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Spin transport driven by the temperature gradient in ferromagnetic metals is studied based on a microscopic
theory. It is shown that the temperature gradient works as an effective field equivalent to the electric field as for
both the spin current generation and the spin-relaxation torque. The thermally driven contribution of the spin
current and the relaxation torque are thus proportional to �T and �2T, respectively.

DOI: 10.1103/PhysRevB.82.094451 PACS number�s�: 72.25.Rb, 74.25.fg

I. INTRODUCTION

Thermoelectric effects such as the Seebeck and the Nernst
effects have been studied for more than a hundred years and
are applied to various devices such as thermocouples. The
effects have been successfully explained by phenomenologi-
cal and microscopic theories,1,2 as for the charge transports.

Recently, spintronics, which aims at the control of the
electron spins, is attracting special attention from the view-
points of the fundamental science and application. Of par-
ticular importance in the spintronics is the spin current. The
spin current is generated by applying the electric field3 or by
use of the magnetization dynamics via the spin-pumping
effect.4,5 Detection of the spin current can be carried out
electrically by use of the inverse spin Hall effect,6 which
converts the spin current into the charge current or electric
voltage using the spin-orbit interaction. In 2008, another
method to create the spin current was discovered by Uchida
et al., namely, the spin Seebeck effect.7 They have applied a
temperature gradient to a ferromagnetic metal �permalloy�
under the condition that no charge current flows. By attach-
ing a Pt contact on the permalloy in the perpendicular direc-
tion, they found that there appears a finite voltage across the
Pt lead. Since no charge current flows in the permalloy,
Uchida et al. concluded that the voltage is the result of the
inverse spin Hall effect due to the spin current that is induced
by the temperature gradient in the permalloy. Uchida et al.
thus demonstrated that the spin current can be induced by the
temperature gradient similarly to the Seebeck effect for the
charge. Thermally driven spin transports have been con-
firmed also in very recent experiments.8,9

Thermal effects on magnetic domain walls such as the
eddy current induced at the domain wall due to the Nernst-
Ettingshausen effect were discussed by Berger.10–12 Very re-
cently, theoretical studies on the thermally driven spintronics
phenomena have been intensively carried out.13–19 Thermal
spin-transfer torque was discussed by Hatami et al.,13 and its
inverse effect was argued by Kovalev et al.14 Experimental
evidence of the thermal spin-transfer torque was presented
recently by Yu et al.20 An unified description of magnetic,
electric, thermal, and mechanical forces was presented by
Bauer et al.15

In the conventional �charge� Seebeck effect, the effective
electric field E is induced proportional to the temperature
gradient, �T, as E=S�T, where S is called the Seebeck co-
efficient. As general argument indicates that the Seebeck co-

efficient of free electrons at low temperatures is written by a
energy derivative of the electric conductivity �B��� as1

S =
�2

3e
�kB�2T� d�B���

d�

�B��� ��=�

, �1�

where � is the chemical potential. In ferromagnets, the exis-
tence of the charge current indicates also that of the spin
current since the conduction electrons are spin polarized. De-
fining the spin current in a uniform ferromagnet as js� j+
− j−, where j� denotes the current carried by the electron
with spin �. Treating the two spin channels as independent,
thermally induced spin current reads from Eq. �1�

js =
�2

3e
�kB�2T�

�

� � ��d�B,����
d�

�
�=�

� T , �2�

where �B,� represents the conductivity for the spin � elec-
tron. We define the spin Seebeck coefficient Ss as js
=�sSs�T, where �s��B,+−�B,− is the spin conductivity. It
then reads

Ss =
�2

3e
�kB�2T��

�

� � �
d�B,����

d�

�
�

� � ��B,���� �
�=�

. �3�

The aim of this paper is to derive this expression on a mi-
croscopic model, and to extend the argument to a general
case with inhomogeneous magnetization, and to study the
spin-relaxation torque.

Most crucial feature of the spin current in solids is the
violation of conservation law. In fact, the spin density s and
the spin current density js satisfy the continuity equation

ṡ� + � · js
� = T�, �4�

where �=x ,y ,z is the spin index and T is the spin-relaxation
torque resulting in the nonconservation of the spin. In metals,
the dominant origin of T is the spin-orbit interaction. The
relaxation torque has been treated by introducing a phenom-
enological spin chemical potential and the spin-relaxation
time.21,22 The relaxation torque plays essential roles in spin-
tronics phenomena such as the current-induced magnetiza-
tion switching23 and the inverse spin Hall effects.24 Thus
microscopic study of the torque is urgent and important. The
spin-relaxation torque induced electrically was recently stud-
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ied microscopically25 but the thermal contribution has not
been explored.

The aim of this paper is to theoretically study the spin
transport induced by the temperature gradient. The tempera-
ture gradient is modeled by considering a system made up of
subsystems having different temperatures and chemical po-
tentials. Each subsystem is assumed to be in local equilib-
rium. The electron transport is studied by introducing the
electron hopping between subsystems. For spin current, we
also take into account the inhomogeneity of the magnetiza-
tion, up to the first order in the spatial derivative. The spin-
relaxation torque is studied in the homogeneous magnetiza-
tion case and in the presence of the spin-orbit interaction due
to random impurities. In the context of charge transport, the
temperature gradient has been known to act as an effective
electric field.1 We will show the equivalence of �T and the
electric field holds also in the spin transports and in the spin-
relaxation phenomena.

Although the spin-orbit interaction is essential in studying
the spin-relaxation torque, we will neglect it in studying the
spin current since we are interested in how the temperature
gradient acts as an driving force on the dominant spin current
but not in deriving the full transport equation. In fact, the
spin-orbit correction to the spin current has been known to
have the same dependence on the driving field as the contri-
bution without the spin-orbit interaction.25

II. MODEL

We model the temperature gradient by considering a dis-
cretized model consisting of the systems labeled by n
=1,2 , . . .. Each system n is assumed to be in local thermal
equilibrium at temperature Tn and chemical potential �n
�Fig. 1�. �In the end, we will take the continuum limit, as-
suming that the temperature gradient is not very large.� With-
out losing generality, we assume that systems are placed on a
cubic lattice with equal distance d. The conduction electrons
in each subsystem are represented by plane waves whose
wave vectors k are approximated to take any value. The
magnetization direction of each system, nn, is assumed to be

uniform within the system but is different for different n. The
Hamiltonian of the systems when isolated is given as

H0 = �
n

�
k

cnk
† ��k − Mnn · ��cnk, �5�

where M is the spin-spitting energy due to the magnetization.
The electron operator is represented by a two-component
field, cnk= �cnk+ ,cnk−�, where � represents the spin. To de-
scribe the magnetization nn dependent on n, a gauge trans-
form in the spin space that diagonalize the exchange interac-
tion is useful. This transform is carried out as

cnk = Unank, �6�

where ank is a new electron operator in the gauge-
transformed frame and Un is a 2�2 unitary matrix, given as

Un � mn · �

mn � �sin
�n

2
cos 	n,sin

�n

2
sin 	n,cos

�n

2
� , �7�

with ��n ,	n� being the polar coordinates representing nn.23

By the gauge transformation, the Hamiltonian of the sub-
systems when isolated becomes

H0 = �
n

�
k�

�k�ank�
† ank�, �8�

where �k�� k2

2m 
M, and � is the spin index.
The subsystems are connected by leads, where the elec-

tron hopping occurs. The coordinate in the lead in a system n
where the hopping to a neighboring system m occurs is rep-
resented by Rnm. The hopping Hamiltonian reads �in the real
space representation�

Ht = �
	nm


�
RnmRmn

�
�

t�cm�
† �Rmn�cn��Rnm�

+ cn�
† �Rnm�cm��Rmn�� , �9�

where 	nm
 denotes a pair of neighboring systems. After the
gauge transform, it reads

Ht = �
	nm


�
RmnRnm

t�an
†�Rnm�Unmam�Rmn�

+ am
† �Rmn�Umnan�Rnm�� , �10�

where Unm�Un
†Um.

In terms of an electron, the spin density of the n system is
written as sn�	cn

†�cn
= 	an
†Un

†�Unan
. We represent the
charge and spin currents through the junction as Ii

0 and Ii
�

�i=x ,y ,z and �=x ,y ,z are the spatial and spin direction,
respectively�. In the present junction model, the spin �charge�
current at system n is calculated by estimating the time de-
rivative of the spin �charge� density, which reads

ṡn
��Rnm� = it�

m
�
Rmn

	an
†�Rnm�Un

†��UnUnmam�Rmn�

− am
† �Rmn�UmnUn

†��Unan�Rnm�
 . �11�

The right-hand side of this quantity is written as �a dis-
cretized version of� the divergence of spin �charge� current,

Tn, µn Tm, µm

nn nmnl

Tl, µl

d

Rmn

Rnm

· · ·· · ·

· · · · · ·

FIG. 1. The discrete model we consider, made up of subsystem
labeled by l ,m ,n , . . . connected by leads. Each subsystem n is as-
sumed to be in the local equilibrium at temperature Tn and the
chemical potential �n, and have a uniform magnetization nn. The
center coordinate of the system n is represented by Xn, and the
spacing of the systems is d �i.e., Xn−Xm=d for a neighboring pair.
The electron hopping occurs on the lead �shown by ovals�, between
sites Rnm and Rmn.
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according to Eq. �4� in the absence of the spin relaxation.
The current flowing in direction i is thus given by

Ii
��n� = −

et

2 �
�

� � � �
RmnRnm

tr�Un
†��Un�UnmGmn�Rmn,Rnm�

− Gnm�Rnm,Rmn�Umn��Xm=Xn�id
� , �12�

where i is a unit vector along i axis and m is the label of the
system neighboring the system n �i.e., Xm=Xn� id�, and �

denotes the lesser component. Estimating the Green’s func-
tions to the lowest �second� order in t, we obtain

Ii
��n� = −

et2

2 �
�

�
RmnRnmRmn� Rnm�

� � �tr�Un
†��Un

� �Unmgm�Rmn,Rmn� �Umngn�Rnm,Rnm� �

− gn�Rnm,Rnm� �Unmgm�Rmn,Rmn� �Umn��Xm=Xn�id
� ,

�13�

where gm is the free Green’s function of the system m on the
Keldysh contour. Without losing generality, we choose nn as
along z direction, i.e., Un=1. Since we are eventually inter-
ested in the continuum limit, we consider the case where the
difference between nm and nn is small. The rotation matrix
Unm is expressed by a spin gauge field Anm defined as Unm
�eiAnm·�=Umn

† . Explicitly, Unm=mn ·mm+ i� · �mn�mm� and
thus Anm= �mn�mm�. The current then reads

Ii
��n� =

e

2�
�

� � �� d�

2�
�
kk�

tk�k2tr����gnk�
r eiAnm·�Fmk��gmk��

a − gmk��
r �e−iAnm·� + Fnk�gnk�

a − gnk�
r �eiAnm·�gmk��

a e−iAnm·�

− eiAnm·�gmk��
r e−iAnm·�Fnk�gnk�

a − gnk�
r � − eiAnm·�Fmk��gmk��

a − gmk��
r �e−iAnm·�gnk�

a ��Xm=Xn�id

= 2e�
�

� � �� d�

2�
�
kk�

tk�k2tr����Fmk� − Fnk�Im�gnk�
a �Im�gmk��

a ��Xm=Xn�id

− e�
�

� � �� d�

2�
�
kk�

tk�k2Anm
 tr����gnk�

r ��,Fmk� Im�gmk��
a �� + Fnk Im�gnk�

a ���,gmk��
a � − ��,gmk��

r �Fnk Im�gnk�
a �

− ��,Fmk� Im�gmk��
a ��gnk�

a ��Xm=Xn�id

� I0,i
� + �Ii

�, �14�

where

tk�,k � t �
RmnRnm

eik�·Rmne−ik·Rnm �15�

and I0
� and �I� represent the contribution without the gauge

field and the linear-order contribution, respectively. We ne-
glect the higher-order contribution in the gauge field since
we consider a slowly varying spin texture. The geometry of
the lead is reflected in the amplitude tk�,k. The Fermi-
distribution function is represented by matrix

Fmk � � fm��k+� 0

0 fm��k−� � , �16�

where �m��kBTm�−1�

fm��k�� �
1

em��k�−�m� + 1
. �17�

Retarded Green’s function gmk�
r is a 2�2 matrix in spin

space with each component defined as

gmk��
r =

1

�� − �k� + i�
, �18�

where � represents an infinitesimal positive �or the inverse
lifetime if disordered�.

III. UNIFORM MAGNETIZATION

Let us first consider the contribution I0
�, the current when

the magnetization of the whole system is uniform. Explicitly
writing the spin index, the currents read

I0,i
0 �n� = 2e�

�

� � �� d�

2�
�
kk�

tk�k2�
�

�fm��k���

− fn��k���Im�gnk��
r �Im�gmk���

r �Xm=Xn�id
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I0,i
z �n� = 2e�

�

� � �� d�

2�
�
kk�

tk�k2�
�

��fm��k���

− fn��k���Im�gnk��
r �Im�gmk���

r �Xm=Xn�id, �19�

and I0
x = I0

y =0. We consider the case of an infinitesimal differ-
ence of the temperature and the chemical potential of the two
adjacent systems, n and m. Defining Tm�T+�mT and �m
=�+�m� �T and � are the temperature and the chemical
potential for the electron of the system n�, we expand the
physical quantities up to the linear order in the differences.
The difference of the Fermi-distribution functions for n and
m is written as

fm��k��� − fn��k��

= fn��k��� − fn��k�� + f���k�����m� + ��k�� − ��
�mT

T
� ,

�20�

where

f���k��� = −


4

1

cosh2

2
��k�� − ��

. �21�

Let us first consider the conventional Seebeck effect, i.e., the
charge part. The charge current reads

I0,i
0 = − e�2

2
� d�

2�
�
kk�

tk�k2�
�

�
1

�� − �k��2 + �2

1

�� − �k���2 + �2

1

cosh2

2
��k�� − ��

� �
�

� � ���m� + ��k�� − ��
�mT

T
�

Xm=Xn�id
. �22�

The � integration is carried out as

�2� d�

2�

1

�� − �k��2 + �2

1

�� − �k���2 + �2

=
�

2

1

��k� − �k���� 1

��k� − �k�� + 2i��
+ c.c.�

=
�

��k� − �k���2 + 4�2 �23�

and thus

I0,i
0 = − e�



2 �
kk�

tk�k2�
�

1

��k� − �k���2 + 4�2

1

cosh2

2
��k�� − ��

� �
�

� � ���m� + ��k�� − ��
�mT

T
�

Xm=Xn�id
. �24�

We consider now the continuum limit by taking d→0. This
is allowed when d��, where � is the spatial length scale

the temperature and the chemical potential varies signifi-
cantly, i.e., ��O�� �T

T �−1 , � ��
� �−1�. The summation over m is

carried out easily as �choosing Xn=0�

1

2�
�

� � ��m�Xm=Xn�id

=
1

2
���+ di� − ��0� − ���− di� − ��0���

= d�i� . �25�

We thus see that

I0
0 = − d�G � �/e + GT � T� , �26�

where the conductance G and the thermal conductance GT as
functions of the chemical potential are given as

G��� = 2e2�
kk�

�
�

�tk�k2

��k� − �k���2 + 4�2

/4

cosh2

2
��k�� − ��

GT��� = 2e2�
kk�

�
�

�tk�k2

��k� − �k���2 + 4�2

kB2��k�� − ��/4

cosh2

2
��k�� − ��

,

�27�

respectively.
The conductance is written by use of the Boltzmann con-

ductivity �B as G=�BA /d where A is the area of each sys-
tem. Let us here switch to the current density, defined as j
� I /A. Then Eq. �26� reduces to

j0 = − ��B � �/e + �T � T� . �28�

The conductivity is given in terms of the spin resolved con-
ductivity �B,� ��=� is the spin index� as

�B = �
�
�

−�M

�

d��B,����
/4

cosh2

2
�� − ��

. �29�

where

�B,���� � 2e2 d

A
�
kk�

�tk�k2

��k� − �k���2 + 4�2��� − �k��� . �30�

At low temperatures, /4

cosh2
2

��−��
=���−�� and we reproduce

�B=���B,�. Defining x� 
2 ��−��, the thermal conductivity

is written as

�T =
kB

e
�
�=�

�
−/2��+�M�

�

dx
x

cosh2 x
�B,��=�+2x/. �31�

At low temperature, ��1, we can expand the integrand
with respect to x to obtain the well-known relation
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�T =
kB

2 T

e

�2

3 �
�

�d�B,�

d�
�

�=�

= �B �
kB

2 T

e

�2

3

�
�

�d�B,�

d�
�

�=�

�
�

�B,����
.

�32�

From the above result, the spin current density, j0
z � I0

z /A, is
easily obtained as j0

z =�s�� /e+�s,T�T, where

�s = �
�=�

��
−�M

�

d��B,����
/4

cosh2

2
�� − ��

, �33�

and

�s,T = �s �
kB

2 T

e

�2

3

�
�

��d�B,�

d�
�

�=�

�
�

��B,����
. �34�

We therefore see that the temperature gradient acts on the
spin current as an effective electric field in agreement with
naive guess. When the magnetization is along n, the above
result of spin current becomes

j0
� = − n���s � �/e + �s,T � T� . �35�

The Seebeck coefficient is defined as the ratio

S �
�T

�B
=

kB
2 T

e

�2

3

�
�

�d�B,�

d�
�

�=�

�
�

�B,����
. �36�

We define the spin Seebeck coefficient as

Ss �
�s,T

�s
=

kB
2 T

e

�2

3

�
�

��d�B,�

d�
�

�=�

�
�

��B,����
. �37�

Therefore our model reproduces the relations �1� and �2� ob-
tained by classical argument.1

IV. EXAMPLES

The explicit expressions of �B,�, S, and Ss depend on the
detail of the hopping on the lead. We here present results for
three typical cases.

A. Pointlike lead

We first consider a case of pointlike lead. The coefficient
tk�k then becomes a constant, tk�k= t �since we can choose
Rnm=Rmn=0�, and the summations over k� and k become
independent. In this case,

�B,���� = 2�t2e2 d

A
�
k�

�0��k���� − �k���

=2�t2e2 d

A
��0�2�� + �M� , �38�

where �0� Vm3/2

�2�2 is the three-dimensional density of states

divided by �� �� is the energy and V=Ad�. �We note that in
taking the pointlike limit, t2d��0�2 /A needs to be kept a con-
stant since the combination t2d��0�2 /A gives the physical
conductance as seen in the above equation.� We then obtain

�T

�B
=

�2

3

kB
2 T

e�
�39�

while

�s,T = 0 �40�

since
d�B,����

d� is a constant independent of the spin. Thus spin
Seebeck coefficient vanishes if the lead is pointlike and if the
conduction electron’s energy is the free electron type, k2.

B. Two-dimensional interfaces

If the junction in the discretized model is a thin plane with
electron scattering, the electron hopping conserves the wave
vector perpendicular to the junction �which we denote k��
but not the component along the junction �we choose the
junction along x axis�. The wave vectors before and after the
hopping are thus written as k= �k ,k�� and k�= �k� ,k��, re-
spectively, where k and k� are independent. When the con-
tinuum limit is taken in this interface model, the summation
over the wave vectors in Eq. �30� is carried out to obtain

�B,���� = 2�t2e2 d

A
��0

�1��2�0
�2��� + �M , �41�

where �0
�1��

�md
2�2�

and �0
�2�� mA

2� are the coefficients in the one-
and two-dimensional density of states, respectively. There-
fore

�s,T

�s
= −

�2

6

kB
2 T

e��2 − M2
= −

�T

�B
. �42�

C. Disordered electron

Our model can also describe the disordered electron case.
We assume that there is enough inelastic scattering to sup-
port local thermal equilibrium. To describe the electron with
mass m, the parameter t and tkk� of the tight-binding Hamil-

tonian need to be replaced by t� 1
md2 �using t cos�kxd�=

kx
2

2m

+const� and tkk�= tkxd�kk� �i.e., tkk�
2 =

kx
2

m2d2 �kk��, respectively.
�We choose the transport as along x direction.� We denote the
elastic lifetime of the electron as �. �Finite lifetime is essen-
tial to justify our assumption that each subsystem is in the
local equilibrium.� We then reproduce from Eq. �30� the
Boltzmann conductivity

�B,���� =
e2n�����

m2 , �43�
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where n����� �k��+�M��3

6�2 �k��+�M�=�2m��+�M��. The spin
Seebeck coefficient then reads �from Eq. �37��

Ss =
kB

2 T

e

�2

2

�� + M�1/2 − �� − M�1/2

�� + M�3/2 − �� − M�3/2 . �44�

V. GAUGE FIELD (SPIN TEXTURE) CONTRIBUTION

We consider here the contribution linear in the gauge
field, �Ii

�, in the adiabatic limit, namely, the spin variation is
assumed to be small so that the momentum transfer due to
the gauge field is neglected compared with the conduction
electron’s momentum. The linear contribution in Eq. �14�
reads

�Ii
��n� = − e�

�

� � �� d�

2�
�
kk�

tk�k2Anm
 tr����gnk�

r ��,Fmk� Im�gmk��
a �� + Fnk Im�gnk�

a ���,gmk��
a � − ��,gmk��

r �Fnk Im�gnk�
a �

− ��,Fmk� Im�gmk��
a ��gnk�

a ��Xm=Xn�id

=− e�
�

� � �� d�

2�
�
kk�

tk�k2Anm
 tr����gnk�

r − gnk�
a �����,Fmk� Im�gmk��

a �� + ���Fnk Im�gnk�
a ���,gmk��

a �

− ��,gmk��
r �Fnk Im�gnk�

a ���Xm=Xn�id. �45�

By use of ��� ,gnk�
r �=−2i�����z�

����gnk��
r , the spin part

��=x ,y ,z� reads

�Ii
��n� = A�



�ai,��z + �bi,
�eq� + bi,

�d����� − ��,z�,z�� ,

�46�

where A is the junction area and the coefficients are

ai, = −
2e

A
�
�

� � �� d�

2�
�
kk�

tk�k2Anm


��
���

���fnk� − fmk����Im�gnk��
a �Im�gmk����

a �Xm=Xn�id

bi,
�eq� =

2e

A
�
�

� � �� d�

2�
�
kk�

tk�k2Anm
 �

���

���fnk�

� Im�gnk��
a gmk����

a �Xm=Xn�id

bi,
�d� = −

2e

A
�
�

� � �� d�

2�
�
kk�

tk�k2Anm
 �

���

���

��fnk� − fmk����Re�gnk��
a �Im�gmk����

a �Xm=Xn�id.

�47�

The coefficient b�eq� represents the equilibrium spin current
and b�d� represents the driven contribution.

By writing fmk���= fk���+�fk��� �fk���� fnk��� and �fk���
� f���k������m�+ ��k���−��

�mT

T ��, the summation over the
spatial directions is carried out by expanding the gauge field
and the chemical potential as �we choose Xn=0�

1

2�
�

� � �Anm
 �m�Xm=Xn�id

=
1

2�
�

� � ��m�0� � m��di������di� − ��0��

= d3��i
2��Ai

 + o�d4,�A� , �48�

where Ai
� 1

2 �m��im� is the spin-gauge field in the con-
tinuum limit.23 We have neglected the contribution contain-
ing the derivative of Ai

 since it corresponds to the second
order contribution with respect to the gauge field, which we
neglect in �I. The equilibrium and the linear contributions
are given as �we here suppress the index n in the Green’s
functions�

ai, = 2Ai
�aE��i�2�/e + aT��i�2T�

bi,
�d� = 2Ai

�bE��i�2�/e + bT��i�2T�

bi,
�eq� = 2Ai

j�eq�, �49�

where

aE = �
�

�a�

aT =
�2

3

kB
2 T

e
�
�

��da�

d�
�

�=�

a���� � − 2e
d3

A �
kk���

��
�tk�k2

��k� − �k���
2 + 4�2��� − �k��
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bE = �
�

�b�

bT =
�2

3

kB
2 T

e
�
�

��db�

d�
�

�=�

b���� � − 2e
d3

A �
kk���

��
tk�k2��k� − �k���

��k� − �k���
2 + 4�2��� − �k�� ,

�50�

and

j�eq� = 2e
d3

A
� d�

2�
�

kk����

���tk�k2fk� Im�gk��
a gk����

a � ,

�51�

represents the equilibrium current.
The result, Eq. �46� is for the magnetization at n is along

the z axis �i.e., Un=1�. A general case with magnetization
along n is obtained by applying an unitary transformation
defined by a matrix V�=2m�m−��. By use of the
identities23

�2m�m − ������ − �z��z�Ai
� = −

1

2
�n � �in��

�2m�m − �����zAi
� = −

1

2
�in

�, �52�

the final result of the gauge-field contribution to the spin
current density ��ji

���Ii
� /A� is given by

�ji
� = − ��n � �in��j�eq� + ��in���aE�i

2�/e + aT�i
2T�

+ �n � �in���bE�i
2�/e + bT�i

2T� .� �53�

To summarize the results of the spin current, the total charge
current in the system is given by Eq. �28� as

ji = j0,i = − ��B�i�/e + �T�iT� , �54�

and the spin current reads �Eqs. �35� and �53��

js,i
� � j0,i

� + �ji
� = n���s�i�/e + �s,T�iT� − ��in���aE�i

2�/e

+ aT�i
2T� − �n � �in���j�eq� + bE�i

2�/e + bT�i
2T� .

�55�

The spin current driven by the field and the spin texture �spin
gauge field� was calculated here by assuming adiabatic con-
dition. This is justified when the electron mean free path �
satisfies ��d, namely, either in the strongly disordered or in
the weak hopping regime where ��1 / t2 is large.

VI. SPIN-RELAXATION TORQUE

In this section, we calculate the spin-relaxation torque in-
duced by the temperature gradient by including the spin-orbit
interaction. We consider an uniform magnetization case and
neglect the spin gauge field. The leads connecting sub-

systems are assumed here to be pointlike for simplicity,
namely, tk�k= t. The spin-orbit interaction is

Hso = −
i

2�
ijk

�ijk� d3x��ivso
�k���c†�J j�kc� . �56�

The spin-orbit potential vso
�k� is assumed to arise from random

impurities and to depend on the spin direction �k�. The im-
purity scattering is treated in the standard manner.23

By deriving the continuity equation for the spin density,
the dominant spin-relaxation torque in z direction acting in
the system n is found to be25

T z�n� � i�
ijkl

�ijk�zlk��ivso
�k��	cn

†�l�J jcn
 . �57�

Off-diagonal �xy� components of the relaxation torque van-
ish in the slowly varying limit.25

It is calculated including the hopping to other subsystems
at the second order as �Fig. 2�

T z�n� = −
4

9
inso�so

2 t2�
�

�
m

�
kk�k�

� d�

2�
k2�k��2�z�

� tr���gnk���gnk�gmk��gnk���. �58�

Taking the lesser component, we obtain

T z�n� = −
16

9
inso�so

2 t2�
�

�
m

�
kk�k�

� d�

2�
k2�k��2�z��

�

���

� Im�gnk�,−�,�
r ��fn��k�� − fm��k����

� Im�gnk��
r �Im�gmk���

r � , �59�

where the distribution function of subsystem m is given by
�m��kBTm�−1�

fm��k�� �
1

em��k�−�m� + 1
. �60�

The summation over the wave vectors are calculated by use
of contour integrals, and we obtain

vso

vsoT z =

t

t

gm

FIG. 2. The Feynman diagram describing the dominant contri-
bution to the spin-relaxation torque induced by the temperature gra-
dient. vso represents the spin-orbit interaction and t denotes the
electron hopping to other subsystems m with different temperature
Tm.
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T z�n� = −
32

9
�2m2nso�so

2 t2�0
3�

m
�
�

����
−/2��−M�

�

dx

�
1

cosh2 x
���m + 2kB�Tmx�

��� + �M +
2x


�2�� − �M +

2x


�3/2

�61�

where ��m��m−�, �Tm�Tm−T �T and � are the tempera-
ture and the chemical potential of the system n�, x� 

2 ��k�
−�M −��. Considering low temperatures, i.e., ��−M��1,
we can expand the integrand with respect to x and obtain

T z�n� = −
64

9
�2m2nso�so

2 t2�0
3�

m
�
�

�����2 − M2�2

��� − �M�−1/2���m +
�2

6
kB

2 T�Tm
7� − �M

��2 − M2��
�62�

This is the result of a discrete model. We now take the con-
tinuum limit by replacing ��m with Xm ·��

+�ij
Xm,iXm,j

2 �i� j�, and similar expression for �Tm �we have
chosen Xn=0�. Considering the rotationally symmetric sys-
tem with equal separation d between the small local equilib-
rium subsystems, Xm� �dr̂, where r̂ represents three unit
vectors in the three spatial directions, we obtain �m��m
=d2�2�. The relaxation torque is therefore obtained as

T z = �E�2�/e + �T�2T , �63�

where

�E � −
64e

9
�2m2nso�so

2 t2�0
3d2��2 − M2�2�

�

����� − �M�−1/2

�64�

�T = −
32

27
�4kB

2 Tm2nso�so
2 t2�0

3d2��2 − M2�

��
�

����� − �M�−1/2�7� − �M� . �65�

The relaxation torque arises thus from the second order de-
rivatives of � and T. The result for � here confirms the result
of Ref. 25 in a discretized model. �Unlike Ref. 25, Eq. �63� is
symmetric with respect to the spatial direction but this would
be an artifact of the present model, which assumes that the
electron hopping occurs on pointlike leads.� We see that, as
is expected, the temperature gradient �T is equivalent to the
electric field in the context of the spin relaxation.

Equation �65� indicates that when an uniform temperature
gradient is applied to a ferromagnet, the spin-relaxation

torque is zero. Therefore, the spin current driven by homo-
geneous temperature gradient in the spin Seebeck system is
spatially uniform without decay but does not grow over the
distance in contrast to the experimental observation.7 We
stress here that a term proportional to the spatial coordinate
introduced without ground in Ref. 26 does not exist in the
transport equation.

For understanding the experimental result of the thermally
induced inverse spin Hall effect, the present analysis needs to
be extended to incorporate the spin-charge conversion due to
the spin-orbit interaction, which will be carried out in the
forthcoming paper.

VII. CONCLUSION

To conclude, we have studied the spin current and the
spin-relaxation torque driven by the temperature gradient mi-
croscopically by considering a continuum limit of a dis-
cretized model. We have shown that the temperature gradient
acts as the effective electric field and drives spin current. In
the uniform magnetization case, the spin Seebeck coefficient
is given by

Ss =
kB

2 T

e

�2

3

�
�

� � ��d�B,�

d�
�

�=�

�
�

� � ��B,����
, �66�

where �B,� is the Boltzmann conductivity for the spin �
electron and � is the chemical potential.

When the magnetization n is nonuniform, spin current
components polarized along n��n and �n are induced by
the temperature gradient �Eq. �55��. We have also calculated
the spin-relaxation torque and found that it is proportional to
�2T. Since the relaxation torque induced by the electric field
has been shown to be proportional to � ·E, we see that the
temperature gradient �T acts as the effective electric field in
the context of the relaxation torque, too.

We have thus demonstrated the equivalence of the tem-
perature gradient and the electric field in the spin transport.
We note, however, that quantitatively these two fields lead to
different results since the ratio of the coefficients such as
�T /�B and �T /�E are not always equal.
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