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In two-dimensional chiral p-wave superconductors, the zero-energy Majorana fermion excitations trapped at
vortex cores are protected from the thermal effects by the minigap, �2 /�F ��: bulk gap, �F: Fermi energy�,
which is the excitation gap to the higher energy bound states in the vortex cores. Robustness to thermal effects
is guaranteed only when T��2 /�F�0.1 mK, which is a very severe experimental constraint. Here we show
that when s-wave superconductivity is proximity-induced on the surface of a topological insulator or a spin-
orbit-coupled semiconductor, as has been recently suggested, the minigaps of the resultant non-Abelian states
can be orders of magnitude larger than in a chiral p-wave superconductor. Specifically, for interfaces with
sufficient barrier transparencies, the minigap can be as high as ����2 /�F, where � is the bulk gap of the
s-wave superconductor.
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I. INTRODUCTION

Topological quantum computation �TQC� requires the ex-
istence of a two-dimensional �2D� topologically ordered state
whose lowest energy excitations follow non-Abelian
statistics.1 If the appropriate many-body ground-state
wave function—e.g., Pfaffian states in fractional quantum
Hall systems1,2 and chiral p-wave �px+ ipy�
superconductor/superfluid3,4—is a linear combination of
states from a degenerate subspace, then a pairwise exchange
of the particle coordinates can unitarily rotate the wave func-
tion in the degenerate subspace. This exact non-Abelian sta-
tistical property can be used to perform quantum gate opera-
tions, which are, in principle, fault tolerant.1,5,6 More
importantly, these non-Abelian particles, the Majorana fermi-
ons, being half-fermions, are new particles in nature distinct
from ordinary Dirac fermions, which are of obvious intrinsic
fundamental interest.7

In practice, a key requirement for TQC is that the degen-
erate ground-state subspace must be separated from the other
excited states by a nonzero energy gap so that thermal effects
cannot hybridize the topological quasiparticle states with the
other higher energy, nontopological, states in the system.1 In
2D px+ ipy superconductors �SC�, such as possibly SrRuO4,
where the zero-energy Majorana fermion excitations trapped
in the vortex cores are the topological quasiparticle states,
this gap is given by the so-called minigap, ��0��2 /�F,
where � is the bulk superconducting gap and �F is the Fermi
energy.8 Since �0�0.1 mK is a very small energy scale for
typical p-wave superconductors, the requirement T��0 con-
stitutes the real bottle neck for TQC, even if the best possible
2D px+ ipy superconductor-based platform were realized in
the laboratory. Here we show that, in a class of newly pro-
posed TQC platforms, involving Majorana fermions in
multilayer structures where s-wave superconductivity is
proximity induced on a host topological insulator �TI� �Refs.
9 and 10� or a spin-orbit-coupled semiconductor,11 the mini-
gap can be enhanced by several orders of magnitude. Given
that a strong proximity effect in such superconductor-

semiconductor structures has already been experimentally
demonstrated,12,13 it is realistic to decrease T to satisfy T
��0, since �0 can be made as high as 1 K �i.e., a fraction of
order unity of ��, which is the bulk gap in the s-wave super-
conductor.

To derive these results, we explicitly analyze the micro-
scopic model of the proximity effect between a TI surface
and an s-wave superconductor by applying the conventional
tunneling formalism.14 We find that, in addition to the super-
conducting gap �, the interface transparency �denoted by �
below� given by the interlayer tunneling amplitude controls
the strength of the proximity effect on the TI surface. Our
main result is that for barriers with transparency satisfying
�F��	U, �, where U is the Fermi level on the TI surface,
the excitation gap above the non-Abelian quasiparticle states
can be ����2 /�F. We show this by applying our central
result, Eq. �13�, on the excitation gaps in the two most im-
portant structures on a TI surface, a line junction �Eq. �16��
and a vortex �Eq. �19��, which contain Majorana modes.
Note that, as discussed earlier,9 the Majorana modes in a line
junction and a vortex are the two most essential elements of
a putative TQC architecture on the TI surface. The dramatic
increase in the excitation gap on the TI surface greatly en-
hances the robustness of the topological quasiparticles to
thermal decoherence effects, which may bring non-Abelian
statistics and TQC to the realm of realistic, achievable, tem-
perature regimes in the laboratory.

The paper is organized as follows. In Sec. II, we describe
the microscopic model we consider for the proximity effect
at a TI-SC interface. In Sec. III, we derive the proximity-
induced effective pair potential with renormalized param-
eters. In Secs. IV and V we described the line-junction ge-
ometry that may be used to manipulate superconducting
quasiparticles such as Majorana fermions at a TI-SC inter-
face. In Sec. VI, we show that the minigap of a vortex
formed at a TI-SC interface can be orders of magnitude
larger than in a vortex in an intrinsic �not proximity-induced�
superconductor such as SrRuO4.
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II. MICROSCOPIC MODEL FOR PROXIMITY EFFECT

An interesting property of superconductors is that they
can induce superconductivity in a normal metal in contact
with the superconductor.15 This is referred to as the super-
conducting proximity effect. As we will show in the rest of
the text, the superconducting proximity effect allows a
greater degree of control of the superconducting quasiparti-
cle spectrum, than is possible by simply modifying the su-
perconductor, where the superconductivity is intrinsically de-
rived from the quasiparticle spectrum itself. The
superconducting properties of a normal-superconductor �NS�
interface can be described by the self-consistent
Bogoliubov-de Gennes �BdG� equations at the interface.15,16

The BdG equations at an NS interface can be written in
terms of a Nambu spinor wave function, 
�r�
= �u↑�r� ,u↓�r� ,v↓�r� ,−v↑�r��T which is finite on both the su-
perconductor and normal side of the interface. In order to
write these equations more compactly it is convenient to in-
troduce the Nambu matrices �x,y,z, which are identical to the
Pauli spin matrices �x,y,z, except that they operate on the
�u ,v� part of the spinor 
�r�. Thus the spinor 
�r� exists in
the tensor product space � � ��. The BdG equations for the
quasiparticle wave functions can be written in terms of the
� � � matrices in the form HBdG
�r�=E
�r�, where HBdG is
a 4�4 BdG Hamiltonian.

The normal-superconductor interface can be considered to
be a planar geometry �Fig. 1� with the coordinates r= �r ,z�,
where r and z are the in-plane �r= �x ,y�� and out-of-plane
coordinates for the interface �the NS interface is at z=0�. In
this paper, we will restrict ourselves to the case where the SC
in our system is a conventional s-wave superconductor such
as Al, and the normal part of our system is the metallic
surface state of a TI such as Bi2Te3.17–19 The BdG Hamil-
tonian describing the s-wave superconductor is of the form

HSC = �−
�r

2 + �z
2

2m�
− �F��z + �s�r��x, �1�

where the m� is the effective mass of the superconductor, �F
is the Fermi energy of the superconductor, and �s�r� is the
pairing potential in the superconductor. The pairing potential
�s�r� inside the s-wave superconductor is generated by a
pairing interaction V�r� that can be taken to be pointlike.15 In

the self-consistent BdG equations, the pairing potential sat-
isfies the constraint

�s�r� = V�r��
n

un,↑
� �r�vn,↓�r��1 − 2f�En�� , �2�

where �un ,vn� are components of the four-spinor eigenvec-
tors 
n�r� which satisfy the BdG equations HSC
n�r�
=En
n�r�. Here f�En� is the Fermi function.

The normal part of the TI-SC system, which in our case
consists of the metallic surface band17–19 of a TI �in antici-
pation of the proximity-induced superconductivity� can be
described by a BdG Hamiltonian

HTI = �ıv� · �r − U� � �z, �3�

where U=�F−	dz
��z�
2Vgate�z� is the Fermi level of the TI
surface where Vgate�z� is the gate potential and ��z� is the
z-dependent electron wave function �with momenta close to
the Dirac point� of the TI surface states. Here v is the effec-
tive electron velocity on the TI surface. Note that apart from
the factor �z, this is the Dirac-Hamiltonian describing the
surface state of the topological insulator in the normal state.
The factor �z is present to account for the independent elec-
tron part �represented by u in the spinor 
� and hole part
�represented by v in the spinor 
�.

Since there is no tunneling so far between the TI and SC,
the TI may be described as being normal with no supercon-
ductivity in the TI. The introduction of a tunneling term T
which transfers electrons between the SC and TI leads to a
finite value for the order parameter ����r�����r��� on the TI
surface.15 However it is crucial to note that despite the exis-
tence of an order parameter in the normal part of the system
�TI�, the microscopic pairing potential �TI�r�=0. This fol-
lows from the self-consistency condition in the TI

�TI�r� = VTI�r���↑�r��↓�r�� = 0 �4�

since the attractive pairing interaction in the TI vanishes
�VTI�r�=0�. This is consistent with the de Gennes boundary
conditions at the interface which requires ��r� /N�r�V�r� to
be continuous across the TI-SC interface.15 Here ��r�, V�r�,
and N�r� stand for the microscopic pairing potential, pairing
interaction and density of states at the Fermi level on both
sides of the interface. Note that since �TI and VTI are both
zero on the TI side of the interface, the ratio can be finite
which allows

�TI

VTINTI
=

�s

VsNs
. However, even though there is no

microscopic pair potential on the TI side, the superconduct-
ing proximity effect induces an effective superconducting
pair potential. In the next few paragraphs, we show explicitly
how the superconductor can be integrated out to yield an
effective Hamiltonian on the TI surface which has an effec-
tive pairing potential.

III. EFFECTIVE PAIRING POTENTIAL ON
THE TI SURFACE

The complete BdG Hamiltonian describing the TI-SC in-
terface including the tunneling term14 �Fig. 1� is defined by
the Hamiltonian: Htotal=HTI+HSC+T+T†. Here, HTI and HSC
are the Hamiltonians describing the TI surface and the

G(0)SC(ω)
TI

SC

Σ(ω)

zy

x

Τ

tΤ

FIG. 1. �Color online� Proximity induced pairing on the TI sur-
face. The �red� region on the left is the TI, and the �blue� region on
the right is an s-wave superconductor. “Integrating out” the super-
conducting degrees of freedom produces the self-energy � on the TI
surface, where � is given by the tunneling Hamiltonian T and the
Green’s function GSC

�0� of the superconductor �see text for details�.
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s-wave superconductor, respectively. T describes the tunnel-
ing from the TI surface to the superconductor and T† de-
scribes the tunneling in the opposite direction. The excitation
spectrum of the interface can be determined from the BdG
equation

�Htotal − E�
�r� = 0, �5�

where 
�r� is the Nambu spinor, and Htotal is written as a
4�4 matrix in the Nambu basis.

The tunneling Hamiltonian Ht=T+T† coupling the 2D TI
surface states with the superconductor can be explicitly writ-
ten in the Nambu space as

T�r;r�z�� = �z d2kdkz��z�;kkz����k�
T
��eık·�r−r��. �6�

Here the momenta are measured relative to the Dirac cone
momentum M and the tunneling matrix element in the inte-
grand can be approximately written as20

���k�
T
�� =
i

m
���z��z��z;k,kz� − ��z;k,kz��z��z��
z=0,

where, ��z ;k ,kz� is the single-particle eigenfunction in the
superconductor and ��z� is as defined before.

In order to solve the BdG equation at the TI-SC interface,
we decompose the wave function as 
=�TI+�SC. Decom-
posing the BdG equation �Eq. �5�� we obtain

�HTI − E��TI + T†�SC = 0, �7�

�HSC − E��SC = − T�TI. �8�

Substituting the wave function �SC from Eq. �8� in Eq. �7�
we get the effective BdG equation on the TI surface

�HTI + ��rr�;�� − ���TI = 0. �9�

Here the self-energy � on the TI surface �Fig. 1� is given by

��rr�,�� = − dr1dr2T†�r,r1�GSC
�0��r1,r2;��T�r2,r�� ,

�10�

where GSC
�0��r1 ,r2 ;��= �HSC−��−1 is the Green function ma-

trix in the superconductor.
The effective superconducting pairing potential induced at

the surface of a TI appears in the form of the anomalous part
of the self-energy, �, which can be written as

�A�rr�,�� = − dr1dr2T†�r,r1�FSC
�0��r1,r2;��T�r2,r�� ,

�11�

where FSC
�0��r1 ,r2 ;��=	dteı�t�T��r1 ,0���r2 , t�� is the anoma-

lous part of the Green function in the superconductor that
represents the superconducting order parameter. Since the
anomalous part of the self-energy is proportional to the
anomalous part of the Green function, the complex phase of
�A must also equal the complex phase of the superconductor.

The Green’s function for the superconductor can be writ-
ten in terms of the normal state eigenbasis of the supercon-
ductor as

GSC
�0��rr�;�� = �

n

�n�r��n�r�����n − �F��z + ��x − ��−1,

�12�

where the normal state eigenfunctions �n are taken to be real
and spin independent. Using Eqs. �6� and �12� in Eq. �10�
and then Fourier transforming to the momentum space the
self-energy on the TI surface takes the form

��rr�;�� = − �
n

�n�r1��n�r2�T†�r,r1�T�r2,r��
��0 + ��n − �F��z + ��x

��n − �F�2 + �2 − �2 . �13�

This equation is more conveniently written in terms of the
tunneling density of states � on the TI as

��rr�;�� = − d�
��0 + ��z + ��x

�2 + �2 − �2 ��rr�;�� , �14�

where the tunneling density of states � from the TI to the SC
relative to the Fermi level is given by

��rr�;�� = �
n

��� − �n + ���n�r1��n�r2�T†�r,r1�T�r2,r�� .

�15�

Note that the matrix � is the operator that can be used to
calculate the time a state ��x� on the TI would take to diffuse

into the SC layer when in the normal state through the ex-
pression �−1=	drdr���r����r����rr� ;��.

The scale of the spatial and energy dependence of the
matrix ��rr� ;�� can be understood by observing that it is
dependent only on the wave functions �n of the supercon-
ductor in the normal state at the energy �. Defining the Fou-
rier transform of ��rr� ;�� as ��r ,k ;��=	dr���r+r� /2,r
−r� /2;��e−ıkr�, similar to the quasiclassical approximation,
we obtain a function in position r and wave-vector k space.
Given that the original definition of � involved only the
normal state band structure of the superconductor, ��rk ;��
varies on a scale k�kF and ���F. Since we are interested in
slow variations �−1�kF and energies U ,���F, we can ig-
nore the k and � dependence of � and take it to be a function
of only r. Thus we will assume ��rk ;�����r�=��rkF ;�F�.
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Fourier transforming back to real space leads to the real
space relation ��rr� ;�����r���r−r�� which is local in r ,r�
and independent of �. Within this approximation we find

��r,�� � ��r�
�− ��0 + ��x�
�
�
2 − �2

. �16�

Using HTI from Eq. �2� and the local �k-independent� self-
energy from Eq. �16�, we can now straightforwardly rewrite
Eq. �9� as an effective BdG equation for the TI surface

�ṽ���ı� · ��z − Ũ����z + �̃����x − ���TI = 0, �17�

where ṽ���=Z���v, Ũ���=Z���U, and �̃���
=�� / ���2−�2+��. Here, the factor Z���
=��2−�2 / ���2−�2+��. ṽ���, Ũ���, and �̃��� are the
renormalized velocity, Fermi level, and superconducting gap
on the TI surface, respectively. Below we will be interested
only in the low-energy states with energies E�� �typically
0.1��E�0.5��. In this case, we can approximate the
frequency-dependent parameters in Eq. �17� with their values
at �=0

ṽ��� �
v

1 +
�

�

= ṽ, Ũ��� �
U

1 +
�

�

= Ũ,

�̃��� �
�

1 +
�

�

= �̃ . �18�

The renormalization of the parameters described in Eq. �18�
gives the central results of this paper which can be under-
stood as arising from the virtual propagation of the electron
in the superconductor. This is consistent with the estimate of
the fraction of time spent in the TI, which is tTI / �tTI+ tSC�
��1+� /��−1=Z�0�, since we can estimate life-time of an
electron in the TI as tTI��−1 and the virtual excitation of an
electron in the SC as tSC��−1. Thus, in addition to inducing

a pairing potential �̃��� on the TI surface, the proximity
effect also renormalizes the velocity on the surface of the TI
to v→ ṽ���=Z���v and the background potential to U

→ Ũ���=Z���U. One can notice that the TI electron density

n is proportional to �Ũ / ṽ�2 and remains constant as expected.
In the weak tunneling regime ���F, our tunneling matrix
approach to the proximity effect is consistent with previous
calculations21 for the superconductor-semiconductor system
using the Blonder-Tinkham-Klapwijk model.16 Since the pa-
rameter � is determined by purely electronic energy scales, �
can be larger than � and the retardation effects discussed
above lead to substantial renormalizations of the original pa-
rameters.

The expression for the proximity-induced self-energy, Eq.
�18�, was derived for a single superconducting island in con-
tact with a TI surface. The proximity-induced pairing was
then localized to the region where ��r� was nonzero. In the
case of different superconducting islands covering different
parts of the TI surface, one must add the self-energy contri-
bution from each of the separate islands. The pair-potential �

is then taken to be a constant for each island but varies be-
tween different islands. In particular, a region of the TI
which is in contact with a superconducting island �through a
nonzero ��r�� inherits a superconducting pairing potential
with a phase which has the same value as the island it is in
contact with. Furthermore, the effective pair potential, van-
ishes �since ��x�=0� if the TI surface is not locally in contact
with the superconductor �for example, the TI regions in be-
tween two superconducting islands has vanishing pair poten-
tial�. Below we will apply the formulas contained in Eq. �18�
to estimate the excitation gaps above the Majorana topologi-
cal excitations that have been discussed for the TI surface.9

IV. MAJORANA SYSTEM ON TI SURFACE

The proximity effect discussed in the previous sections
allows one to induce superconductivity on a semiconducting
substrate such as a TI surface state. This leads to the possi-
bility of manipulating the position and energies of supercon-
ducting quasiparticles on such a surface state. One of the
most interesting scenarios that this kind of manipulation of
superconducting quasiparticles might lead to is the possibil-
ity of creating and braiding Majorana fermions at such TI/SC
interfaces.9

The trijunction geometry shown in Fig. 2 provides a way
to create and braid a Majorana fermions on the TI surface:
two trijunctions �A and B in Fig. 2� of superconducting lay-
ers with distinct local phases separated by a line junction of
length L. The superconducting islands can be considered to
have distinct phases for barrier transparencies much less than
unity corresponding to ���F. The line-junction separating
the superconducting islands consists of a region of width W
which is not in direct contact with either of the supercon-

FIG. 2. �Color online� A trijunction-pair geometry of supercon-
ducting islands deposited on the TI surface �top view� to confine
and manipulate Majorana fermions. The superconducting islands
are connected strong superconducting loops enclosing fluxes �n,m.
The values of the fluxes �1,2=�3,4= �

2 +��, �2,3= �

2 −��, and
�4,1=−3 �

2 −�� which satisfy �n�n=0 control the phases of the
superconducting island. For the given superconducting phase con-
figuration and ��= �

6 the structure contains a vortex with a trapped
Majorana state only on trijunction A. By changing �� to − �

6 , the
discrete vortex together with the Majorana state is transferred to the
trijunction B. The Majorana state is transported from A to B by the
delocalized Majorana fermion state formed on the one-dimensional
line junction �of length L� connecting A and B in the intermediate
stage with ��=0.
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ducting islands. Therefore the effective pairing potential van-
ishes in this region and, in principle, the line junction can
support multiple low-energy transverse modes with energy
much less than �. This can be avoided by taking the junction

width to satisfy W� ṽ / �̃=v /� such that the confinement en-
ergy ṽ /W creates a sufficiently large energy spacing between
the various transverse modes. For the transparencies assumed
in the paper �����F, the width W, which is required to be
smaller than the effective coherence length is much smaller
than the coherence length of the superconductor in the clean
limit but much larger than the Fermi wavelength of the su-
perconductor. Ideally, one should adjust the barrier transpar-
ency to set � to the lowest value such that the line-junctions
width W is within the resolution of the fabrication technol-
ogy.

Such a geometry can be used to trap zero-energy Majo-
rana fermions on the TI surface at discrete vortices formed
by the phase configurations of the superconducting islands
either at A or B. By varying the phase differences between
the islands it is also possible to move the discrete vortex
from A to B and thus transport the bound Majorana state. The
phase differences between neighboring superconducting is-
lands is controlled by connecting the islands by supercon-
ducting loops with fluxes threaded through them.

For barrier transparencies between the TI and the SC,
such that ���, but still much less than unity �which implies
���F�, the Josephson current between the islands mediated
by the single channel TI surface state splits up into a small
current density in the bulklike superconducting loops. This
adds only small gradients in phase to the gradient resulting
from the vector potential of the magnetic flux. Thus the dif-
ference in the phases on the islands are controlled by the
applied fluxes according to the equation

� j − �k = � jk. �19�

Therefore, for the application of the fluxes shown in Fig. 2
leads to the desired phase configuration on the islands.

The trijunction setup discussed in the previous paragraphs
operates on the principle that if one considers a single line-
junction separating two superconductors �such as the one
joining A and B� with a phase difference of �, there are
exactly one pair of zero energy and zero momentum Majo-
rana states trapped between the islands. At finite but small
momenta, one can use lowest order k · p perturbation theory
to check that these modes disperse into a pair of linearly
dispersing nonchiral Majorana modes with equal and oppo-
site velocities. Off-setting the phase difference from � by ��
leads to a mass gap in the linear Dirac spectrum of this pair
of Majorana modes. Thus the effective Hamiltonian describ-
ing such a line-junction is given by

Hjunc = − ı
ṽ�̃2

�Ũ2 + �̃2�
�z � + m�����x, �20�

where � here is an effective pseudospin degree of freedom
that keeps track of the mode index.9 The term proportional to
m is an effective phase-difference-dependent mass term. Fol-
lowing the Jackiw-Rebbi index theorem22 it is clear that a
localized zero-energy solution results at any point where the

sign of the mass m�� changes sign. Such changes in signs
can be engineered at the ends A and B of the line junction
joining A and B by appropriately tuning the fluxes. As it
turns out, the appropriate mass changes are generated at the
ends A and B whenever there are discrete vortices in the
phases at A and B.9

With the configuration of the phases on the superconduct-
ing islands as shown in Fig. 2, and for ��= �

6 , the total phase
change around the trijunction A is 2�. Trijunction A then acts
as a discrete vortex and there is a localized zero-energy Ma-
jorana state confined to A. In this configuration, there is no
vortex or zero-energy mode at B. It can be easily checked
from Fig. 2 that the roles of A and B are reversed if ��=
− �

6 : now B contains a vortex and a localized Majorana mode
while A is topologically trivial. In both cases, the spectrum
of the line junction connecting A and B is gapped with the
excitation gap controlled by ��. To avoid hybridization of
the localized states at A and B, the length L must exceed the
size of the localized states themselves

L � � � ṽ/�̃ , �21�

where � is the decay length of the Majorana states on the TI
surface.

It is now clear that the Majorana states trapped at the
discrete vortices can be braided by tuning the phase ��
through zero. For ��=0 the phase change across the line
junction is �, and for the arrangement of the phases as
shown in Fig. 2, there is a single zero-energy extended Ma-
jorana mode on the line junction. When �� is tuned from �

6
to 0 to − �

6 , the Majorana mode shifts from A to the line
junction and finally to B. For ��=0, the other low-energy
delocalized modes on the line junction follow a dispersion
given by9

��q� � � qṽ�̃2/�Ũ2 + �̃2� . �22�

Below we will consider two types of excitation gaps which
control the thermal robustness of the above Majorana sys-
tem. First, in the line junction of length L the gap Eg

� ṽ
L �̃2 / �Ũ2+ �̃2� that follows from Eq. �22� protects the de-

localized zero-energy Majorana mode from thermal decoher-
ence. Eg controls the thermal robustness of the Majorana
fermions while they are braided in TQC. We show below by
explicit analytic arguments that it is possible to make Eg
�� by appropriately designing the TI-SC interface. The
thermal robustness of the �stationary� topological qubits
themselves, on the other hand, is determined by the energy
gap ��E� above the zero-energy localized Majorana states
within the discrete vortex cores. We will show by rigorous
numerical calculations that even this scale �E��, making
the entire TQC architecture surprisingly robust to thermal
decoherence effects.

V. EXCITATION GAP IN LINE JUNCTION

For a line junction of length L, the gap Eg is given by �see

Eq. �22�� Eg� ṽ
L �̃2 / �Ũ2+ �̃2�. Now, for barriers with trans-

parency such that ��U ,�, we get �̃� Ũ �Eq. �18�� and the
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factor multiplying ṽ /L in Eg reduces to unity. Even if U
��, which should be possible experimentally, this factor is
still of order unity. To maximize Eg, we need to take the
minimum allowed value of the length of the line junction,

Lm� ṽ / �̃ �Eq. �21��. Therefore, the maximum Eg attainable
on the TI surface is given by

Eg �
ṽ

Lm
= �̃ =

�

1 +
�

�

, �23�

which, in the case of transparency ���, reduces to � itself.

VI. EXCITATION GAP IN VORTEX

To determine the excitation gap �E within a vortex core
numerically, we consider the BdG Hamiltonian on the sur-
face of a TI sphere with a vortex and an antivortex at the
poles23

H = �ṽR̂ · �� � p� − Ũ��z + �̃�r��x, �24�

which can be written in angular coordinates as

H = �−
ṽ
R

L · � − Ũ��z + �̃����cos ��x + sin ��y� . �25�

Here R is the radius of the sphere, �̃���
= �̃ tanh�R sin � /�v� and �v is the size of the vortex
core. In the above Hamiltonian, we have approximated
discrete vortices by regular ones with continuously varying
phases. The resultant azimuthal symmetry allows us to
decouple the equations into sets indexed by m with a
basis of spinor spherical harmonics of the form
�Yl,m+1 ,Yl,m+2 ,Yl,m ,Yl,m+1�T�� ,��. We expect the minigap of
such a continuous vortex to be qualitatively similar to the
discrete vortex in Fig. 2. We find that the m=−1 channel
contains a pair of decaying and oscillating solutions which
are spatially localized at the two poles. The corresponding
eigenenergies exponentially decay to zero with the radius of
the sphere, indicating that, in the limit when the vortices are
far-separated, the eigenenergies are exactly zero. On the
other hand, the spectrum of the other m channels qualita-
tively resembles the m=−1 channel with the important dif-
ference that the eigenenergy of the first pair of excited states
does not vanish as the radius of the sphere increases. This
eigenenergy gives us the excitation gap in the vortex core.

Assuming the vortex core size to be equal to �v=�= ṽ / �̃
=v /�, the numerical results for the minigap �Fig. 3� can be
fit by the analytic form

�E � 0.83�̃2/��̃2 + Ũ2. �26�

The above result is interesting since it approaches the value

�E� �̃ �avoiding the approximation �E�� in Eq. �18�
yields �E�0.6� instead of 0.8�� for Ũ� �̃. Such a large
minigap is made possible for proximity-induced supercon-
ductors because of the ability to tune the chemical potential
on the TI surface independent of the chemical potential of

the superconductor. This is unlike the case of more conven-
tional s-wave and chiral p-wave superconductors where the

chemical potential Ũ��̃ and the minigap obeys the scaling

�E � 0.83
�̃2

Ũ
�27�

similar to the classic result of Caroli, de Gennes, and
Matricon.8

In fact this is expected since the scaling of Caroli, de
Gennes, and Matricon can be established using fairly generic
semiclassical arguments by considering the core of the vor-
tex to be a normal region of radius � with no superconduc-
tivity which can host quasiparticle states close to the Fermi
level �F. Considering a quasiparticle state at zero angular
momentum that is confined in the vortex core, the state at the
next allowed angular momentum would have a relative en-
ergy vF�
k
−kF�=vF��kF

2 +kt
2−kF�. Here kt��−1 is the trans-

verse momentum from the angular momentum. For kt�kF,
this leads to the energy splitting vFkt

2 /kF�vF /kF�2. For a
vortex, the quasiparticles are confined within a decay length
of �=vF /�. The leads to the relation �0��2 /�F. Since this
argument applies to any system with weak superconductivity,
it also holds for the TI/SC system as verified by our numer-
ics.

Thus the staggering difference between the minigap esti-
mate in a chiral p-wave superconductor �0=10−5 meV
�0.1 mK and the estimate of 1 K for the proximity-induced
system arises entirely from our ability to control the Fermi
energy �F in the system. Lowering �F lowers kF which leads

0 5 100
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ξ
v
=0.25v/λ

ξ
v
=v/λ

∆
∆
~
E

∆~
~U

FIG. 3. �Color online� Numerical results for the vortex minigap

�E plotted against the renormalized Fermi level Ũ on the TI surface

��E, Ũ scaled by �̃�. The solid �red� line gives the mini-gap when

the vortex core size �v=�= ṽ / �̃=v /�, as is appropriate in a regular
vortex with a continuously varying phase. The dashed �black� line
shows that the excitation gap is even larger when the vortex core
size is smaller, as is expected in a discrete vortex �see Fig. 1�. The
inset shows the TI sphere with a vortex and an antivortex �with
reduced superconducting amplitudes at the vortex cores� situated at
the north and the south poles.
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to a lower density of quasiparticle states at the Fermi level
which in turn reduces the number of midgap states in the
vortex core.

Of course, our analysis of the minigap in proximity in-
duced superconductors only accounts for possible quasipar-
ticle states in the vortex core that were localized at the TI
surface. Therefore the geometry must ensure that there are no
quasiparticles in the superconductor itself. This can be ac-
complished by using a discrete vortex as in the trijunction
geometry. We believe that the estimates for the continuous
vortex carry over to the discrete vortex case.

So far the vortex core size has been taken to be on the
order of the coherence length in the TI, �v=�= ṽ / �̃=v /�. If
the vortex core size is taken to be smaller, as is expected for
a discrete vortex, the numerical calculations lead to an even
larger �E �Fig. 3�. As is clear from Eq. �27�, for Ũ��̃, the
excitation gap in a vortex can be of order �̃, which is �� for
chemical potential on the surface of the TI tuned such that
U�� �see Eq. �18�� which can be of the scale of 100 meV
�i.e., of the scale set by �F�. The constraint U��
�0.5 meV within the Dirac point, that is obtained without
the central result Eq. �18�, is difficult to achieve in experi-
ments because of impurity-induced density fluctuations as in
graphene.24 The ability to tune the chemical potential U on
the TI surface independent of the Fermi energy of the super-
conductor �F leads to a significant enhancement over the case
of a chiral p-wave superconductor where the chemical poten-
tial U��F�� such that the minigap from Eq. �27� scales as
�E��2 /�F consistent with previous estimates.8

VII. CONCLUSION

In conclusion, we have shown that Majorana fermion ex-
citations in proximity-induced s-wave superconducting sys-
tems are much more robust to thermal decoherence effects
than in regular chiral p-wave superconductors. In the latter
system, the excitation gap protecting the Majorana modes,
the so-called excitation gap, is given by ��2 /�F, which is a
prohibitively low-energy scale �0.1 mK. On the other hand,
for proximity-induced s-wave superconducting systems,9,11

which have generated a lot of recent interest,25–28 and in the
case of sufficient transparency of the barriers, the minigap
can be made as high as ���1 K. The possible orders of
magnitude enhancement of the minigap in these systems
helps bring the observation of non-Abelian statistics to the
realm of realistic, accessible, temperature regimes in experi-
ments. Thus, the proposal of Fu-Kane9 and that of Sau et
al.11 with appropriate control of the proximity effect and fea-
ture sizes appear at this state to provide the most robust
platforms for the observation of Majorana fermions and the
implementation of TQC.

ACKNOWLEDGMENTS

This work is supported by DARPA-QuEST, JQI-PFC, and
LPS-NSA. S.T. acknowledges DOE/EPSCoR and Clemson
University start up funds for support.

1 C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Rev. Mod. Phys. 80, 1083 �2008�.

2 G. Moore and N. Read, Nucl. Phys. B 360, 362 �1991�.
3 N. Read and D. Green, Phys. Rev. B 61, 10267 �2000�.
4 S. Das Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73,

220502 �2006�.
5 A. Kitaev, Ann. Phys. 303, 2 �2003�.
6 M. H. Freedman, M. J. Larsen, and Z. A. Wang, Commun. Math.

Phys. 227, 605 �2002�.
7 F. Wilczek, Nat. Phys. 5, 614 �2009�.
8 C. Caroli, P. G. de Gennes, and J. Matricon, Phys. Lett. 9, 307

�1964�.
9 L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 �2008�.

10 R. Jackiw and P. Rossi, Nucl. Phys. B 190, 681 �1981�.
11 J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.

Rev. Lett. 104, 040502 �2010�.
12 A. Chrestin, T. Matsuyama, and U. Merkt, Phys. Rev. B 55,

8457 �1997�.
13 F. Giazotto, K. Grove-Rasmussen, R. Fazio, F. Beltram, E. H.

Linfield, and D. A. Ritchie, J. Supercond. 17, 317 �2004�;
arXiv:cond-mat/0207337 �unpublished�.

14 W. McMillan, Phys. Rev. 175, 537 �1968�.
15 P. G. de Gennes, Rev. Mod. Phys. 36, 225 �1964�.

16 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B
25, 4515 �1982�.

17 L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803
�2007�.

18 J. E. Moore and L. Balents, Phys. Rev. B 75, 121306 �2007�.
19 R. Roy, Phys. Rev. B 79, 195322 �2009�.
20 J. Bardeen, Phys. Rev. Lett. 6, 57 �1961�.
21 A. Volkov, P. Magnee, B. Wees, and T. Klapwijk, Physica C

242, 261 �1995�.
22 R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 �1976�.
23 Y. E. Kraus, A. Auerbach, H. A. Fertig, and S. H. Simon, Phys.

Rev. Lett. 101, 267002 �2008�; Phys. Rev. B 79, 134515
�2009�.

24 S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, Proc.
Natl. Acad. Sci. U.S.A. 104, 18392 �2007�.

25 J. Nilsson, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev.
Lett. 101, 120403 �2008�.

26 K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001
�2009�.

27 Y. Tanaka, T. Yokoyama, and N. Nagaosa, Phys. Rev. Lett. 103,
107002 �2009�.

28 J. Alicea, Phys. Rev. B 81, 125318 �2010�.

ROBUSTNESS OF MAJORANA FERMIONS IN PROXIMITY-… PHYSICAL REVIEW B 82, 094522 �2010�

094522-7

http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.73.220502
http://dx.doi.org/10.1103/PhysRevB.73.220502
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1007/s002200200645
http://dx.doi.org/10.1007/s002200200645
http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1016/0031-9163(64)90375-0
http://dx.doi.org/10.1016/0031-9163(64)90375-0
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1016/0550-3213(81)90044-4
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevB.55.8457
http://dx.doi.org/10.1103/PhysRevB.55.8457
http://dx.doi.org/10.1023/B:JOSC.0000021231.01260.94
http://arXiv.org/abs/arXiv:cond-mat/0207337
http://dx.doi.org/10.1103/PhysRev.175.537
http://dx.doi.org/10.1103/RevModPhys.36.225
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/PhysRevB.25.4515
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevLett.98.106803
http://dx.doi.org/10.1103/PhysRevB.75.121306
http://dx.doi.org/10.1103/PhysRevB.79.195322
http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1016/0921-4534(94)02429-4
http://dx.doi.org/10.1016/0921-4534(94)02429-4
http://dx.doi.org/10.1103/PhysRevD.13.3398
http://dx.doi.org/10.1103/PhysRevLett.101.267002
http://dx.doi.org/10.1103/PhysRevLett.101.267002
http://dx.doi.org/10.1103/PhysRevB.79.134515
http://dx.doi.org/10.1103/PhysRevB.79.134515
http://dx.doi.org/10.1073/pnas.0704772104
http://dx.doi.org/10.1073/pnas.0704772104
http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevLett.103.107002
http://dx.doi.org/10.1103/PhysRevB.81.125318

