases approach method (Ref. 14).
The gray part below melting curve reproduces the classical admit-
ted uncertainties created by use of HUM method.

a consistent model, the so-called Burakovsky model. We
only use them here as convenient analytic forms.

With the previous discussion on the N-T high-symmetry
points, we can estimate the quasiharmonic phase boundaries
and Fig. 7 summarizes these results.

(1) Below 2.1 g/ce, the thermal properties of the bce
phase are driven by anharmonic effects which could stabilize
it with respect to the free energy of the hcp phase. If it is the
case, a pocket of bcc phase would exist.

(2) Due to high Debye temperature, QHA seems to be
reasonable in the whole hcp solid range and above 2.1 g/cc
for the bee phase. Close to the melting curve, strong anhar-
monic effects could occur. However pressures obtained from
QHA compare well with direct QMD calculations used to
determine T,,(p) which seems to indicate that anharmonic
effects are not too strong, in agreement with Benedict et al.'*

(3) The melt curve is reproduced by the dashed line. We
also illustrate by a shaded area the region where the melt
curve could take place assuming a 20% overestimate of the
HUM melt curve.*#

IV. PHASE DIAGRAM AND QHA-EOS

In a multiphase material, each phase has its own crystal
structure and properties. Yet, the theoretical description of
the free energy of each phase is universal in form.

Neglecting electron-phonon coupling, the Helmholtz free
energy F(p,T) is given by

F(p.T) = ®o(p) + Filp.T) + Fi(p.T), (8)

where ®(p) is the static lattice potential, F;(p,T) is the ion-
vibrational free energy, and Fg(p,T) is the contribution due
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TABLE II. Parameters of Egs. (9) and (10): ay, a, are in (eV/at); a; in [eV(g/cc)™'3/at]; and a4 in

(g/cc)™B. af is in states eV~!(g/cc)?>.

Structure a a, as ay ag
hcp 124.7664 -501.6522 99.2157 0.2617844 0.0955
bee 198.1521 -574.3426 108.1086 0.2457026 0.1693

to thermal excitation of the electrons from their ground
states.

We now turn to the practical construction of our analytical
equation of state in the QHA. For each phase, we represent
the static lattice energy with the following form:

Dy(p) =a, + (ay + azp')explazp'?). 9)

This formula gives a very small difference on the whole
studied domain between raw and fitted data (see difference
between symbols and full lines in Fig. 1).

For both phases, the electron thermal contribution can be
expressed within a conventional Sommerfeld model which is
a sufficient approximation as long as only the solid phases
are concerned.

o
—a

cap T (10)

o
Fe(p,T)=- gnp(p)T2 =-
The parameters for Egs. (9) and (10) are provided in Table II.
From expansion of Eq. (1) in terms of PDOS moments,
the ionic contribution to the Helmholtz free energy can be
written as

9
Fip,T) = §k391(P) +3kgTD [ 6y(p)/T]

4
— 3](37{ gDe[ Go(p)/T] — ln(l _ e—é’o(P)/T)} ,

(11)

where D, is the normalized Debye integral. Except for the
low-temperature range (7 below few kelvins), difference in
ionic contributions given by Egs. (1) and (11) are well below
the numerical imprecision due to the analytic model (esti-
mated as a few kelvins, see below).

In order to build an analytical EOS we need an analytic
form for the ion thermal contribution and so we need to
interpolate the n=0 and n=1 PDOS moments and differen-
tiate them to obtain thermodynamic functions. We adopt the
analytical form suggested by Burakovsky and Preston*?

p 1/2
0,(p) = 0n(po)(p—> eXp[— 3y(p"P - py'"?)
0

- ﬁ(p‘q—paq)]. (12)
q

The coefficients vy;, y,, and g for moments n=0 and 1 are
reported in Tables III and IV. The p, for the hcp and the bec
structures are taken from our calculations in the ground state
(1.889 g/ce and 1.918 g/cce, respectively). For the bee phase,
the fit is only based on values in its stability domain (i.e.,

p>2.1 g/cc). The fitted Debye characteristic temperatures
are plotted in Figs. 3 and 5 in dashed lines.

Figure 8 shows the resulting QHA phase diagram. For the
solid phases, we estimate the uncertainties on our fits and on
ab initio raw data to be on the order of 0.5% on 6, and
Fg(p,T) and 0.5 meV/atom on the cold curve. These moder-
ate uncertainties can affect the phase diagram (gray part in
Fig. 8) as already underlined by Benedict et al.'* We must
underline that, from free energy within QHA, the bcc phase
never appears below 70 GPa for T<T,,.

V. ELASTIC PROPERTIES

Once the equation of state is fixed, the following step
toward a consistent model of the material for hydrocodes is
to provide a so-called constitutive law, which deals with the
elastic-plastic behavior. A full first-principles approach is not
of order in this domain, and most of the time, one has to use
a more or less empirical model, the parameters of which are
fitted on experiment at (relatively) low deformations and de-
formation rates. However, an important input for such mod-
els is the pressure and temperature evolution of the elastic
moduli (e.g., shear and bulk) of the polycrystalline material.
These quantities can be related, through some approxima-
tions (polycrystalline averages) to the individual elastic con-
stants of the material which can be calculated ab initio.

A. Elastic properties from ab initio calculations

To calculate the evolution of elastic constants with pres-
sure and temperature, we have classically applied the so-
called deformations method. Each structure is distorted ac-
cording to different strains, parametrized by a single
parameter 6. The internal stress of each strained structure is
removed in the ground state by relaxation of the internal
degrees of freedom. We then calculate the PDOS of each
strained structure, in order to obtain the value of the Helm-
holtz free energy.

TABLE III. Parameters of Eq. (12) for the hep phase. 6, (K), v,
(g'3/cm), v, (g9/cm39), and ¢ without unit.

hep (pp=1.889 g/cc)

n=0 n=1
6,(po) 984 969
" 0.4239 0.4817
% 1.4762 1.4887
q 2.3579 2.5003

104118-6



MULTIPHASE EQUATION OF STATE AND ELASTIC...

TABLE IV. Parameters of Eq. (12) for the bee phase. 6, (K), v,
(g'3/cm), v, (g9/cm39), and ¢ without unit.

bee (pp=1.918 g/ce)

n=0 n=1
0,(py) 870 911
b7 0.4852 0.4917
Y 3.2677 2.0492
q 2.6598 2.3576

The difference, AF, between the Helmholtz free energies
[as defined in Eq. (1)] of the distorted and the perfect lattice
is fitted with a fourth-order polynomial form as a function of
6 and then equated to the appropriate isothermal elastic-
constant expression according to Barron and Klein*® (see Ap-
pendix).

The expression for strain-energy density is*

AF 1 1
— =—DP&it | G~ 51’(25551(1 - 5i15jk - 5j15ik) €ij€ki»

Vv 2
(13)
where & is the Kronecker delta, g;; the strain components,
and cjj are calculated elastic constants.

Figure 9 shows the individual isothermal elastic constant
c§ along the RP isobar that we extracted from the previous
calculations, by using the thermal expansion of our EOS (full
line) together with the experimental adiabatic elastic constant
cisj (symbols).

At RT-RP, compared to Migliori et al.'® experimental
data, our calculations reproduce the principal diagonal of the
cij matrix and show a weak departure from them for the
off-diagonal terms (triangles up in Fig. 9). Except for ¢;; and
to a lesser extend for ¢4y, experimental elastic constants show
a gap between low-temperature measurements of Smith and
Arbogast'® (yellow diamonds) and high-temperature mea-
surements of Rowland and White?® (red squares).

Keeping in mind that cisj should be greater than cg (except
for ¢,y since pure torsion involves no change in volume) and
that our numerical uncertainty is around 10 GPa (see Appen-
dix), the trend of the temperature dependence for each c;; is
in agreement with experimental data.

The pressure derivatives at RT given by our EOS and our
elastic constant ciT are dcij/dp=6i 1, 761, 22=*1,
1.7*=1, and 0.6 £ 1 for ¢y, ¢33, C44, C12, and cy3, respectively,
compare well with measurements in Ref. 16 [dc;/dp
=6.92(3), 8.98(3), 2.55(3), 2.76(3), and 3.3(1)] except per-
haps for c3.

Given the individual elastic constants, several averaging
procedures exist to estimate the shear (G) and the bulk (K)
moduli for a polycrystal. At least four definitions are among
the most popular: the Reuss, Voigt, Voigt-Reuss-Hill (VRH),
and Artman-Strikman formulas. The polycrystalline aniso-
tropy ratio Aygy[(Gy—Ggr)/(Gy+Gg)] for the hep phase is
nearly zero so the hcp phase is weakly sensitive to the pro-
cedure. On the other hand, Ay for bee varies between 0.18
and 0.48 as function of the volume?? and thus the choice of
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FIG. 8. (Color online) Theoretical (dashed lines) phase diagram
of Be obtained by fit from our QHA calculations (see tables and
text). The blue part between hep and bece phases reproduces uncer-
tainties in the determination of line of the phase transition (see text).
Red solid line is the Hugoniot curve up to its intersection with the
melt line.

the averaging procedure will influence the value of G for the
bee structure. We choose here the VRH formula which is
suitable for the hcp phase of beryllium. 820

The temperature behavior of the shear modulus along
eight isochors is shown in Fig. 10 (symbols). As usual, two
regimes appear in temperature: nonlinear below the Debye
temperature (i.e., approximately 1000 K) and linear above.

To fit our calculations, we propose to use an analytic form
for the shear modulus as a function of density and tempera-
ture derived from the Burakovsky and Preston*® formula
modified according to Wachtman et al.*® to take into account
the nonlinear behavior below the Debye temperature.

G(p.T) = G(p,0){1 = b(p)[ T/T,,(p)lexp[— To(p)/T1}.
(14)

T,(p) is defined by our melting line [Eq. (7) and Table I].

PO : . : . . . . . .
j=proy — T3 g
(] - O o g
2600 I . I I I I %z%a
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= 340 TE S5 g oo
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20 | . | . | . | . | .
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Temperature (K)

FIG. 9. (Color online) Theoretical cg (GPa) and density (in g/cc)
versus temperature along the 1 bar isobar. Diamonds (Ref. 19), stars
(Ref. 16), triangles up (Ref. 18), and squares (Ref. 20) are experi-
mental cg and crosses experimental thermal-expansion data.*’

104118-7



ROBERT, LEGRAND, AND BERNARD

N

0 % , T . — * P=3.00 g/cc|—
| o p=2.50 g/ce
| \‘&g a p=2.14 g/cc| ]
\
\ p=1.87 g/cc
1 %\% + p=1.66 g/cc| _|
Vs
N RS F I o e b b o et i 5 A B e e B B Sl ) e i
\\ DAL AE AN AN L Db DDA bt Db A-Dbc Db A-be b DD KA—A -
L -~ Q00 0TI G BT EI T OO 000 D=0 00000 00 000 00 ]
»
RN

Y’(ﬂ(ﬁlmrrx-x-x-x-ee-x-x-x-x—x—)f—x-x-x-x-x-x-,e*-x-x-x«—
L L

2
dGypyy(T)AT (10 °GPa/K)

x p=5.45g/ce

L \‘\9\ 4
b A\‘\\g o p=4.60 g/cc|
\x a p=3.75g/cc| |
R AN
‘izzsy
L S B e i J
3k .A ARE %%%—%’2’%’23X;X%X%Xg-ﬁ-&ﬁ-ﬁ-ﬁ%ﬁi
0 1000 2000 3000

Temperature (K)

FIG. 10. (Color online) Evolution of dGyry/dT in function of
temperature obtained by ab initio calculations (symbols) and from
Eq. (14) (lines). Upper graph stands for the hcp phase and lower

stands for the bcc phase.

The first term is

4/3
G(p,0) = G(Po)<£> eXp{— 671(p™" = py"”)

Po

2y, ., -
- _2(P q_Poq)]-
q

(15)

v, is in (g/cc)'? and 9, is in (g/cc)?. g is without unit.
The second term in Eq. (14) is obtained from the

asymptotic limit at high temperature of dG(p,T)/dT deduced
from Fig. 10. We observe that b(p) can be approached by a
simple linear expression: b(p)=by+b,p-b, is without unit
and b, in (g/cc)".

The third term is adjusted by fitting the data: Ty(p)
=0.26y(p)- 6, is given by Eq. (12) and Tables III and IV. This
value is relatively close to 6,/3 given in Ref. 33 as a stan-

dard value.

For the two phases, the coefficients are provided in Table

V.49

B. Comparison with experiments

The adiabatic polycrystalline VRH shear modulus G(T)
along the ambient pressure isobar obtained with different ap-

TABLE V. Coefficients for Eqs. (14) and (15) for the shear

modulus at 7=0 K.

hep bee
po (glee) 1.889 1.918
G(py) (Gpa) 157.9 101.8
b2 -3.8328 0.1009
v 4.5347 3.5927
q 0.4933 2.4902
by 0.012 0.59
by 0.075 —-0.062
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FIG. 11. (Color online) Shear modulus along the 1 bar isobar, as
obtained in this work (full line). The ab initio shear modulus ob-
tained using only the thermal expansion predicted by our EOS is
reproduced by the dashed line. Diamonds (Ref. 19), triangle up
(Ref. 18), and squares (Ref. 20) reproduced VRH adiabatic modulus
obtained from experimental cj;.

proaches is reproduced in Fig. 11 by (1) a dashed line when
only the effect of the thermal expansion predicted by our
EOS is used. (2) A full line when we take into account the
whole temperature dependence as expressed in formula (14).

Comparisons are presented with moduli deduced from ex-
perimental elastic constants measured by Refs. 18-20 (sym-
bols).

Exploiting the explicit temperature dependence leads to a
better agreement with all experimental data.'2° Figure 12
shows the adiabatic polycrystalline VRH bulk modulus along
the ambient pressure isobar given by our EOS and values
deduced from elastic constants obtained by Refs. 19 and 20.
At RT-RP, both bulk moduli, either the value obtained from
the VRH average of our elastic constants or the value derived
from our EOS, agree very well with the most recent
experiments'® and relatively well with Ref. 20.

However, the temperature dependence of the bulk modu-
lus that we calculate is very different from Rowland and

Bulk Modulus (GPa)

0 0.1 0.2 0.3 0.4 0. 0.8 0.9 1

5 ’ 0.6 0.7
Temperature T/Tm (Tm=1560 K)

FIG. 12. (Color online) Full line: adiabatic bulk modulus along
1 bar isobar from our EOS. Plus and crosses reproduce isothermal
bulk modulus deduced from elastic constant and EOS, respectively.
Diamonds (Ref. 19), squares (Ref. 20), triangle up (Ref. 18) repro-
duce VRH adiabatic modulus obtained from experimental cj;.
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FIG. 13. (Color online) Ratio of the bulk over shear moduli
obtained with our model (black line), compared to experimental
data by Nadal and Bourgeois (Ref. 50) fit (blue dashed line), from
Rowland and White (Ref. 20) (red dashed line), and Smith and
Arbogast (Ref. 19) (orange dashed line) measurements (and
extrapolations).

White experiments.”’ Along the 1 bar isobar, our G(T)
matches quite well Rowland and White experimental data
whereas our K(7) shows a large discrepancy with them.

A possible explanation is the following. In our calcula-
tions, VRH averaged bulk and shear moduli involve different
sets of elastic constants, some of which could be wrong,
being very sensitive to the convergence of the calculations.
However, the good agreement between the isothermal bulk
moduli calculated from elastic constants or derived from our
EOS is an indication of the consistency of our calculations
(cross and plus in Fig. 12) and the 300 K hcp isotherm
matches well most recent diamond anvil cell measurements.

On the other hand, it could be that the experimental data
are questionable. In order to bring a first element of response
to this point, we take benefit of the preliminary results that
Nadal and Bourgeois® have provided to us prior to publica-
tion. We extract a fit of the ratio of the longitudinal (V;) over
the transversal (V) sound velocities that they obtained from
ultrasonic measurements on polycrystalline beryllium pow-
ders in the 300 to 1000 K temperature range (Fig. 13).

A direct comparison between this ratio and the theoretical
K over G ratio can be made:

2
k_(uy_s o
G \v,] 3

Figure 12 presents this ratio as obtained with our model
(black line) compared to Rowland and White?® (red dashed
line) and Smith and Arbogast!® (orange dashed line) mea-
surements (extrapolated) and to new experimental data fitted
by Nadal and Bourgeois™® (blue dashed line).

The overall agreement between our work, Nadal and
Bourgeois and Smith and Arbogast data strongly indicate that
Rowland and White data along isobar may be questioned
(particularly the combination of ¢; which leads to bulk
modulus). Concerning data under dynamic loading, experi-
mental data on bulk and longitudinal sound speeds on the
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FIG. 14. (Color online) The adiabatic Lagrangian sound speeds
on the main Hugoniot for the longitudinal and bulk mode (full line)
compared to experiment (square: Ref. 51). The Eulerian sound
speeds given in Ref. 51 are transformed into Lagrangian sound
speed using the compression given by our EOS.

principal Hugoniot are also available.’! They are displayed in
Fig. 14, together with the predicted Lagrangian sound speed
given by our model.

We have already shown?® that the hcp EOS accurately
reproduces available shock Hugoniot data.'>?-33 According
to our EOS, the main Hugoniot intersects the hcp-bcc tran-
sition line at 180 GPa and 3500 K and crosses the melt curve
above 210 GPa and 4500 K, close to the hcp-bee phase
boundary (Fig. 8).

Both longitudinal and bulk sound speeds are consistent
with experiment.’! The bulk sound speed is not sensitive to
crystallographic changes whereas the longitudinal sound
speed shows discontinuities. The location of the first slight
discontinuity corresponds to the hcp <« bcc phase transition.
The shaded zone marks the fact that its location can vary
with the numerical approximations (uncertainty on Debye
characteristic temperatures and cold curve). As the study of
the behavior of the shear modulus along the solid-liquid line
is out of the scope of this paper, G is arbitrarily set to zero
above melting temperature (dashed line).

VI. CONCLUSION

We have investigated in details the phase diagram and the
elastic constants of beryllium. We have carefully studied and
discussed the behavior in density of the moments of the pho-
non densities of state to build an accurate multiphase EOS
for the hcp and the bee phases within a quasiharmonic ap-
proximation. The presence of a bce pocket at low pressure
and high temperature in the phase diagram and never pre-
dicted in QHA has also been addressed. We have shown that
the negative frequencies of the 7| phonon mode at N point
shift to positive frequencies with increasing temperature, in a
range consistent with the experimental phase diagram. This
points out that anharmonicity should play the major role in
stabilizing the bcc phase in this regime. Its thermodynamic
stability has still to be proven.
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TABLE VI. Distortion, energy expressions (in Voigt notation), and calculation parameters for the hcp

structure. V), is the volume prior to deformation.

Distortion AE/V, to O(&) k-point grid q-point grid

£,=6 —po+1/2¢1,6 18X 18X 18 6X6X6 (52 q points)
£3=6 —pS+1/2c338 16X 16X 16 8 X 8X8 (50 q points)
£5=06 2[1/2p+c44]8 18X 18X 18 6X6X6 (68 q points)
£,=8,=0 —2pS+[-p+ci+cn]8 16X16X 16 8 X 8 X8 (50 q points)
£1=83=0 —2p6+0.5[2p+cy +2¢ 3+ ¢33] 8 18X 18X 18 6X6X6 (52 q points)

As for strength, we have also obtained the evolution of
the Voigt-Reuss-Hill shear modulus with density and tem-
perature from elastic constants within density-functional per-
turbation theory.

All our data (EOS and moduli) have been provided in an
analytic form suitable for hydrocodes. Throughout the paper,
our results are in very good agreement with most experimen-
tal data. However, new experiments would be interesting,
first of all to revisit the phase diagram even at low pressure,
in order to fix the transition lines and to consolidate the
dependence of the bulk modulus and individual elastic con-
stants in temperature.
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APPENDIX

All calculations have been performed with Ablnit
package.”® Our basis set included plane waves up to a
kinetic-energy cutoff of 5000 eV. Sums over occupied elec-
tronic states were performed using the cold smearing method
of Marzari®’ with a=-0.5634 and a smearing width of o
=0.55 eV. We have used a norm-conserving Hartwigsen,
Goedecker, and Hutter pseudopotential which includes four
electrons in the valence®® within the generalized gradient
approximations.” Reciprocal space sampling was performed
with k-point grids of 20X20X20 and 16X 16X 16 for bcc
and hcp structures respectively with a usual Monkhorst-Pack
sampling (2 k points shift for bec: =1/4; £1/4; £1/4 and
one k-point shift for hep: 0; 0; 0.5).

To evaluate the sensitivity of the density below which the
bec lattice becomes unstable, we carried out calculations us-
ing the frozen phonon method*' with two codes: VASP
(cms.mpi.univie.ac.at) and FP-LAPW (www.wien2k.at). The
density is always in the vicinity of 2.1 g/cc whatever the
k-point integration (Gaussian, tetrahedron, or Fermi smear-
ing with methods). As for elastic constants calculations or
c/a ratio, we have verified that their values are insensitive
(within the uncertainties that we provide below) to k-point
integration smearing (we have checked Fermi smearing with
electronic temperatures ranging from 300 to 3000 K).

For all phases, we have calculated ground-state energies,
phonon-dispersion relations, and densities of states for 21

densities ranging from 1.4 to 6 g/cc. For the hcp phase, the
optimization of the c¢/a ratio was performed at each volume.
For the hep and bee phases, the equilibrium densities calcu-
lated are, respectively, 1.889 and 1.918 g/cc.

Within DFPT, the perturbation on the electron density cre-
ated by a small displacement vector u around the equilibrium
positions is associated to a phonon vector . From a set of
lattice distortions on the first Brillouin zone and using Fou-
rier interpolation from this q grid, the full dynamical matrix
is obtained.

For the phonon-dispersion relations, we used 47(10X 10
X 10) and 50(8 X8 X 8) q points for bcc and hep phases,
respectively, and 56(8 X 8 X 4) for a-Sm structure.

For distorted structures, we used the same parameters,
except for k- and q-point grids. Distortions and correspond-
ing parameters are reported in Tables VI and VIL. In the
ground state, individual elastic constants were calculated for
the same 21 densities already defined above (ranging from
1.4 to 6 g/cc). In temperature, calculations are more expen-
sive, so we calculated cij(p, T) at three densities for the bcc
structure (5.45, 4.6, and 3.75 g/cc) and five densities for the
hep structure (3, 2.5, 2.14, 1.87, and 1.66 g/cc).

As shown in Ref. 25, c¢/a ratio varies strongly with den-
sity. When dealing with equation of state and elastic proper-
ties, it could be that the ¢/a ratio would change with tem-
perature due to anisotropic dilatation. In order to check this,
we have calculated phonon-dispersion relations while chang-
ing the c/a ratio obtained in the ground state by =1%, 2%,
and 5% for all studied volumes and determined the minimum
of the Helmholtz free energy.

We found that the c/a ratio remains mainly unchanged
whatever the temperature [c/a(V,T)=c/a(V,0)][1*2.5
X 107 T], i.e., a variation less than 1% at 2000 K). There-
fore, we will consider that the c¢/a ratio obtained in the

TABLE VII. Distortion, energy expressions (Voigt notation),
and calculation parameters for the bee structure. V), is the volume
prior to deformation.

Distortion AE/V, t0 O(6%)  k-point grid  g-point grid
8§X8XY
£,=6 —pS+1/2¢;,8* 18X 18X 18 (72 q points)
g1=—£,=5; [c1—cn]8 16 X16X 16 8X8X8
e3=8%/(1-8%) (95 q points)
£3=0°/(4-8); 1/2¢448° 18X 18X 18 8X8X8
£6=0/2 (95 q points)
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ground state is constant along an isochor. Thus, for hep struc-
ture, the c¢/a ratio is relaxed once and for all in the ground
state.

The internal relaxations which affect ¢y, cgs, Ca4, and cjo
(in Voigt notation) have also been performed. Concerning
Eq. (13), different orders for the fit have been tested and the
difference between the data and the fit checked.

A fourth-order polynomial has been chosen® (this leads at
most to a 1 meV/atom departure on energy). The quadratic
form is unable to adjust correctly the energy better than 30
meV/atom and the sixth order®!:%? does not improve our best
fit.

PHYSICAL REVIEW B 82, 104118 (2010)

In the ground state, we have checked four more distor-
tions in order to address the reliability of the strained ener-
gies obtained either by direct calculations or by combination
of elastic constants. Addition of temperature dependence of
elastic constants along isochors obtained by DFPT leads also
to a complete agreement between bulk moduli [calculated
from the EOS or Reuss isothermal bulk modulus —Vdp/dV
=[(s11+520+533) +2(s 2 +513+523) ] where [s;]=[c;]™" are
elastic compliance]| whatever the temperature. From these
results, we estimate an error of 5% in our elastic constants up
to 200 GPa and about 10 GPa above.
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