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Bi2CuO4 possesses a unique crystal structure that distinguishes it from other cuprates. It is constructed from
isolated CuO4 plaquettes forming staggered chains along the c axis of its tetragonal unit cell. Several aspects
of antiferromagnetism in this system, observed below TN�43 K, are poorly understood, including the orien-
tation of the ordered magnetic moments. There is disagreement about whether Bi2CuO4 exhibits easy-axis or
easy-plane anisotropy despite numerous attempts to settle the question. In order to better understand its
magnetism, thermal expansion and heat capacity were measured on a single crystal of Bi2CuO4, and the critical
behavior exhibited about TN in those measurements was carefully studied. Best-fit values for the critical
exponent � and the ratio of the leading singularity amplitudes A+ /A− from thermal-expansion data along both
a and c are consistent with the three-dimensional Ising universality class. Assignment of the Ising universality
class suggests Bi2CuO4 is an easy-axis antiferromagnet with moments ordered along c.
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I. INTRODUCTION

Despite an absence of superconductivity, Bi2CuO4 re-
ceived considerable attention during the cuprate physics
boom following the discovery of high-temperature supercon-
ductivity. Interest was driven by its unique crystal structure
and the consequences thereof. One might expect Bi2CuO4
to be isostructural with La2CuO4, especially given nearly
identical ionic radii for Bi3+ and La3+ with eightfold
coordination.1,2 However, strongly covalent Bi-O bonds re-
duce the coordination of Bi to six while the strongly ionic
nature of La-O bonds allow for ninefold coordination.1 De-
finitive early x-ray diffraction work3 revealed a tetragonal
unit cell with space group P4 /ncc. This result has been un-
ambiguously confirmed by neutron-diffraction1,4–7 and Ra-
man infrared-reflectivity8 experiments. The crystal structure,
which is displayed in Figs. 1�a� and 1�b� as generated by
JAVA STRUCTURE VIEWER,9 is unique among the generally
two-dimensional, layered cuprates. It is constructed from iso-
lated CuO4 plaquettes which form staggered, colinear
“chains” along c, connected by BiO4 units,10,11 with a twist
angle7 of 33.3° between adjacent plaquettes. The isolated
nature of CuO4 plaquettes has led some to refer to Bi2CuO4
as a “zero-dimensional” compound. For example, a study of
the intensity of Cu 2p5/2 core-level x-ray photoemission
spectra demonstrated that CuO4 plaquettes result in a low-
dimensional behavior that is fundamentally different from
those arising from CuO3 chains �one-dimensional� and CuO2
planes �two-dimensional�.12

Like other cuprates, the S= 1
2 , Cu2+ moments of Bi2CuO4

undergo antiferromagnetic order as observed around 43 K in
neutron-diffraction,1,5–7 antiferromagnetic-resonance,1 and
magnetic-susceptibility experiments.1,6,13 Four distinct Cu-
O-Bi-O-Cu superexchange paths have been identified, which
are responsible for magnetic order,1,7,11,14,15 however, there
remain disagreements about the orientation of the ordered
moments.10 Tetragonal antiferromagnets with anisotropic ex-
change are said to exhibit easy-axis anisotropy when their
sublattices are polarized parallel to c and easy-plane aniso-
tropy when they are polarized perpendicular to c. In the case

of Bi2CuO4, it is known that magnetic moments order ferro-
magnetically within the chains running along c and that
neighboring chains are antiferromagnetically coupled. How-
ever, despite numerous attempts to settle the matter, there is
still disagreement about whether the magnetic moments or-
der parallel �easy-axis anisotropy�7,10,14,16 or perpendicular
�easy-plane anisotropy�4,11,17,18 to the chains. One way to re-
solve this issue that has been ignored until now is to identify
the universality class to which the antiferromagnetic phase

FIG. 1. �Color online� �a� Isolated CuO4 plaquettes form colin-
ear chains along c, which are connected by BiO4 units and �b�
looking down along the chains.
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transition in Bi2CuO4 belongs. To this end, we have mea-
sured the thermal expansion and heat capacity of single-
crystal Bi2CuO4 in order to study its critical behavior. We
have extracted the critical exponent � and ratio of the lead-
ing singularity amplitudes A+ /A− from these measurements
and found that they correlate well with predictions for the
three-dimensional Ising model. This universality class as-
signment is consistent with easy-axis anisotropy.

II. EXPERIMENT

Single-crystalline Bi2CuO4 was grown by the floating-
zone method. Polycrystalline rods containing 1% CuO ex-
cess were synthesized from oxide starting materials Bi2O3
�99.99%� and CuO �99.995%�. The powder was reacted in
air at 600, 650, 700, and 725 °C for 24 h each, between
which it was subjected to grinding by mortar and pestle and
planetary ball milling for 2 h at 200 rpm. Polycrystalline rods
were pressed by hand using a previously described
technique,19 except that quartz tubes were substituted for alu-
mina tubes due to their less reactive interface with the
pressed rod. The pressed rods were reacted a final time at
750 °C for 24 h.

Growth parameters were selected to replicate conditions
for the floating-zone growth of Bi2CuO4 as published in Ref.
20. Crystal growth was conducted in air �1 atm� with a 10
mm/h growth rate and 30 rpm counterrotation. The surface
tension of molten Bi2CuO4 is too low to maintain a stable
molten zone throughout the course of a long, slow growth
which explains previous use20 of a rather fast growth rate.
We found that a 5 mm/h growth speed yielded higher-quality
crystalline boules than those grown at 10 mm/h, though
growing at lower speeds required constant adjustments to the
molten zone. All grown boules had an affinity for cleaving to
reveal the �00l� plane and seemed to grow approximately
along �1 0 2�. Samples were cut from the boule, oriented by
back-reflection Laue diffraction, and polished to form a par-
allelepiped with faces perpendicular to the principal crystal-
lographic directions.

High-resolution thermal expansion and heat capacity were
measured on samples originating from the same crystal.
Thermal expansion was measured using a dilatometer cell,
constructed from fused quartz, which is sensitive to total
length changes on the order of 0.1 Å.21 The sample used in
our dilatometry measurements was 3.191 mm along a and
1.696 mm along c. Data were collected on warming while
sweeping the temperature at a rate of 0.20�1� K/min. Heat
capacity was measured using the physical properties mea-
surement system heat-capacity option from Quantum Design
which uses a thermal relaxation technique.

III. RESULTS AND DISCUSSION

Linear thermal expansion �L /L along a and c was mea-
sured on warming and the resulting data are displayed in Fig.
2. The raw data were corrected only for the thermal expan-
sion of quartz, from which the dilatometer cell is con-
structed, and for the empty cell effect as described in Ref. 21.
The coefficient of thermal expansion, �=d��L /L� /dT, is ob-

tained from point-by-point differentiation of �L /L without
prior processing or smoothing of the data and is displayed in
Fig. 3. Ignoring, for now, the effect of antiferromagnetic or-
der on �L /L and � around 43 K, we observe significant
anisotropy. Tetragonal Bi2CuO4 belongs to the class of axial
crystal structures which always exhibit two unique thermal-
expansion coefficients �� and �� taken to be along c and a,
respectively. The ratio of �� and �� is an excellent measure
of anisotropy and is expressed as22,23

��

��

=
�C11 + C12��� − 2C13��

C33�� − C13��

. �1�

�� /�� is a function of elastic constants and the weighted
mean Grüneisen parameters �� and ��, which are averaged
over individual Grüneisen parameters ��,j and ��,j �for the

FIG. 2. Linear thermal expansion �L /L along a and c between
5 and 300 K. The insets display the behavior along both axes in the
vicinity of the antiferromagnetic phase transition �TN denoted by
arrow�.

FIG. 3. Linear coefficient of thermal expansion, defined by �
=d��L /L� /dT, along a and c.
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jth phonon mode� and weighted by the heat-capacity contri-
bution Cj of that mode.24 A crystal described by space group
P4 /ncc �D4h

8 � has six independent elastic constants.25 Equa-
tion �1� contains four of them omitting only C44 and C66
because they result in rotation of the crystal. Examination of
Eq. �1� suggests that the observed anisotropic thermal expan-
sion arises from the interplay of thermal stress coefficients
�proportional to �� and elastic constants.22 Unfortunately, we
cannot compare the results of Eq. �1� with our data because
the elastic constants of Bi2CuO4 have not been measured.
Instead, we compare the observed anisotropy to other
sources. For example, neutron-diffraction experiments show
a reduction in the lattice parameters between 290 and 1.5 K
of 0.0588�2�% and 0.393�2�% along a and c, respectively.7

These are consistent with our measurements26 of �L /L
which show reductions of 0.07�2�% and 0.371�1�% between
300 and 5 K along those same directions. Furthermore, re-
finements of thermal parameters from neutron diffraction ex-
hibit an anisotropy wherein the thermal motion of Bi, Cu,
and O ions is �3–4 times larger along c than along a.5,7

This implies that the lattice is stiffer along a than along c
which is also in agreement with our measurements.

The heat capacity of Bi2CuO4 is displayed in Fig. 4. Our
results are consistent with previous publication of CP data
for this system.27 At low temperature, the data were suc-
cessfully described by CP=�T3 �see upper inset of Fig. 4�,
where �=�Ph+�AFM represents, in general, a combination of
phonon and antiferromagnetic spin-wave contributions to
CP.28 Attempts to extract a linear temperature term represent-
ing electronic degrees of freedom were predictably unsuc-
cessful given the compound’s insulating ground state �2 eV
band gap�.29 Neutron-diffraction studies of spin-wave disper-
sion in Bi2CuO4 demonstrate the existence of a 2.1 meV
�24.4 K energy gap of the lowest-energy spin-wave branch
at the zone center.4 Therefore, our low-temperature fit of
CP �2–13.5 K� is expected to be free of any spin-wave
contribution and is dominated by phonons ��=�Ph�. The

Debye temperature of Bi2CuO4 is a function of �Ph and is
calculated �D�108 K from our optimized �=1.56
�10−3 J mol−1 K−4. At high temperature �T	�D�, CP as-
ymptotes toward 21R�174.6 J mol−1 K−1 which is signified
by a dashed line in Fig. 4. This asymptotic value is predicted
by the classic Dulong-Petit law for a compound with seven
ions per formula unit.

In the vicinity of TN, anomalies corresponding to antifer-
romagnetic ordering of Cu2+ spins are observed in �L /L and
� along each principal crystallographic axis �Figs. 2 and 3�
and in CP �Fig. 4�. In the case of �L /L, the anomalies are
characterized by an abrupt change in slope and are high-
lighted in the upper and lower insets of Fig. 2. The minimum
along a indicates the onset of negative thermal expansion
and should not be confused with TN. Lambda-like anomalies
are observed in � and CP in Figs. 3 and 4, respectively. The
anomalies in � exhibit a commonly observed anisotropy
wherein the peaks have opposite sign.30,31

CP and the volume coefficient of thermal expansion

 �
=2�a+�c� scale in the vicinity of TN in the case of a
continuous phase transition. The scaling relation,32

CP
� � �
T , �2�

is commonly referred to as a Pippard relation, where CP
�

�CP− f�T� and f�T�=a−bT is a linear background.33 �
is a scaling constant with units of joule per mole per
kelvin which is inversely proportional to the pressure
derivative of the transition temperature dTN /dP=� /�,
where � is molar volume.32 For Bi2CuO4, satisfactory
scaling between 
T and CP

� �not shown� is achieved for
�=−3.96�4��104 J mol−1 K−1. We calculate dTN /dP=
−1.59�2� K GPa−1 where we have used �=6.30
�10−5 m3 mol−1. Unfortunately, there are no direct mea-
surements of dTN /dP for Bi2CuO4 with which we can com-
pare this calculation but our value is the same order of mag-
nitude as other antiferromagnets.30,31

Satisfaction of the scaling relation CP
� ��
T implies that

any expression used to study the critical behavior of CP may
be used with equal justification to study �
T.30–32,34,35 The
canonical expression for critical behavior we shall employ is

�
T �
A

�
	t	−��1 + E	t	�� + B + Dt , �3�

where �=0.5, t��T−TN� /TN is the reduced temperature, and
plus-minus subscripts represent quantities which are different
above �+� and below �−�TN, respectively. However, instead
of studying the volume behavior of 
T with Eq. �3�, we
chose to study the behavior along the two distinct crystallo-
graphic axes ��aT and �cT�. It has been established for a few
cases35 that the characteristic elements of critical behavior,
including � and A+ /A−, are identical along distinct crystallo-
graphic axes. This result makes a general intuitive sense but
it would be interesting to determine whether or not it holds
for Bi2CuO4. If it does hold true, we have two independent
data sets from which we can extract information about its
critical behavior.

FIG. 4. Heat capacity of Bi2CuO4. Note that the line in the main
figure is not a fit but is rather a guide to the eyes. The upper inset
highlights the T3 dependence of CP at low temperature by fitting a
line through a plot of CP /T against T2. The lower inset highlights
the anomaly around TN.
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We employ a Levenberg-Marquardt algorithm �nonlinear
least squares� to fit each �T data set around TN with the
critical expression in Eq. �3�. The data we studied ��a�aT
and �c�cT� were multiplied by scaling constants �a=−1.0
�105 and �c=1.0�104 instead of �=−39 600. These values
were chosen purely for convenience and have no physical
significance. We see from Eq. �3� that we can multiply
through by a constant without influencing fit parameters ex-
cept for A, B, and D �no influence on � and A+ /A−, for
example�. When we wish to compare best-fit parameters
from the fits along each axis which are sensitive to the scal-
ing constant, we first multiply each by an appropriate con-
stant so that �a=�c.

The experimental uncertainty of our �T data was esti-
mated from the standard deviation of the residuals �which
exhibit reasonably Gaussian characteristics� of a sixth-order
Chebyshev polynomial fit to the data in the critical tempera-
ture regime. This uncertainty was inserted into the chi-square
minimization function, from where it propagates into the
best-fit parameter uncertainties. We have adhered to the cus-
tomary practice36 of identifying the square root of the diag-
onal elements of the formal covariance matrix with the sta-
tistical standard errors of the best-fit parameters. This is
justifiable so long as our measurement errors are truly Gauss-
ian, which we believe to be the case.

We performed an identical procedure for fitting the criti-
cal expression �Eq. �3�� to our �T data along each axis. This
procedure began by ignoring corrections to scaling and con-
sidering instead a simple case where we constrain E−=E+
=0. This constraint limits the temperature range over which
the data may be fit, but allows us to get an initial estimate of
the critical temperature regime by adjusting the fitted tem-
perature range until it was maximized while still producing
an acceptable fit to the data. We then allowed E− and E+ to be
different from zero, which increases the fittable temperature
range. In order to account for all possibilities, we considered
two cases: application of the constraint E−=E+ and relaxing
that constraint so that E−�E+.

The resulting fits for the three cases along both axes are
displayed in Table I. The first thing we observe is that � and
A+ /A− are similar in all six fits which implies that the critical
behavior along the two independent, principal crystallo-
graphic directions does appear to be the same. Some of the
parameters have no uncertainty listed. We observed strong
correlations between A and B which resulted in large cova-
riances between them and absurdly large calculated uncer-
tainties. In those cases, we chose to fix B at its best-fit value

and refit the data over the remaining parameters. This proce-
dure results in much lower uncertainties which certainly un-
derestimate the true uncertainty but nonetheless are more
reasonable. Negative values for the analytic background
terms �B and D� in many of the fits may appear unphysical.
Certainly, when fitting the critical behavior of CP, the ana-
lytic background parameters must be positive. However, if
we examine the scaling relation CP=�
T+ f�T�, we see that
we should consider the analytic background of �
T
=2�� /�a��aT+ �� /�c��cT and then add f�T� to it to yield the
effective background associated with CP. When we perform
this calculation with our best-fit values, the resulting linear
background is perfectly consistent with expectations that its
slope and intercept be positive. There is no such expectation,
however, for the individual backgrounds of each �T data set.

Noticeably absent from Table I are values for TN. We
found that allowing TN to vary as a fittable parameter, led to
our algorithm’s failure to converge to a least-squares solu-
tion. So instead, we fixed TN at reasonable values and found
a narrow temperature range over which fits were optimized.
We repeated this procedure for each fit in Table I finding that
the optimized TN values were 43.381�1� K. Therefore, we
chose to simply fix TN=43.381 K for each fit.

We display the critical behavior fits �case where E−�E+
�0� and our �a�aT and �c�cT data in Fig. 5. Small oscilla-
tions in the measured data around 45–50 K are a conse-
quence of our dilatometer’s remarkable sensitivity to modest
10 mK/min oscillations about our 0.2 K/min warming rate in
that temperature region. The fits in each case are good over a
reduced temperature range of �log	t	=−0.75 to �log	t	=
−2.0. A high-quality single crystal with a magnetic transition
should exhibit a critical temperature range that begins by
�log	t	=−1.0 and ends close to log	t	=−4.0 where even
modest crystalline defects begin to influence critical
behavior.37 It may then be tempting to discount our results
which penetrate the critical region no further than about
log	t	=−2.0 by claiming the sample quality and/or measure-
ments were poor. However, neither of these explanations is
accurate. Our limited critical region is largely a consequence
of numerically differentiating �L /L to yield �.38 Simple nu-
merical differentiation of f�T� proceeds by using the first
term of the infinite series expansion �in powers of �T�

f��T� �
f�T + �T� − f�T�

�T
+ O��T� , �4�

where �T is the data density �temperature difference be-
tween neighboring data� and O��T� represents the series ex-

TABLE I. Least-squares best-fit values for parameters in Eq. �3� along a and c for various constraints.

Axis Constraint A−
a A+ /A− � E− E+ B a D a

a E−=E+=0 4.31�5� 0.737�6� 0.130�1� 0.0 0.0 −30.003 1.4�8�
a E−=E+�0 3.8�2� 0.73�4� 0.096�3� −0.34�2� −0.34�2� −29�1� −0.5�5�
a E−�E+�0 2.69�3� 0.693�4� 0.111�1� −0.53�1� −1.69�2� −9.5168 24.3�5�
c E−=E+=0 0.65�2� 0.77�1� 0.109�2� 0.0 0.0 −3.6610 8.6�2�
c E−=E+�0 0.39�6� 0.6�1� 0.11�1� −1.2�1� −1.2�1� 0.7�4� 5.9�3�
c E−�E+�0 0.556�6� 0.64�1� 0.111�5� −0.75�1� 0.13�2� −1.53�9� 2.7�1�
aUnits of joule per mole per kelvin.
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pansion with its leading term of order �T. In the limit �T
→0, the higher-order terms vanish and we yield the tradi-
tional definition of a point-by-point derivative. However, if
�T is finite, as it is in all measurements, truncating the series
results in an error36 � which is dominated by the leading
truncated term �=− 1

2 f��T��T. The presence of a nonzero �
tends to broaden the transition in the region immediately
around TN and to cut down the singularity’s height.38 These
two effects conspire to obscure the true critical behavior as
TN is approached, causing premature deviation from the ex-
pected behavior. We address these issues in detail in a manu-
script which is currently in preparation.38 Despite a some-
what limited critical region, there is no doubt that our fits are
probing the true critical behavior of the system, and though
we would prefer to have a more expanded temperature range,
our analysis and results remain valid.

The values of � and A+ /A− from our fits as summarized in
Table I are not only self-consistent with one another, they are
consistent with expected behavior for the three-dimensional
Ising universality class. Unfortunately, there is not an exact
solution for the Ising model in three spatial dimensions,
however, a variety of techniques have been employed to
yield approximate values for � and A+ /A−. Pelissetto and
Vicari39 summarize the results of numerous three-
dimensional Ising model studies including 21 which employ
the high-temperature series-expansion technique, 24 using
Monte Carlo simulations, and 11 using low-temperature se-
ries expansions. If we average the results for each technique,
we find �=0.108�2�, �=0.112�4�, and �=0.121�4�, respec-
tively, which provides a range 0.106���0.125. The inset
of Fig. 5 displays the results for � from Table I �fit over
maximized temperature ranges� along with other values ob-
tained from fits over smaller temperature ranges and with
various constraints on E. These values mostly fall within

the range between 0.106 and 0.125. Furthermore, our values
for A+ /A− from Table I are also most consistent with the
three-dimensional Ising universality class. Expansions to
second order in � where �=4−d and d is the lattice dimen-
sionality, lead to A+ /A− values40 of 0.52�1�, 1.03�1�, and
1.52�2� for an order parameter with one, two, and three di-
mensions, respectively, assuming a three-dimensional lattice
��=1�. Our least-squares fits give A+ /A−�0.7 which is clos-
est to a one-dimensional order parameter �Ising model�.
Therefore, we can say that both � and A+ /A− correlate most
closely with the three-dimensional Ising model.

Identification of Bi2CuO4 as a three-dimensional Ising an-
tiferromagnet distinguishes it from other 214 cuprates which
are generally classified among two-dimensional Heisenberg
systems. More importantly, it suggests that Bi2CuO4 is an
easy-axis antiferromagnet with its magnetic moments polar-
ized parallel to c. This conclusion is consistent with
theory10,16 and two-magnon Raman14 studies while torque
magnetometry17 and antiferromagnetic resonance13,18 experi-
ments offer the strongest and most compelling support for
the opposite conclusion of easy-plane anisotropy. Compared
with these latter experiments, we feel our study of critical
behavior is, perhaps, a more straightforward method to ad-
dress the easy-axis vs easy-plane anisotropy problem in
Bi2CuO4 because we arrived at our conclusion without in-
voking any prior assumptions about the details of its mag-
netic order. In any case, our result should help to settle the
issue of magnetic anisotropy in Bi2CuO4 as future studies
investigate this question further.

IV. CONCLUSION

We have measured thermal expansion and heat capacity
on single-crystal samples of Bi2CuO4 in order to study the
critical behavior of its antiferromagnetic transition. By em-
ploying a scaling relation between CP and 
T, we were able
to fit the critical behavior exhibited by our measurements of
thermal expansion with an expression derived for heat capac-
ity. The results of the scaling analysis allowed us to calculate
the pressure derivative of the Néel temperature dTN /dP=
−1.59�2� K GPa−1. As a consequence of our choice to study
the thermal expansion coefficients along a and c rather than
the volumetric coefficient of thermal expansion, we were
able to show that the critical behavior along both axes was
identical and, therefore, we had two independent data sets
from which we could extract � and A+ /A−. We performed
nonlinear least-squares fitting under a variety of constraints
and all our results are consistent with the three-dimensional
Ising universality class. This classification suggests Bi2CuO4
exhibits easy-axis anisotropy.
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FIG. 5. �Color online� �a�aT and �c�cT �closed and open
circles, respectively� in the vicinity of TN and their respective fits
�red line� to Eq. �3�. The inset displays � from fits over maximized
temperature ranges �results in Table I� as well as some smaller
temperature ranges, assuming a variety of constraints on E for
both a- and c-axis data. The horizontal lines indicate a range of
expected values for the three-dimensional Ising universality class as
calculated by various approximation methods.
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