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Magnetic-susceptibility results for single crystals of the new cubic compounds UT2Al20 �T=Mn, V, and Mo�
are reported. Magnetization, specific-heat, resistivity, and neutron-diffraction results for a single crystal and
neutron diffraction and inelastic spectra for a powder sample are reported for UMn2Al20. For T=V and Mo,
temperature-independent Pauli paramagnetism is observed. For UMn2Al20, a ferromagnetic transition is ob-
served in the magnetic susceptibility at Tc=20 K. The specific-heat anomaly at Tc is very weak while no
anomaly in the resistivity is seen at Tc. We discuss two possible origins for this behavior of UMn2Al20:
moderately small moment itinerant ferromagnetism or induced local-moment ferromagnetism.
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I. INTRODUCTION

UMn2Al20, UV2Al20, and UMo2Al20 are members of a
new family of lanthanide and actinide compounds RT2M20

�R=Ce, Yb, Gd, and U; T=transition metal; M =Zn and
Al�.1–7 These compounds crystallize in the CeCr2Al20 type

cubic structure �Fd3̄m� and display interesting features such
as heavy fermion or intermediate-valence behavior.4–7 In this
structure, every f atom is surrounded by 16 zinc atoms in a
nearly spherical array of cubic site symmetry, which leads to
small crystal-field splittings. Because the R-atom content is
less than 5% of the total number of atoms, and the shortest
f / f spacing is �6 Å, these compounds are valuable for
studies close to the impurity limit but in ordered systems.

We have recently reported on the behavior of the heavy
fermion paramagnets UCo2Zn20 �Refs. 5 and 8� and
URu2Zn20 �Ref. 8� as well as of UIr2Zn20,

6 which exhibits
weak itinerant ferromagnetism. In this report we present the
magnetic susceptibility of UMn2Al20, UV2Al20, and
UMo2Al20, and the specific heat, resistivity, magnetization,
and neutron-scattering spectra for UMn2Al20. For UV2Al20

and UMo2Al20, Pauli paramagnetism is observed. For
UMn2Al20, the magnetic susceptibility shows a ferromag-
netic phase transition at 20 K where the anomaly in the spe-
cific heat is weak and no anomaly is observed in the resis-
tivity. The neutron-diffraction profiles of both polycrystal
and single-crystal samples show no obvious extra contribu-
tion from the ferromagnetism below the transition tempera-
ture. The inelastic neutron-scattering spectra of a polycrystal
sample exhibit no obvious magnetic excitations in the energy
transfer range of 5–50 meV. We discuss two possibilities to
explain the magnetic behavior in UMn2Al20: heavy fermion
ferromagnetism of itinerant 5f electrons or induced ferro-
magnetism arising from a low-energy singlet-triplet crystal-
field excitation of localized 5f electrons.

II. EXPERIMENT

Single crystals were grown in Al flux with an elemental
starting ratio U:T :Al=1:2 :50. Elemental purities were
99.9% for the �depleted� U, 99.99% for the Mn, and
99.9999% for the Al. The crucible was sealed under vacuum
in a quartz tube and was heated to 1050 °C quickly in order
to avoid the reaction between Al and the quartz tube. After
holding at 1050 °C for 4 h, it was cooled at a rate 5 °C /h to
700 °C. At this point the excess Al flux was removed by
using a centrifuge. The magnetization was measured in a
commercial superconducting quantum interference device
magnetometer. The specific-heat measurements were per-
formed in a commercial physical properties measurement
system �PPMS�. The electrical resistivity was also measured
in the PPMS using the four wire method. The powder
neutron-diffraction experiment was performed on the high-
resolution diffractometer �BT-1� at the NIST Center for Neu-
tron Research �NCNR�; the sample was a powder ground
from single crystals. The single-crystal neutron-diffraction
experiment was performed on the single-crystal diffracto-
meter �SCD� at the Lujan Center, LANSCE, at Los Alamos
National Laboratory. The inelastic neutron-scattering experi-
ments were performed on a 35 g powder sample using the
high-resolution chopper spectrometer �Pharos� at the Lujan
Center.

III. RESULTS AND DISCUSSION

The samples were determined to be single phase within
the resolution of the x-ray, neutron powder, and neutron
single-crystal diffraction experiments. Refinements of the
single-crystal and powder sample diffraction patterns imply
full occupancy of the atom sites. The results of the refine-
ment are shown in Table I. The magnetic susceptibility ��T�
of UMn2Al20 is shown in the inset of Fig. 1�a�. A dramatic
enhancement at low temperature is observed, indicating a
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ferromagnetic transition at Tc�20 K. Due to the small co-
ercive field �9 Oe, see below�, the zero-field-cooling and
field-cooling data are almost the same when the measured
field is 0.1 T. Due to the relatively small magnetic moment of
the uranium �0.89 �B, see below� and the small fraction of
uranium atoms in the unit cell �less than 5%�, the neutron-
diffraction results on both the powder and the single-crystal
samples did not display any obvious extra intensity at tem-
peratures below the transition temperature that would corre-
spond to ferromagnetic ordering.

The inverse magnetic susceptibility 1 /��T� of UMn2Al20
is shown in Fig. 1�a�. A fit of the inverse susceptibility to the

formula ��T�=C / �T−��+�0 for temperatures above Tc gives
�=21.2 K, �0=0.00253 emu /mole, and C
=1.23 emu K /mole. This value of Curie constant, which is
reduced relative the free ion f2 or f3 Hund’s Rule value
1.6 emu K /mole, is typical of itinerant uranium compounds.
The inverse susceptibility 1 /��T� in the low temperature
range �25–50 K� is shown in Fig. 1�b�. The fit to the form
��T�=C / �T−Tc�� in this temperature range yields Tc
=22.7 K, C=1.17 emu K /mole, and �=0.99, which is es-
sentially the mean-field critical exponent ��=1�. The magne-
tization M�T� for T�Tc is shown in the inset of Fig. 1�b�.
The fit to the formula M =M0�

Tc−T

Tc
�� yields M0=0.89 �B,

Tc=22.1 K, and �=0.49 which is again the mean-field
theory exponent ��=0.5�.

The effective moment T� versus temperature is compared
for several compounds UT2M20 �T=Mn, Ir, Ru, V, and Mo;
M =Al and Zn� in Fig. 1�c�. The dashed line represents the
Curie constant for the Hund’s rule coupled 5f2 or 5f3 free
ion. The linear behavior of T� for UV2Al20 and UMo2Al20
indicates that the magnetic susceptibilities for these two
compounds are essentially temperature independent; the val-
ues 0.0011 emu/mole for UV2Al20 and 0.00087 emu/mole for
UMo2Al20 are typical of uranium-based Pauli paramagnets.
Both the heavy fermion compound URu2Zn20 and the weak
itinerant ferromagnet UIr2Zn20 �Ref. 6� exhibit similar be-
havior at high temperature with T� of order
1.2 emu K /mole, similar to the Curie constant observed for
UMn2Al20 in Figs. 1�a� and 1�b�. For both UIr2Zn20 and
UMn2Al20, the upturn in T� at low temperatures corresponds
to the onset of ferromagnetic fluctuations, which occur al-
ready for T�Tc. Given that the formula ��T�=C / �T−��
+�0 fits the data for UMn2Al20 above Tc, and that the Curie
constant in this fit is smaller than the free ion value, the fact
that T� is larger than the free ion value for T�100 K clearly
arises from the presence of the large constant term �0
�0.0025 emu /mole. A possible explanation for this rather
large constant contribution is that the susceptibility of the
manganese atoms is enhanced. T-independent susceptibilities
of this order of magnitude occur, for example, for Mn atoms
in alloys of the enhanced Pauli paramagnet YMn2.9

The isothermal magnetization results at various tempera-
ture of UMn2Al20 are displayed in Fig. 2�a�. The full hyster-
esis loop at 2 K is shown on a zoomed scale in the inset.
Both the coercive field and the remnant magnetization are
very small with Hc�9 Oe and MR�0.03 �B. A linear fit to

TABLE I. Structural parameters of UMn2Al20 at room temperature from SCD and at 100 K from BT-1. Error in the last digit are in the
parentheses.

Space group Fd3̄m No. 227 aSCD=14.326�6� Å �aBT-1=14.3190�2� Å� �SCD
2 =1.984 �BT-1

2 =7.053

Atoms Position xSCD�xBT-1� ySCD�yBT-1� zSCD�zBT-1� Occupancy Uiso
SCD�	102�

U 8a 1/8 1/8 1/8 1 2.34

Mn 16d 1/2 1/2 1/2 1 3.15

Al1 16c 0 0 0 1 2.98

Al2 48f 0.4893�4��0.4913�4�� 1/8 1/8 1 3.56

Al3 96g 0.0589�4��0.0590�1�� 0.0589�4��0.0590�1�� 0.3258�4��0.3259�1�� 1 2.92

R�F2�SCD=4.76% Rw�F2�SCD=16.88% Rp
BT-1=14.29% Rwp

BT-1=17.38%

FIG. 1. �Color online� �a� Inverse magnetic susceptibility
1 /��T� for UMn2Al20. The line represents the modified Curie-Weiss
fit ��T�=C / �T−��+�0 with parameters given in the text. Inset:
��T�. Open circle is zero-field-cooling curve and solid line is the
field-cooling curve. �b� Mean field fits for 1 /� in temperature range
of 25–50 K �main panel� and for M�T� below the ferromagnetic
transition temperature �inset� with parameters given in the text. �c�
T� vs T for UMn2Al20, UV2Al20, UMo2Al20, and URu2Zn20 �data
from Ref. 8� and UIr2Zn20 �data from Ref. 6�. The dashed line is the
Curie constant for 5f3 free ion.
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the magnetization data at 2 K below 1 T gives a value
Msat�2 K�=0.90 �B for the saturation magnetization which
is essentially the same as the value M0=0.89 �B derived
from the mean-field fit of Fig. 1�b�, inset. A similar extrapo-
lation performed on the 5 K magnetization data below 1 T
yields Msat�5 K�=0.68 �B while the value extrapolated
from high field �4.5–6.5 T� is Msat�5 K�=0.81 �B. We note
that these values are much smaller than the values expected
for the J=4�5f2 ,3.58 �B� or J=9 /2�5f3 ,3.62 �B� free ions.
An Arrott plot10 is displayed in Fig. 2�b�: it clearly shows
that the Curie temperature Tc is 20–21 K.

The specific-heat measurements on UMn2Al20 and the
nonmagnetic counterpart ThV2Al20 are shown in Fig. 3�a�.
There is no obvious anomaly in the as-measured data of
UMn2Al20 near Tc. In the inset, a fit to the form �T+�T3

yields a linear coefficient 0.3 J /mole K2 and a Debye tem-
perature �D=337 K. The magnetic contribution to the spe-
cific heat Cmag is obtained by subtracting the lattice contri-
bution which is equated to the specific heat of the
nonmagnetic counterpart ThV2Al20. Both Cmag and Cmag /T
are shown in Fig. 3�b�. The data for Cmag show a broad peak
near 16 K which corresponds to a small anomaly �a curvature
change� in Cmag /T at the same temperature. The entropy as-
sociated with the magnetic specific heat is shown in Fig.
3�c�, giving a value for the magnetic entropy of R ln 2 at 46
K and showing a curvature change near Tc.

The resistivity 
�T� of UMn2Al20 is shown in Fig. 4. The
resistivity decreases with the decreasing temperature down to
10 K, below which it is a constant. There is no anomaly at 20
K associated with the ferromagnetic transition. We also dis-
play the temperature differential curve d
�T� /dT in the inset
�a� to enhance the possibility of observing a tiny anomaly in

�T�. There is still no obvious anomaly. We combine a

Bloch-Grüneisen resistivity 
BG together with a parallel re-
sistor 
P to fit 
�T� as


�T�−1 = 
P
−1 + �
0 + 
BG�−1,

where 
0 is the residual resistivity. The solid line represents
the best fit to the data. The fit gives �D=320 K, close to the
value �D obtained from the specific heat, 
0=61.7 �� cm,
and 
P=112.8 �� cm. This form of resistivity and the mag-
nitude of 
P is characteristic of many transition metal and
actinide compounds, where the parallel resistivity gives rise
to a saturation of the resistivity at a value where the mean-
free path is comparable to the lattice spacing. Recent
theory11 indicates that this saturation happens when the
electron-phonon interaction destroys lattice periodicity and
momentum conservation at elevated temperatures. For
UMn2Al20, the point of the fit is that the resistivity arises
primarily from the electron-phonon interaction, with little in-
dication of magnetic scattering.

The most interesting property of this compound is that the
magnetization measurements show clearly a ferromagnetic
transition while no obvious anomaly associated with the
transition is seen in the as-measured specific heat or the re-

FIG. 2. �Color online� �a� Magnetization of UMn2Al20 at 2, 5,
15, 20, 25, and 30 K. The extrapolations of the solid lines give the
saturation magnetization. Inset shows the hysteresis loop at 2 K. �b�
Arrott plots for several temperature. Inset shows the magnetization
at 5 K at larger fields.

FIG. 3. �Color online� �a� Specific heat of UMn2Al20 and
ThV2Al20. The inset shows C /T vs T2; the solid line is a linear fit in
the temperature range of 15–40 K. �b� Magnetic contribution to the
specific heat. The inset is Cmag /T vs temperature. �c� Magnetic
entropy associated with Cmag.

FIG. 4. �Color online� �a� The resistivity 
�T� of UMn2Al20. The
solid line is a fit to the parallel resistor model as described in the
text. Inset �a� is the temperature differential curve and �b� is 
�T�
below 35 K; no anomaly is observed at Tc.

UNUSUAL SIGNATURES OF THE FERROMAGNETIC… PHYSICAL REVIEW B 82, 094406 �2010�

094406-3



sistivity. Similar behavior is observed in the weak itinerant
ferromagnetic compound ZrZn2.12 The specific-heat coeffi-
cient Cmag /T of UMn2Al20=0.3 J /mole K2 is large, suggest-
ing that the ferromagnetic order occurs within a heavy fer-
mion state. Together with the moderately small moment of
0.90 �B, the similarity to ZrZn2 suggests that this system
may be a heavy fermion itinerant ferromagnet. In this sce-
nario, the reduced entropy and specific-heat anomaly at Tc
occurs because the entropy is already small due to the reduc-
tion in the moment by Kondo-type processes.

The Pauli paramagnetism seen for UV2Al20 and
UMo2Al20 in Fig. 1�c� is also seen in LnT2Al20 �Ln=La, Ce,
and Eu; T=Ti, Mo, and V�.1 This suggests that a tendency
for the f electron to be nonmagnetic is preferred in this struc-
ture. This lends further support to the scenario that the
ground state of UMn2Al20 is essentially that of a weakly
ferromagnetic itinerant heavy fermion compound.

The small anomalies in C�T� and 
�T� were also observed
in Pr3Tl �Ref. 13� and Pr3In,14 where induced ferromagnetic
�antiferromagnetic� order occurs at 12 K.13,14 For these com-
pounds, the Pr3+ 4f2 ground multiplet is split by the crystal
field such that the �1 singlet is the ground state and the �4
triplet is the lowest excited state. The �1 ground state
couples with �4 triplet states through the intersite magnetic
exchange interaction to induce a magnetic moment on the
ground state.13,14 In mean-field theories of the induced mag-
netic order, the ordering occurs within the singlet without
loss of degeneracy, so that a very weak anomaly in the spe-
cific heat and resistivity is expected, reflecting the lack of a
significant magnetic entropy change at the magnetic transi-
tion temperature. This has been taken as the explanation of
the small anomalies in C�T� and 
�T� in Pr3Tl and Pr3In.

In UMn2Al20, the uranium 5f electrons have the possibil-
ity of being in a 5f2 local-moment configuration with a non-
magnetic J=0 ground state and a triplet excited state, which
is the same 4f2 configuration as in the rare earth Pr3+.
Coupled with the absence of a specific heat C�T� and elec-
trical resistivity 
�T� anomaly at the transition temperature,
this raises the possibility that this compound has a similar
induced local-moment behavior.

It has been proposed that the phase transition in induced
moment systems is brought about by a softening of the
crystal-field excitation at the Q vector which corresponds to
the magnetically ordered phase �Q=0 for ferromagnetism;
Q=QN for antiferromagnetism�. At a temperature much
higher than the ordering temperature, well-defined nondis-
persive crystal-field excitations are expected but in the or-
dered state the singlet-triplet excitation would be
dispersive.15 These effects should be readily observable in
neutron-scattering spectra.

Therefore, in either the itinerant ferromagnetism case or
the local-moment-induced ferromagnet case, there should be
magnetic excitations in inelastic neutron-scattering spectra
corresponding either to the spin-fluctuation �Kondo-type�
scattering of the heavy fermion compound or to the crystal-
field excitations expected for a singlet-triplet-induced mo-
ment system. Unfortunately, in the inelastic neutron scatter-
ing on a polycrystalline sample of UMn2Al20, there are no

obvious magnetic excitations and all the peaks appear to be
phonon contributions in the energy range of 5–50 meV �Fig.
5�. Any magnetic excitations at these energies must overlap
the phonon contribution. To estimate the phonon contribu-
tion, we utilize the observation5 that in the neutron-scattering
spectra for UCo2Zn20 and ThCo2Zn20, the phonon contribu-
tion at high Q is roughly three times larger than at low Q.
Once the high Q spectra of UMn2Al20 is divided by a factor
of 3, it is almost identical with the low Q spectra, suggesting
that if there is magnetic scattering in this energy range, it is
very weak.

In summary, we report a ferromagnetic compound
UMn2Al20 for which a clear ferromagnetic transition is ob-
served in the magnetic susceptibility but no strong anomaly
was observed in the specific heat or resistivity. There appear
to be two possible explanations for this behavior: moderately
small moment itinerant ferromagnetism occurring in a heavy
fermion state or singlet-triplet-induced local-moment ferro-
magnetism. The inelastic neutron-scattering spectra show no
obvious magnetic excitations between 5 and 50 meV. More
careful neutron-scattering experiments to better determine
the nonmagnetic scattering, and to explore the scattering at
lower energies, are in order.
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FIG. 5. �Color online� The comparison of low Q and high Q
inelastic neutron-scattering spectra for UMn2Al20. Error bar in fig-
ure represents 
� The data were collected on Pharos at two differ-
ent incident energies. The solid line is the high Q data divided by a
factor of 3.
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