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In our work, we theoretically demonstrated the possibility to control magnetic configurations and magne-
toresistance of a wide class of magnetically frustrated materials with applied voltages. This phenomenon may
be viewed as the bulk material counterpart of spin-transfer torque and may represent a critical interest both
from applications and fundamental points of view. It is shown that the magnetic configuration of bulk magnets
strongly depends on position of the Fermi level and applied voltage. We propose this phenomenon for future
experimental studies suggesting materials with a strong variation in density of states near the Fermi level for
different magnetic configurations.
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I. INTRODUCTION

The discovery of giant magnetoresistance �GMR� �Refs. 1
and 2� in magnetic multilayered structures has generated a
new field of spin-based electronics3,4 or spintronics, which
combines two traditional fields of physics: magnetism and
electronics. A spin-valve concept5 used in GMR structures
allows controlling the magnetic configuration of its ferro-
magnetic layers by �i� application of relatively small mag-
netic fields or �ii� passing spin-polarized currents using spin-
transfer torque �STT�.6,7 These factors made them ideal
systems for spintronic applications such as magnetic random
access memories and magnetic field sensors used in read
heads.

The advent of GMR has considerably increased an inter-
est in related phenomenon in bulk materials, colossal mag-
netoresistance �CMR�,8,9 which is several orders higher than
GMR and unlike the latter, can be viewed as an “intrinsic”
property of material itself. To date, the CMR is typically
observed in certain manganite compounds with the bulk
magnetic configuration controlled by applying the magnetic
field �similar to method �i� mentioned above for spin valves�
but requires characteristic magnetic fields of several tesla.9

Such high fields make them inappropriate for use in spin-
tronic applications where appropriate scale should be about
oersteds. However, one may expect the possibility of control-
ling the intrinsic magnetic configuration of the bulk materials
�and thus of CMR� by passing spin-polarized currents
through them similar to STT mechanism �ii� mentioned
above for spin valves. Since the STT in the latter originates
from noncollinearity of their adjacent magnetizations, the
same requirement should hold for magnetic moments in the
bulk materials.

Here we promote magnetically frustrated bulk materials
as a new paradigm for spintronic applications with high mag-
netoresistance which can be controlled with relatively small
applied voltages and does not require injection of spin-
polarized currents. This phenomenon may be viewed as the
“bulk” counterpart of STT in layered spintronic structures
�spin valves� and may represent a crucial interest both from
applications and fundamental points of view. Below we dem-

onstrate that the magnetic configuration of the bulk frustrated
material is changed under applied voltage leading to the
strong variation in its conductance.

The key mechanism at stake is a somewhat microscopic
equivalent of spin torque, allowing for local spin flips within
the microscopic spin texture. Those local moves require non-
collinearity of the spin configurations, which would other-
wise be insensitive to the current. In order to demonstrate the
possibility of switching between different magnetically or-
dered configurations, we design a toy model which, for a
given set of parameters, always has a unique noncollinear
ground state. Noncollinearity is achieved by introducing
multiaxial anisotropies for the localized moments. When
voltage is applied, this model will evolve to different well-
defined noncollinear ground states, similar to a spin model
which evolves from one magnetic configuration to another
one through application of a magnetic field. The details of
the switching dynamics are beyond the scope of this work as
this aspect will be specific to each material. In addition, simi-
larly to the case of GMR,1,2 we do not consider the bistability
issue because competition between different ground states
occurs at the microscopic level and once the nonequilibrium
current is shut down, the model goes back to its initial mag-
netic configuration.

II. MODEL

We consider a square lattice of classical localized mo-
ments Si with strong local on-site uniaxial anisotropy �D0�
along square diagonals �represented by unit vector ni� and
coupled through intersite exchange Iij. In addition, moments
Si are coupled with conduction electrons through the local
exchange �J0� described here quantum mechanically using
tight-binding model. Of note, since exchange interaction in-
volves classical localized moments our description remains
to be a single-electron problem. Unlike collinear systems,
noncollinearity provided by magnetic frustration is a key in-
gredient for switching phenomenon proposed here since its
origin is due to STT mechanism acting locally by conduction
electrons on localized moments Si. The Hamiltonian of the
system has the form
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Ĥ = − �
i,j

IijSi · S j − D0�
i

�ni · Si�2 + t�
i,j,�

�ĉi
†�ĉj

� + H.c.�

− J0�
i

ĉi
†����� · Si�ĉi

�, �1�

where Iij and J0 are the intersite and the local exchange con-
stants, respectively, D0 is the uniaxial anisotropy constant,
t is the hopping integral between two neighboring sites,
ĉi

†� and ĉi
� are the creation and annihilation operators of the

conduction electron with the spin � on site i, and ��� is the
vector of Pauli matrices. For the chosen model, nearest-
neighbor interactions I1 are irrelevant �because nearest-
neighbor spins are always orthogonal� so that only the
second-nearest neighbor one I2 is taken into account. We
emphasize that dealing with longer ranges interaction does
not affect further results reported here since only energy dif-
ferences between magnetic configurations matter.

Even though we use a toy model to demonstrate a con-
cept, realistic realizations would involve more complicated
structures. Several multiaxial anisotropic rare-earth-
transition-metal intermetallics systems are relevant candi-
dates: in these materials frustration arises due to the compe-
tition of crystal-field anisotropy, exchange and quadrupolar
interactions �for a review see Ref. 10�. These intermetallics
systems often show a noncollinear magnetic structure: this is
the case, for example, of TbGa2,11 HoGe3,12 uranium
compounds,13 and transition-metal-based compounds such as
MnSi,14–16 MnIrSi,17,18 FeMn,19,20 FeGe2,21 and PdCrO2.22

Naturally, pyrochlores in which frustration is due to the crys-
tal structure are also relevant candidates, as it is well known
that in such exotic systems, noncollinear low temperature
magnetic phases are often stabilized,23 among those, few me-
tallic compounds have been identified such as Pr2Ir2O7
�Refs. 24 and 25� and the family of the pyrochlore Molyb-
dates, R2Mo2O7.26 Clearly, each of these systems should be
described by appropriate microscopic Hamiltonians in order
to fully take into account all magnetic properties, including
the effect of anisotropies, noncollinearity of the ground
states, ordering temperatures, etc.

Coming back to the model Hamiltonian �1�, in the limit of
low temperature and D0→�, the localized moments Si are
strictly collinear with ni�Si �ni� and the total energy of the
system within a constant shift becomes

Etot = − I2�
i,j

Si · S j + Tr�Ĥ�̂�

= − I2�
i,j

Si · S j −
i

2�
�

j
� EGjj

��E�dE , �2�

where G� and �̂ represent the “lesser” nonequilibrium
Green’s function and density matrix, respectively,27 and the
Green’s function indices include spin index as well.

We adopt a conventional transport approach where the
system is considered to consist of three regions: semi-infinite
left �L� and right �R� regions connected to the middle scat-
tering region �M� which is assumed to be very long. Despite
of all three regions being identical, such a subdivision is
chosen in order to consider all nonequilibrium processes oc-

curring in the scattering region M while the left and right
regions are in thermodynamical equilibrium described with
Fermi-Dirac distribution functions fL�R�= f�E−�L�R��, where
�L�R� is the chemical potential in the left �right� region. Omit-
ting spin indexes, the lesser Green’s function can be written
as

Gij
� = i�fL	i

L	 j
L� + fR	i

R	 j
R�� , �3�

where 	 j
L�R� is the single-electron wave function on site j

�M incident from the left �right�. It is straightforward from
the definition of retarded and advanced Green’s functions
that

Gjj
a − Gjj

r = i�	 j
L	 j

L� + 	 j
R	 j

R�� . �4�

Since the middle region is assumed to be very long, the finite
potential drop eV=�L−�R results into infinitesimal change
from one unit cell to another within the middle region M. In
this case the reflections from the L �M and R �M boundaries
are negligible and one can write for the left �right� wave
functions 	 j

L�R�=cL�R�exp�+�−�kxaj�, where kx is the wave
vector along x axis and a is the lattice constant. One can
show that the expression for the charge current which is pro-
portional to �fL− fR� �Ref. 28� is satisfied when �	 j

L�2= �	 j
R�2.

Indeed, the charge current can be expressed using the lesser
Green’s function as29

I 	� ��Gj+1,j
� − Gj,j+1

� ��dE .

Using Eq. �3� and aforementioned wave functions, it yields
the following form:

I 	� sin kxa�fL�cL�2 − fR�cR�2�dE

which is proportional to �fL− fR� only when �cL�2= �cR�2 �and
consequently �	 j

L�2= �	 j
R�2�.

Then, it straightforwardly follows from Eqs. �3� and �4�
that

Gjj
��E� = i�fL + fR�I�Gjj

r �E�� , �5�

where I notation for imaginary part is used. The total energy
given by expression �2� of the system per a unit cell yields

Etot = − I2�
i,j

Si · S j −
1

2�
� �fL + fR��

j

I�Gjj
r �E��EdE ,

�6�

where Gjj
r �E� is calculated as jth diagonal element of the

matrix �E− Ĥ+ i
�−1. Thus, the magnetic configuration corre-
sponding to the minimum of the total energy is resulting
from the interplay of intersite exchange interaction between
localized moments on the next-nearest-neighbor sites �the
first term in Eq. �6�� and the exchange interaction between
the localized moment and the conduction electron described
by the second term in Eq. �6�.

For simplicity, we consider a four-site unit cell with three
possible magnetic configurations of the system �Si �ni�:
“4in,” “3in1out,” and “2in2out” �see Fig. 1�. It is sufficient
considering these configurations only since other possible
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configurations, such as “4out,” “3out1in,” and “2out2in” are
equivalent to the chosen ones depending on a choice of the
unit cell. We choose for parameters J0=2 eV, t=1 eV, and
I2=0.1t.30

III. RESULTS AND DISCUSSION

In Fig. 2, we show the dependence of the total energy for
the three aforementioned selected configurations as a func-
tion of applied voltage. First, one can note that Etot strongly
depends on the Fermi-level position which is used to repre-
sent different materials. Indeed, when the system is in equi-
librium, its “2in2out” �“4in”� state is energetically more fa-
vorable for EF=−2 eV �−2.5 eV� as shown in Figs. 2�a� and
2�b�, respectively. Furthermore, the strong variation in the
total energy as a function of applied voltage causes the sys-
tem to switch from an equilibrium state to another one at
certain critical voltage �see Fig. 2� with “3in1out” interme-
diate state stabilized at intermediate voltages. Moreover, fur-
ther increase in the applied voltage may again reverse the
state of the system �Fig. 2�a��. This demonstrates that the
magnetic configuration of the system can be controlled by
the applied voltage.

The mechanism of these dependences may be understood
from the corresponding total density of states �DOS� �Ref.
31� for considered three configurations represented in Fig. 3
where for convenience purposes only negative energy range

is shown since DOS�E�=DOS�−E�. The DOS for all mag-
netic states have sharp peaks and band gaps causing strong
dependence of the preferable configuration on the Fermi
level EF both in and out of equilibrium. Indeed, as on can see
from the second term in Eq. �6�, the total energy is defined
by the sum of two products of the DOS with E integrated till
�L and �R. In the absence of applied voltage, Etot is calcu-
lated with �L=�R=EF, i.e., defined by the position of the
Fermi level indicated by black arrows in Fig. 3 correspond-
ing to two values −2 eV and −2.5 eV used in Figs. 2�a� and
2�b�, respectively.

One might expect that the conductances of two aforemen-
tioned magnetic configurations may strongly differ due to
significant differences in their DOS, thereby leading to high
magnetoresistance values defined as ��xx

2in2out−�xx
4in� /�xx

4in,
where �xx

4in and �xx
2in2out are the conductances for “4in” and

“2in2out” outermost magnetic configurations, respectively.
We calculate the linear response conductance using the Kubo
formula32

�xx =
�e2�

L
Tr�v̂x
�E − Ĥ�v̂x
�E − Ĥ�� ,

where v̂x is the electron velocity operator along the applied
voltage direction, L→� is the length of the system, and


�E − Ĥ� = −
1

�
I�Ĝr�E�� =

i

2�
�Ĝr�E� − Ĝa�E�� .

The calculated conductance of the system for three con-
sidered magnetic configurations are represented in Fig. 4. As
one can see, conductances strongly depend on position of the
Fermi energy EF and strongly correlate with DOS picture
�see Fig. 3�. For the two values of the Fermi energy used
above, the MR ratio is found to be about 336% for the case
when EF=−2.5 eV and becomes infinite for EF=−2 eV.

One can note that similar behavior is expected to occur in
systems with collinear antiferromagnetic �AF� structure: de-
pending on the band structure and the band filling, the ferro-
magnetic state can be close in energy with the AF one, and
an applied voltage could stabilize the ferromagnetic state.
However in such a case, there is no spin torque since the
structure is colinear, and no mechanism for spin reversal �ex-
cept through spin waves�. On the contrary, the mechanism

current

1

2 3

4

(a) (b) (c)

FIG. 1. �Color online� �a� “4in,” �b� “3in1out,” and �c�
“2in2out” configurations for square lattice.

FIG. 2. �Color online� �a� and �b� Total energy as a function of
applied voltage for EF=−2 eV and EF=−2.5 eV, respectively,
shown by arrows in Fig. 3.

FIG. 3. �Color online� Total density of states for “4in” �solid�,
“3in1out” �dotted�, and “2in2out” �dashed� configurations repre-
sented in Fig. 1.
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proposed here neither require any defect, spin wave nor a
fine tuning of any kind. The noncollinear nature of the mag-
netic configurations considered provides a robust mechanism
for microscopic magnetic switching. Furthermore, this
mechanism does not require spin-polarized current injection.

In conclusion, we have shown that magnetic configura-
tions of noncollinear magnets can be controlled by applied
voltage. The proposed phenomenon is the bulk material ana-
log of spin-transfer torque used in layered spin-valve struc-
tures. In addition, magnetoresistance of these materials may
reach extremely high values which open the possibility for
their use in spintronics. We believe that our work will stimu-
late experimental studies aiming to find the proposed mecha-
nism in appropriate materials. In the long term, in combina-
tion with inverse approach of designing the crystal structure
from predefined electronic-structure properties,33 this will
open additional opportunities to expand this phenomenon to
alternative classes of materials.
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